General Aspects of Mesoscopic Transport, Jonathan BIRD, University at Buffalo

GENERAL ASPECTS OF MESOSCOPIC TRANSPORT: I

Jonathan Bird Electrical Engineering, University at Buffalo, Buffalo NY, USA

GENERAL ASPECTS OF MESOSCOPIC TRANSPORT I

- An Introduction to Mesoscopics
- Some Features of Mesoscopic Systems
- Some Common Mesoscopic Phenomena
- Realizing Mesoscopic Systems
- 1-D Mesoscopic Systems

Transport in Nanostructures SECOND EDITION	Gene	what is the meaning of meso - Google Search ing of meso + www.google.com/search?q=what+is+the+meaning+of+meso&ie=utf-8&oe=utf-8&aq= 🗇 \bigtriangledown C Getting Started mages Maps Play YouTube News Gmail Documents Calendar More -
	1-8 79	what is the meaning of meso
	Search	About 2,460,000 results (0.26 seconds)
	Web Images Maps Videos News Shopping	 Definition for meso: Web definitions: A Greek prefix meaning middle or mid; used with Latin, latinized, or Greek words to indicate the middle (often second) part of a structure hedgerowmobile.com/Glossaryparasitica.html More info » Source - Merriam-Webster <u>meso definition of meso- by the Free Online Dictionary, Thesauru</u> www.thefreedictionary.com/meso- In the middle; middle: mesoderm. 2. Intermediate: mesophyte. [Greek, from mesos, middle; see medhyo- in Indo-European roots.] meso- before a vowel, mes

What does "MESOSCOPIC" mean?

MESOSCOPIC PHYSICS – concerns the physical description of systems that are **INTERMEDIATE** between the macroscopic and microscopic realms

GENERAL ASPECTS OF MESOSCOPIC TRANSPORT I

- An Introduction to Mesoscopics
- Some Features of Mesoscopic Systems
- Some Common Mesoscopic Phenomena
- Realizing Mesoscopic Systems
- 1-D Mesoscopic Systems

What are the GENERAL FEATURES of Mesoscopic Systems?

Typically (not always) contain LARGE numbers of particles – reminiscent of classical systems ...

... But, the **QUANTUM** character of these particles is strongly apparent

 → Exhibit pronounced effects due to QUANTUM INTERFERENCE & ENERGY QUANTIZATION
 → MANY-BODY effects ...

Semiconductor devices: ARCHETYPAL mesoscopic system

Device current calculated in a TRANSMISSION approach – the LANDAUER formula

GENERAL ASPECTS OF MESOSCOPIC TRANSPORT I

- An Introduction to Mesoscopics
- Some Features of Mesoscopic Systems
- Some Common Mesoscopic Phenomena
- Realizing Mesoscopic Systems
- 1-D Mesoscopic Systems

QUANTUM INTERFERENCE Due to COHERENT wave transport

VOLUME 54, NUMBER 25

PHYSICAL REVIEW LETTERS

24 JUNE 1985

Observation of h/e Aharonov-Bohm Oscillations in Normal-Metal Rings

R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598

ENERGY QUANTIZATION due to spatial confinement of carriers

Electronic structure of atomically resolved carbon nanotubes

Jeroen W. G. Wildöer*, Liesbeth C. Venema*, Andrew G. Rinzler†, Richard E. Smalley† & Cees Dekker*

* Department of Applied Physics and DIMES, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands † Center for Nanoscale Science and Technology, Rice Quantum Institute, Departments of Chemistry and Physics, MS-100, Rice University, PO Box 1892, Houston, Texas 77251, USA

SINGLE-ELECTRON control of currents in nanostructures

LETTERS

PUBLISHED ONLINE: 19 FEBRUARY 2012 | DOI: 10.1038/NNANO.2012.21

nature nanotechnology

A single-atom transistor

Martin Fuechsle¹, Jill A. Miwa¹, Suddhasatta Mahapatra¹, Hoon Ryu², Sunhee Lee³, Oliver Warschkow⁴, Lloyd C. L. Hollenberg⁵, Gerhard Klimeck³ and Michelle Y. Simmons^{1*}

GENERAL ASPECTS OF MESOSCOPIC TRANSPORT I

- An Introduction to Mesoscopics
- Some Features of Mesoscopic Systems
- Some Common Mesoscopic Phenomena
- Realizing Mesoscopic Systems
- 1-D Mesoscopic Systems

Mesoscopic Devices Can Be Realized via TWO Distinct Approaches

TOP-DOWN methods utilize standard approaches of semiconductor micro-fabrication to perform **NANOSCALE** patterning of semiconductors or metals

BOTTOM-UP approaches exploit **NATURAL** nanostructures that form via **SELF-ASSEMBLY**

- MOST COMMONLY BASED ON GaAs/ AlgaAs HETEROJUNCTION
- FORMED BY GROWING AlGaAs ON TOP OF GaAs
- AlGaAs HAS A LARGER BANDGAP THAN THAT OF GaAs AND IS DOPED *n*-TYPE WITH AN EXCESS OF ELECTRONS
- **PRIOR** TO HETEROJUNTION FORMATION FERMI LEVEL IN THE TWO MATERIALS IS **DIFFERENT**

- AT THERMAL EQUILIBRIUM THE FERMI LEVEL IS ALIGNED AT A CONSTANT POSITION ACROSS THE TWO MATERIALS
- THIS IS ACHIEVED BY THE **TRANSFER** OF ELECTRONS FROM THE AlGaAs TO THE GaAs
- THE RESULTING BAND BENDING IN COMBINATION WITH THE BAND OFFSETS – RESULTS IN THE FORMATION OF A NARROW POTENTIAL WELL
- CARRIER MOTION IN THE WELL IS CONFINED NEAR THE INTERFACE FORMING A 2DEG

- THE 2DEG FORMED IN A HETEROJUNCTION CAN EXHIBIT SUPERIOR ELECTRICAL CHARACTERISTICS
- REMOVAL OF DOPANTS FROM CONDUCTING LAYER RESULTS IN EXCELLENT LOW-TEMPERATURE MOBILITY
- MEAN FREE PATH FOR TRANSPORT CAN EXCEED A HUNDRED MICRONS AT LOW TEMPERATURES!
- ALLOWS THE EXPLORATION OF A VARIETY OF NOVEL MESOSCOPIC TRANSPORT PHENOMENA

Ensslin Group ETH Zurich

Easily PATTERNED to Form Mesoscopic Devices

LONG Mean-Free Path Allows BALLISTIC Transport

BOTTOM-DOWN 2DEG: GRAPHENE

GENERAL ASPECTS OF MESOSCOPIC TRANSPORT I

- An Introduction to Mesoscopics
- Some Features of Mesoscopic Systems
- Some Common Mesoscopic Phenomena
- Realizing Mesoscopic Systems
- 1-D Mesoscopic Systems

1-D Wires Can Be Realized By Top-Down OR Bottom-Up Methods

Etched Nanowire

Carbon Nanotube

Transport in Nanostructures

0000

SECOND EDITION

Exhibit UNIQUE Density of States That Governs Electrical & Optical Properties

 $k_x = \frac{2\pi}{I} n_x$, $n_x = 0, \pm 1, \pm 2, \dots$

$$dk_x = \frac{2\pi}{L}$$

$$g_{1D}(E) = \left[\frac{2m^*}{\pi^2\hbar^2}\right]^{1/2} \frac{1}{\sqrt{E}}$$

DoS OF PURELY 1-DIMENSIONAL -NON-INTERACTING - ELECTRONS

In Real Systems DoS Follows from a SUM Over Multiple 1-D SUBBANDS

In Real Systems DoS Follows from a SUM Over Multiple 1-D SUBBANDS

1-D DoS Responsible for a Unique Conductance **QUANTIZATION**

