

Instituto Balseiro

AGENCIA

Kondo effect in mesoscopic and nanoscopic systems

Pablo S. Cornaglia

Centro Atómico Bariloche and Instituto Balseiro,

Comisión Nacional de Energía Atómica, Bariloche, Argentina

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

Recap Lectures 1 & 2

- Standard spin ½ Kondo model
 - Complicated quantum impurity problem
 - Needed the developments of new numeric tools to solve it
 - The low temperature strong coupling fixed point is a Fermi liquid
 - There a single energy scale in the Kondo regime: universal functions of $k_B T_K$

Outline of lecture 3

- Mesoscopic and nanoscopic devices
- Transport through quantum dots and molecular transistors
 - Meir and Wingreen conductance formula
- Molecular transistors.
 - Kondo effect in molecular transistors
 - The role of molecular vibrations

Moore's law (1965)

The number of transistors in an processor doubles every two years while the price remains constant.

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Date of introduction

Moore's law in aeronautics?

- A flight between New York and Paris was worth in 1975 \$900 and lasted 9 hours.
- It should cost now 1 penny and last less than a second.

Why molecular transistors?

- Moore's law is expected to breakdown by 2020. (gate size ~6nm, tunneling, heating)
- An alternative to semiconductor based transistors may be needed.
- Molecular based devices offer the possibility of creating transistors with an area ~10⁵ times smaller than current technology

Quantum dots

- The starting point is a two dimensional electron gas generated in a GaAs/Al_xGa_{1-x}As heterostructure.
- The gas is protected by an insulated layer and metallic gates can be deposited on the surface and negatively charged to repel the electrons below.
- The electrons are confined in small regions forming a *quantum dot*
- Charging energies $U \sim 1K 10K$
- Kondo temperatures $T_K < 1K$

Molecular transistors

- Metal-metal junction:
 - Electromigration
 - Break junctions
- Add molecules at the junction to get one bridging the gap
 - Lack of reproducibility
- Charging energy $U \sim 1000K 10000K$
- Kondo temperatures $T_K < 200K$

Atoms or molecules on surfaces

- Studied using Scanning tunneling microscopy (STM)
- Spectroscopy: access to spectral properties of the atom
- STM tip couples to bulk electrons: Fano lineshapes
- Lack of tunability
- Surface states that can be modified using quantum corrals
- Kondo effect given mostly by bulk states.

Transport through an interacting region

$$H = \sum_{\ell=L,R} \sum_{k\alpha} \epsilon_{\ell k} c^{\dagger}_{\ell k\alpha} c_{\ell k\alpha} + H_{\text{int}}(\{d_n\};\{d_n^{\dagger}\})$$

+
$$\sum_{\ell=L,R} \sum_{k\alpha} \sum_{n} (V_{n\ell k\alpha} c^{\dagger}_{\ell k\alpha} d_n + V^*_{n\ell k\alpha} d^{\dagger}_n c_{\ell k\alpha})$$

Y. Meir, N. S. Wingreen, Phys. Rev. Lett. 68 2512 (1992)

Transport through an interacting region

Meir and Wingreen showed that

$$J = \frac{ie}{2h} \int dE \left(\operatorname{Tr}[(f_L(E)\mathbf{\Gamma}^L - f_R(E)\mathbf{\Gamma}^R)(\mathbf{G}^r - \mathbf{G}^a) + (\mathbf{\Gamma}^L - \mathbf{\Gamma}^R)\mathbf{G}^{<}] \right)$$

where:

$$\Gamma_{n,m}^{L} = 2\pi \sum_{\alpha} \rho_{L}(E) V_{nL\alpha}(E) V_{mL\alpha}^{*}(E)$$

 $G_{n,\ell k\alpha}^{<}(t) = i \langle \langle c_{\ell k\alpha}, d_n(t) \rangle \rangle$

The calculation of out-of-equilibrium Green's functions for an interacting system in the strongly correlated regime is still an open problem. [some recent developments by F. Anders (2008) using NRG and J. Han and R. Heary (2009) using Quantum Monte Carlo]

$$eV = \mu_R - \mu_L$$

Transport through an interacting region

Simplifications:

- In the high temperature regime $k_B T \gg \Gamma_L, \Gamma_R$
 - No Kondo physics

- Proportionate couplings: $\Gamma_L = \lambda \Gamma_R$

- No need to calculate: $G^{<}_{n,\ell k\alpha}$
- But $G^r(E,V)$
- Zero bias: $V \rightarrow 0$
 - $G^r(E,0)$ but $G^{<}_{n,\ell k\alpha}(E,V \to 0)$
- Asymmetric couplings: $\Gamma_L \ll \Gamma_R$

• Tunneling situation: $G^r(E,0)$

Single level quantum dot

$$H = \sum_{\sigma} \epsilon_d n_{\sigma} + U n_{d\downarrow} n_{d\uparrow} + \sum_{\ell k} \epsilon_{\ell k} c^{\dagger}_{\ell k\sigma} c_{\ell k\sigma} + \sum_{\ell k} (V_{\ell k} c^{\dagger}_{\ell k\sigma} d_{\sigma} + V^* d^{\dagger}_{\sigma} c_{\ell k\sigma})$$

 $\Gamma_L = \lambda \Gamma_R, \quad V \to 0$

$$g_{\sigma} = \frac{4\pi e^2}{h} \int dE \, \frac{\Gamma^L \Gamma^R}{\Gamma^L + \Gamma^R} \, A_{d\sigma}(E, T, V = 0) \left(-\frac{\partial f}{\partial E} \right)$$

The Anderson impurity is coupled to a single effective electron bath with an hybridization $\Gamma = \Gamma^L + \Gamma^R$

Zero temperature conductance

$$g_{\sigma}(T=0) = \frac{4\pi e^2}{h} \frac{\Gamma^L \Gamma^R}{\Gamma^L + \Gamma^R} A_{d\sigma}(E=0, T=0, V=0)$$

Non-interacting system:

$$A_{d\sigma}(E=0,T=0,V=0) = \frac{\Gamma/\pi}{\epsilon_d^2 + \Gamma^2} \qquad \Gamma = \Gamma^L + \Gamma^R$$

$$g_{\sigma}(T=0) = \frac{4e^2}{h} \frac{\Gamma^L \Gamma^R}{\epsilon_d^2 + (\Gamma^L + \Gamma^R)^2}$$

$$g_{\sigma}(T=0) = \frac{4e^2}{h} \frac{\Gamma^L \Gamma^R}{(\Gamma^L + \Gamma^R)^2} \frac{1}{1 + \epsilon_d^2/(\Gamma^L + \Gamma^R)^2}$$

$$g_{\sigma}(T=0) = \frac{4e^2}{h} \frac{\Gamma^L \Gamma^R}{(\Gamma^L + \Gamma^R)^2} \sin^2(\pi n_{d\sigma})$$

Zero temperature conductance

For
$$\Gamma^L = \Gamma^R$$
 and $\epsilon_d = 0$

$$g_{\sigma}(T=0) = \frac{e^2}{h}$$
 (unitary limit)

The total conductance as a function of the gate voltage has a Lorentzian shape

For an interacting level, the occupation of the level has a two step behavior as predicted by the Hartree-Fock solution and we expect the conductance to have a plateau of height 2 e²/h in the magnetic moment regime

$$g_{\sigma}(T=0) = \frac{4e^2}{h} \frac{\Gamma^L \Gamma^R}{(\Gamma^L + \Gamma^R)^2} \sin^2(\pi n_{d\sigma})$$

High temperature regime

 $k_B T \gg \Gamma$

We can treat the hybridization as a perturbation. To lowest order We use the spectral density of the isolated quantum dot (atomic limit)

$$A_{d\sigma}(E) = \frac{1}{Z} \sum_{i,j} (e^{-\beta E_i} + e^{-\beta E_j}) \langle \Psi_j | d_{\sigma}^{\dagger} | \Psi_i \rangle \langle \Psi_i | d_{\sigma} | \Psi_j \rangle \delta[\epsilon - (E_j - E_i)]$$
$$g = \frac{e^2}{\hbar} \frac{\Gamma}{k_B T} \sum_{i,j,\sigma} (P_i + P_j) f(E_i - E_j) f(E_j - E_i) | \langle \Psi_j | d_{\sigma}^{\dagger} | \Psi_i \rangle |^2$$
$$P_i = e^{-\beta E_i} / Z$$

We expect two peaks of width $k_B T$ as a function of the gate voltage at $\epsilon_d = 0, -U$

$$\epsilon_d \propto -V_g$$

At the charge degeneracy points.

Thu Jul 24 00:19 1997

 V_g

Goldhaber-Gordon et al Nature 2000

Kondo effect in quantum dots

Scanning tunneling miscroscopy

$$dI/dV \propto A_{STM}(V)$$

$$t_c \Psi_{\sigma}^{\dagger} + t_d d_{\sigma}^{\dagger}$$

Access to the spectral density

Fano lineshapes

 $q = t_d/t_c$

A molecule as a building block

- Large level quantization.
- Large charging energies.

$$H_d = \epsilon_d (n_\uparrow + n_\downarrow) + U n_\uparrow n_\downarrow$$

Anderson model!

• S. Kubatkin et al., Nature 425, 698 (2003)

Kondo effect in molecules

L.H. Yu and D. Natelson, Nano Lett. **4**, 79 (2004) J. Park *et al.*, Nature **417**, 722 (2002)

Molecular vibrations

H. Park et al., Nature 407, 57 (2000)

Outline

- Molecular vibrations
- Anderson-Holstein
- Negative U Kondo effect
- Franck Condon effect
- Franck Condon blockade and Kondo effect

Kondo effect in C60 molecular transistors: L.H. Yu and D. Natelson, Nano Lett. 4, 79 (2004) A.N. Pasupathy et al., Science 306, 86 (2004)

Phononic effects in Suspended Quantum dots: E.M. Weig, et al., Phys. Rev. Lett. 92, 046804 (2004)

A molecule as a building block

- Large level quantization.
- Large charging energies.
- Electron vibron interaction: coupling to a mode with coordinate *x* and frequency ω₀

Quantum Harmonic Oscillator

$$H_{vib} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega_0^2 \hat{x}^2$$

$$a = \sqrt{\frac{m\omega_0}{2}} \left(\hat{x} + \frac{i}{m\omega_0} \hat{p} \right), \quad a^{\dagger} = \sqrt{\frac{m\omega_0}{2}} \left(\hat{x} - \frac{i}{m\omega_0} \hat{p} \right)$$

$$\hat{x} = \sqrt{\frac{1}{2m\omega_0}}(a+a^{\dagger}), \quad \hat{p} = i\sqrt{\frac{m\omega_0}{2}}(a^{\dagger}-a)$$

$$\mathbf{H}_{vib} = \omega_0 \left(a^{\dagger} a + \frac{1}{2} \right)$$

Isolated molecule

$$H_d = \epsilon_d n_d + U n_{\uparrow} n_{\downarrow} - \lambda (a^{\dagger} + a)(n_d - 1) + \omega_0 \left(\frac{1}{2} + a^{\dagger} a\right)$$

 $n_d = n_{\uparrow} + n_{\downarrow}$

The Hamiltonian can be diagonalized on each charge sector using a phonon displacement operator

$$\begin{split} \tilde{U} &= e^{\frac{\lambda}{\omega_0}(n_d - 1)(a^{\dagger} - a)} \qquad \tilde{U}^{\dagger} a \tilde{U} = a + \frac{\lambda}{\omega_0}(n_d - 1) \\ \tilde{H}_d &= \tilde{U}^{\dagger} H_d \tilde{U} \\ \tilde{H}_d &= \left(\epsilon_d + \frac{\lambda^2}{\omega_0}\right) n_d + \left(U - \frac{2\lambda^2}{\omega_0}\right) n_{\uparrow} n_{\downarrow} + \omega_0 \left(\frac{1}{2} + a^{\dagger} a\right) - \frac{\lambda^2}{\omega_0} \end{split}$$

Isolated molecule

$$|0,m\rangle = |0\rangle e^{\frac{\lambda}{\omega_{0}}(a^{\dagger}-a)} |m\rangle \qquad \tilde{U} = e^{\frac{\lambda}{\omega_{0}}} |\sigma,m\rangle = |\sigma\rangle |m\rangle \qquad \tilde{M}^{+} = e^{\frac{\lambda}{\omega_{0}}} |m\rangle \qquad \tilde{M}^{-} = e^{\frac{\lambda}{\omega_{0}}} |m\rangle \qquad \tilde{L}_{2,m} = 2\epsilon_{d} + m\omega_{0} \qquad \tilde{L}_{2,m} = 2\epsilon_{d} + U - \frac{\lambda^{2}}{\omega_{0}} + m\omega_{0} \qquad \tilde{L}_{2,m} = 2\epsilon_{d} + U - \frac{\lambda^{2}}{\omega_{0}} + m\omega_{0} \qquad \tilde{L}_{eff} = U - \frac{\lambda^{2}}{\omega_{0}} |m\rangle$$

$$\tilde{U} = e^{\frac{\lambda}{\omega_0}(n_d - 1)(a^{\dagger} - a)}$$
$$\tilde{M}^+ = e^{\frac{\lambda}{\omega_0}(a^{\dagger} - a)}$$
$$\tilde{M}^- = e^{-\frac{\lambda}{\omega_0}(a^{\dagger} - a)}$$

 $---\frac{\lambda^2}{\omega_0}$

 $-\epsilon_d$

Weak coupling to the leads $k_B T > \Gamma$

$$g = \frac{e^2}{\hbar} \frac{\Gamma}{k_B T} \sum_{\mu,\nu,m,n,\sigma} W(E_{\nu n}, E_{\mu m}, T) |\langle \Psi_{\nu n} | d^{\dagger}_{\sigma} | \Psi_{\mu m} \rangle|^2$$
$$W(E_{\nu n}, E_{\mu m}, T) = (P_{\mu m} + P_{\nu n}) f(E_{\mu m} - E_{\nu n}) f(E_{\nu n} - E_{\mu m})$$
$$P_{\mu m} = e^{-\beta E_{\mu,m}} / Z$$

$$|\langle \Psi_{\nu 0} | d^{\dagger}_{\sigma} | \Psi_{\mu 0} \rangle|^2 = |\langle \nu | d^{\dagger}_{\sigma} | \mu \rangle|^2 |\langle 0 | e^{\frac{\lambda}{\omega_0} (a^{\dagger} - a)} | 0 \rangle| = |\langle \nu | d^{\dagger}_{\sigma} | \mu \rangle|^2 |e^{-\lambda^2/\omega_0^2}$$

Exponential supression of the tunneling due to the Franck-Condon effect: "Franck-Condon blockade"

J. Koch and F. von Oppen Phys. Rev. Lett. **94**, 206804 (2005) R. Leturcq *et al.* Nature Physics **5**, 327 (2009)

Franck Condon effect

E. Condon Phys. Rev. 28 1182(1926)

NRG results

Zero-bias conductance vs. gate voltage at low (black) and high temperatures.

Kondo Hamiltonian with modified couplings

Charge Kondo effect (anisotropic Kondo)

10 T_{K} = 12.2 e^{-1/ $\rho_0 J_K$} 10^{-1} $\lambda = 0.4 \omega_0$ λ=0 G(2e²/h) 90 70 80 80 80 80 $(0)^{10^{-2}} L^{10^{-3}} L^{10^{-3}} L^{10^{-3}} L^{10^{-3}} L^{10^{-5}} L^$ 0.8 10⁻² $G(2e^2/h)$ Ē U_{eff}=0.84U 0.2 U_{eff}=U 0.2 0 -1.5 0 -0.5 ε_d/U $^{-0.5}\epsilon_d/U$ 0.5 0.5 -1 0 -1 0 _U_{eff}=0.36U λ=0.8ω $U_{eff} = -0.44U$ $\lambda = 1.2 \omega_0$ 0.8 0.8 $G(2e^{2}/h)$ G(2e²/h) 9'0 7'0 10⁻⁵ 0.2 0.2 10⁻⁶ 0 0-0.8 -0.5 ε_d/U 0.5 -0.6 -0.4 -0.2 -1 0 ε_d/U 10⁻⁷ $T_{K} = 3.0 \; ({\rm J_{\perp}}/{\rm J_{\parallel}})^{1/\rho_0 {\rm J_{\parallel}}}$ 10⁻⁸ 0.2 0.4 0.6 0.8 1.6 1.2 1.4 0 1 λ/ω_0

Kondo temperature

A small gate voltage destroys the charge Kondo effect but there no peak splitting as in the spin-Kondo with a magnetic field.

Spin-Kondo effect and vibrations

Spin-Kondo effect and vibrations

L.H. Yu et al. Phys. Rev. Lett. **95**, 256803 (2005) PSC, G. Usaj, and C.A. Balseiro, PRB R (2007)

Other electron phonon couplings

- Breathing modes
 - Effective hybridization
- Shuttle modes
 - New channel opening: no longer possible to map the left and right leads to a single electron bath.
- Stretching modes
 - Coupling to magnetic anisotropy can change the nature of ground state in magnetic molecules [PRB (2012)]

Coulomb blockade diamond edges

$$g(V) \sim \frac{2e^2}{h} \pi \Gamma \left[A_d(V/2) + A_d(-V/2) \right]$$

Coulomb blockade diamond edges

Conclusions

- The electron vibron interaction in molecular transistors leads to a rich variety of behavior:
 - New anisotropic charge Kondo effect
 - Anomalous gate-voltage dependence of the Kondo temperature.
 - Blurring of Coulomb-blockade diamond edges due to Franck-Condon effects.
 - Conduction channel opening (asymmetric coupling)
- Next lecture:
 - Exotic Kondo effects in double quantum dots and magnetic molecules.

Breathing mode

ريتيتين 0.1

Breathing mode

