Coherent spin dynamics in semiconductor low-dimensional systems

M.M. Glazov

Ioffe Physical-Technical Institute, St-Petersburg, Russia

Spin-related phenomena in mesoscopic transport $17^{\text {th }}$ of September, 2012

Aim of the talk

Electron spin plays major role in various phenomena. Most importantly, the spin of electrons results in the Pauli exclusion principle, which in turn underlies the periodic table of chemical elements and makes our existence possible.

It is needless to explain in this audience the manifestations of spin in the electron transport. Hence, the aim of my talk is to demonstrate alternative, in particular, optical means to access electron spin in low-dimensional systems.

Pump-probe technique

DICHROISM AND OPTICAL ANISOTROPY OF MEDIA;WITH ORIENTED SPINS OF FREE ELECTRONS

A. F. Ioffe Physicotechnical Institute, Academy of Sciences of the USSR, Leningrad
time-resolved, $t<>\tau_{\text {rad }}$, "non-destructive"
A. G. Aronov and E. L. Ivchenko Sov. Phys. Solid State (1973)

Pump: circularly polarized pulse orients carrier spins

$$
S_{z} \neq 0 \Rightarrow\left\{\begin{array}{l}
n_{+} \neq n_{-} \\
\alpha_{+} \neq \alpha_{-}
\end{array}\right.
$$

Ellipticity

Faraday rotation

$\Theta \propto S_{z}$

- Faraday Effect (polarization plane rotation)
- Ellipticity Effect (appearance of the circular polarization)
- Kerr Effect (polarization plane rotation of reflected light)

Motivation

Quantum wells, free electrons

R.T. Harley et al. (2007)

Quantum dot ensembles

A. Greilich et al. (2006)

Single quantum dots

Microcavities

A. Brunetti et al. (2006)
M.H. Mikkelsen et al. (2007)

Pump-probe is a widespread technique to measure

relaxation times, precession frequencies

- What can we learn from "microscopics" of signals?
- What about signal amplitudes?

We focus here on quantum dots:

n-type single quantum dots and quantum dot arrays

- Carrier localization leads to the spin relaxation slowdown
- Possibility to address resonantly
 singlet trion
- Hyperfine interaction of electron and nuclear spins is effective Similar physics for quantum wires, wells and bulk materials with low, $n_{d} a_{B}^{d} \ll 1$, density electrons/holes

Other systems: Phys. Solid State 54, 1 (2012)

Element	${ }^{27} \mathrm{AI}$	${ }^{69(71)} \mathrm{Ga}$	${ }^{75} \mathrm{As}$	${ }^{115} \mathrm{In}$
Z	13	31	33	49
I	$5 / 2$	$3 / 2$	$3 / 2$	$9 / 2$

Questions to theory

Spin pump-probe signals for InAs n-type quantum dots array

Experiments:

(1) Origin of the long-living signal at singlet $(S=0)$ trion excitation?
(2) Signals at negative delays, i.e. before the next pump pulse?
(3) Growth of Faraday rotation signal with time?

Outline

(1) Introduction. Questions to theory
(2) Interaction of light with spins

- Optical orientation via trions
- Detection of spin polarization
(3) Spin mode-locking effect
- Phase synchronization condition \& passive mode-locking
- Nuclei-induced active mode-locking
- Emergence of Faraday rotation
(4) Spin dynamics in equilibrium
(5) Conclusions

Optical orientation in nanosystems

Optical orientation is a transformation of the photon angular momentum to the system of electron spins
(a)

(b)

Semiconductor quantum well or self-organized quantum dot:

- at σ^{+}pump $-\frac{3}{2}+1=-\frac{1}{2}$ i.e. $(e, h h)=(-1 / 2,3 / 2)$
- at σ^{-}pump $\frac{3}{2}+(-1)=\frac{1}{2}$
i.e. $(e, h h)=(1 / 2,-3 / 2)$
(normal light incidence)
Absorption of circularly polarized light
generates spin-polarized electrons and holes

Long-living electron spin polarization

σ^{+}pump $\Rightarrow\left(-1 / 2_{e}, 3 / 2_{h}\right)$
The carriers with the spins opposite to those of photocreated electrons are picked out

Hole spin relaxation/fast spin precession (@ B $\neq 0$) \Rightarrow spin of returning electron is negligible

Resident electrons become spin polarized after recombination

Spin pumping in quantum dots

Only QDs with a certain spin projection interact with the circularly polarized light

Technical details:

- Short pump pulse: $\tau_{p} \ll \tau_{Q D}, 2 \pi / \Omega_{\mathrm{L}}$
- Four level model: two ground states $\psi_{ \pm 1 / 2}$, two excited states $\psi_{ \pm 3 / 2}$
- Returning electron is depolarized Under σ^{+}pump the wave function transforms as

$$
\begin{gathered}
\psi_{1 / 2}(t \rightarrow+\infty)=Q e^{i \Phi} \psi_{1 / 2}(t \rightarrow-\infty) \\
\psi_{-1 / 2}(t \rightarrow+\infty)=\psi_{-1 / 2}(t \rightarrow-\infty)
\end{gathered}
$$

Transformation of the wave function means transformation of the spin

Parameters Q and Φ are determined by the pump pulse shape, area, and detuning from resonance

Spin pumping in quantum dots

Only QDs with a certain spin projection interact with the circularly polarized light

Electron spin $\boldsymbol{S}=\frac{1}{2}\langle\psi| \boldsymbol{\sigma}|\psi\rangle$

$$
\begin{aligned}
S_{z}^{+} & =\frac{Q^{2}+1}{2} S_{z}^{-}+\frac{Q^{2}-1}{4} \\
S_{y}^{+} & =Q \cos \Phi S_{y}^{-}-Q \sin \Phi S_{x}^{-} \\
S_{x}^{+} & =Q \cos \Phi S_{x}^{-}+Q \sin \Phi S_{y}^{-}
\end{aligned}
$$

- Before pump pulse \boldsymbol{S}^{-}, after \boldsymbol{S}^{+}
- An increase of spin z-component
- In-plane components rotation

Yugova, MMG, Ivchenko, Efros (2009)

$$
\text { Spin orientation } \sim \frac{Q^{2}-1}{4}
$$

Spin orientation $\sim \frac{Q^{2}-1}{4}$

Spin rotation $\sim \Phi$

Spin rotation by optical pulse

Phys. Rev. B 80, 104436 (2009)
Parameters Q and Φ are determined by the pump pulse intensity, duration and detuning

A. Greilich et al. (2009): InGaAs QDs
C. Phelps et al. (2009): CdTe QWs from the resonance (Φ)

Electron spin coherence generation \& control

Circularly polarized pulses being resonant with the singlet trion transition orient electron spins in quantum dots

Slightly off-resonant pulse rotates spins

Spin coherence detection

QW or ensemble of QDs, \ldots

Ellipticity and Faraday
rotation

$$
\mathcal{E}+\mathrm{i} \mathcal{F} \propto r_{+}-r_{-}
$$

Probe: transmission/reflection of weak linearly-polarized pulse weak=does not affect spin coherence

$$
\uparrow=\circlearrowright+\circlearrowleft
$$

$r_{+} \neq r_{-} \Rightarrow$ rotation of the linear polarization plane of the probe pulse and appearance of its ellipticity

$$
\begin{gathered}
\text { Resonance trion, exciton, } \ldots \\
\qquad \begin{array}{c}
r_{ \pm}(\omega)=\frac{i \Gamma_{0, \pm}}{\omega_{0, \pm}-\omega-\mathrm{i}\left(\Gamma_{0, \pm}+\Gamma_{ \pm}\right)} \\
t_{ \pm}=1+r_{ \pm}
\end{array}
\end{gathered}
$$

Probing the electron spins

- Faraday Effect (polarization plane rotation)

$$
\mathcal{F}=\lim _{z \rightarrow+\infty} \int_{-\infty}^{\infty}\left[\left|E_{x^{\prime}}^{(t)}(z, t)\right|^{2}-\left|E_{y^{\prime}}^{(t)}(z, t)\right|^{2}\right] \mathrm{d} t
$$

- Ellipticity Effect (appearance of the circular polarization)

$$
\mathcal{E}=\lim _{z \rightarrow+\infty} \int_{-\infty}^{\infty}\left[\left|E_{\sigma^{-}}^{(t)}(z, t)\right|^{2}-\left|E_{\sigma^{+}}^{(t)}(z, t)\right|^{2}\right] \mathrm{d} t
$$

Probe induced field

$$
\begin{aligned}
\delta \boldsymbol{E}(t)= & -4 \pi\left(\frac{\omega_{\mathrm{pr}}}{c}\right)^{2} \frac{\mathrm{ie}^{\mathrm{i} q|z|}}{2 q} N_{Q D}^{2 d} \Pi(t) \\
& \Pi_{x} \propto\left(n_{e}-n_{t r}\right) E_{x}^{\text {probe }} \\
& \Pi_{y} \propto\left(S_{z}-f_{z}\right) E_{x}^{\text {probe }}
\end{aligned}
$$

Spectral function

$$
\begin{gathered}
\mathcal{E}+\mathrm{i} \mathcal{F} \propto \\
\int_{-\infty}^{\infty} \mathrm{d} t \int_{-\infty}^{t} \mathrm{~d} t^{\prime} f(t) f\left(t^{\prime}\right) \mathrm{e}^{\mathrm{i} \Delta\left(t-t^{\prime}\right)} \\
\Delta=\omega_{\mathrm{pr}}-\omega_{0} ; E_{\mathrm{pr}} \propto f(t) \mathrm{e}^{-\mathrm{i} \omega t}
\end{gathered}
$$

Electron spin coherence detection

MMG et al. (2010)

Linearly polarized pulse can readout spin polarization

Correct description is based on

 reflection/transmission rather than on dielectric constant
Outline

(1) Introduction. Questions to theory
(2) Interaction of light with spins

- Optical orientation via trions
- Detection of spin polarization
(3) Spin mode-locking effect
- Phase synchronization condition \& passive mode-locking
- Nuclei-induced active mode-locking
- Emergence of Faraday rotation

44 Spin dynamics in equilibrium
(5) Conclusions

Resonant spin amplification and mode-locking

$\xrightarrow[T_{T_{R}}^{\mid} \underbrace{\text { putbe }}_{t} \underbrace{\text { pump }}_{t}]{\underbrace{\mid} \mid}$
 Signal dependence on \boldsymbol{B} at a fixed delay Δt

Resonant spin amplification is

determined by commensurability of spin

 precession and pump repetition periods$\Omega_{\mathrm{L}} T_{\text {rep }}=2 \pi$
Kikkawa, Awschalom (1998)

$\Omega_{\mathrm{L}} T_{\text {rep }}=\pi$
Astakhov, MMG, Yakovlev, Zhukov, Ossau, Molenkamp, Bayer (2008)
In inhomogeneous systems
certain electrons become polarized stronger than others (mode-locking)

Electron spin precession mode-locking

Train of pump and probe pulses,

- Large spread of electron g-factors \Rightarrow fast dephasing
- Signal reappears before the next pump pulse arrival

Resonant optical frequency, ω_{0}
$\hbar / \tau_{p} \sim 1 \mathrm{meV}$

Constructive interference exp.: $K \sim 10^{2}$

Electron spin precession mode-locking

Train of pump and probe pulses,

- Large spread of electron g-factors \Rightarrow fast dephasing
- Signal reappears before the next pump pulse arrival

"Passive" mode-locking:

all synchronized modes have same initial phases owing to the pump

Resonant optical frequency, ω.
$\hbar / \tau_{p} \sim 1 \mathrm{meV}$

Mode-locking is much stronger than expected:

Where are other spins with precession frequecies $\Omega \neq \frac{2 \pi K}{T_{R}}$?

Nuclear effects: experimental evidence

Very high amplitude at negative delays

$$
\Omega_{\mathrm{eff}}=\Omega_{\mathrm{L}}+\Omega_{\mathrm{nucl}}
$$

Feedback of nuclei is necessary
Nuclei-induced frequency focusing takes place

Classical origin of the focusing

$\ell^{T_{R}} \notin B \uparrow$ Nuclear spin polarization
Time scales @ $B=1 \mathrm{~T}$

$$
\boldsymbol{m}=\sum_{i} \boldsymbol{I}_{i}
$$

Spin precession between the pulses

$$
\begin{gathered}
\frac{\mathrm{d} \boldsymbol{m}}{\mathrm{~d} t}=[\alpha \boldsymbol{S}(t) \times \boldsymbol{m}(t)]+[\boldsymbol{\omega} \times \boldsymbol{m}(t)], \\
\frac{\mathrm{d} \boldsymbol{S}}{\mathrm{~d} t}=[\alpha \boldsymbol{m}(t) \times \boldsymbol{S}(t)]+[\boldsymbol{\Omega} \times \boldsymbol{S}(t)], \\
(n-1) T_{R}<t<n T_{R}
\end{gathered}
$$

Pump pulse action:
m

$$
\begin{aligned}
& S_{z}^{+}=\frac{Q^{2}+1}{2} S_{z}^{-}+\frac{Q^{2}-1}{4} \\
& S_{y}^{+}=Q S_{y}^{-}, \quad S_{x}^{+}=Q S_{x}^{-}
\end{aligned}
$$

- Electron spin precession

$$
\frac{2 \pi}{\Omega} \lesssim 0.1 \mathrm{~ns}
$$

(2) Precession in nuclear field

$$
\frac{2 \pi}{\alpha m} \sim 10 \mathrm{~ns}
$$

(3) Pulse repetition period

$$
T_{R} \sim 10 \mathrm{~ns}
$$

(9) Nuclear spin precession

$$
\frac{2 \pi}{\omega} \lesssim 100 \mathrm{~ns}
$$

(5) Precession in electron field

$$
\frac{2 \pi}{\alpha S} \gtrsim 10^{3} \mathrm{~ns}
$$

Classical origin of the focusing

Nuclear enin nolariaatinn

$$
\frac{m_{x}(t)}{m} \approx \frac{t}{\tau_{\mathrm{nf}}}, \quad \frac{1}{\tau_{\mathrm{nf}}}=\frac{\alpha^{3} m T_{R}}{\omega \Omega^{2}} f\left(\Omega T_{R}, \Theta\right)
$$

ecession

Spin precession detween the pulses

(2) Precession in nuclear field

Classical origin of the focusing

Nuclear spin polarization
Time scales @ $B=1 \mathrm{~T}$

$$
\boldsymbol{m}=\sum_{i} \boldsymbol{I}_{i}
$$

- Electron spin precession

Spin precession between the pulses
$\mathrm{d} m$

(2) Precession in nuclear field 2π

"Active" mode-locking:

spin precession frequencies are synchronized in all dots thanks to nuclei
$\mathrm{d} t$

$$
(n-1) T_{R}<t<n T_{R}
$$

Pump pulse action:

(4) Nuclear spin precession

$$
\frac{2 \pi}{\omega} \lesssim 100 \mathrm{~ns}
$$

(5) Precession in electron field

$$
\frac{2 \pi}{\alpha S} \geq 10^{3} \mathrm{~ns}
$$

Alternatives

Random nuclear spin dynamics

Random nuclear spin flips driven by precessing electron spin:

$$
\frac{1}{\tau_{\mathrm{n}}}=\frac{\alpha^{2} \tau_{\mathrm{c}}}{1+\left(\Omega \tau_{\mathrm{c}}\right)^{2}} \sim \frac{\alpha^{2}}{\Omega^{2} \tau_{\mathrm{c}}}
$$

M.I. Dyakonov and V.I. Perel' (1973)

Phenomenological electron correlation time $\tau_{\mathrm{c}} \propto 1 / W_{\mathrm{tr}}$, where W_{tr} is the trion creation probability. At PSC nuclear spin flips stop.
\checkmark Our approach shows that the nuclear dynamics is directed!

Dynamical nuclear polarization

V. Korenev (2010)

Equilibrium approach/detuned pump: $\frac{\mathrm{d} m_{x}}{\mathrm{~d} t}=-\frac{m_{x}-q S_{x}\left(m_{x}\right)}{T_{1 e}}-\frac{m_{x}}{T_{1}}$ PSC is generally not stable!?
\checkmark Nonequilibrium regime for the pump-probe conditions!
\checkmark Tuning is possible for resonant pump!

Puzzle of spin-Faraday effect

Nuclei induce effective tuning of electron spin precession frequencies to the synchronous with pump repetition period values

MMG et al. (2010)
Why does spin Faraday signal amplitude grow with time?

Emergence of Faraday rotation

Inhomogenous array:

- Spread of resonant frequencies
- Related spread of g-factors
- Random nuclear fields

$$
\left\{\begin{array}{l}
\mathcal{F}\left(\omega_{0}-\omega_{\mathrm{pr}}\right) \\
\mathcal{E}\left(\omega_{0}-\omega_{\mathrm{pr}}\right)
\end{array}\right\}
$$

Resonant optical frequency, ω_{0}

Pump-probe signal calculation

QDs array, correlated distribution of resonant frequencies, ω_{0}, and g-factors, $p\left(\omega_{0}, g\right)$:

$$
\mathcal{S}(\Delta t) \propto \int \mathrm{d} \omega_{0} \mathrm{~d} g p\left(\omega_{0}, g\right) S_{z}\left(\omega_{0}, g, \Delta t\right) \times
$$

$$
g \approx 2-\frac{4\left|p_{c v}\right|^{2}}{3 m_{0}} \frac{E_{g}^{Q D}\left(E_{g}^{Q D}+\Delta\right)}{\text { L. Roth (1964); E.L. Ivchenko, A.A. Kiselev (1992) }}
$$

Emergence of Faraday rotation

Inhomogenous array:

- Spread of resonant
frequencies
- Related spread of g-factors
- Random nuclear fields

Resonant optical frequency, ω_{0}

Faraday rotation signal appears at $t \neq 0$

Emergence of Faraday rotation

Simple model

Inhomogenous array:

- Spread of resonant frequencies
- Related spread of g-factors
- Random nuclear fields

$$
\begin{aligned}
\mathcal{F}(t)= & \frac{1}{2} \sqrt{\frac{\pi}{2 \tau_{p}^{2}}} \exp \left[\frac{-\Delta^{2} \tau_{p}^{2} / 2-\left(\Omega^{\prime} t\right)^{2}}{8 \tau_{p}^{2}}\right] \times \\
& {\left[2 \Delta \tau_{p} \cos \left(\tilde{\Omega}_{0} t\right)+\frac{\Omega^{\prime} t}{\tau_{p}} \sin \left(\tilde{\Omega}_{0} t\right)\right] }
\end{aligned}
$$

Experiment

Faraday rotation does not reflect "averaged" spin dynamics of electron ensemble!

MMG et al., (2010)

Emergence of Faraday rotation

Inhomogenous array:

- Spread of

Faraday and ellipticity are formed by different ensembles of spins

- Different temporal behavior
- Faraday rotation does not reflect "averaged" spin dynamics of electron ensemble

fields

Outline

(1) Introduction. Questions to theory
(2) Interaction of light with spins

- Optical orientation via trions
- Detection of spin polarization
(3) Spin mode-locking effect
- Phase synchronization condition \& passive mode-locking
- Nuclei-induced active mode-locking
- Emergence of Faraday rotation

44 Spin dynamics in equilibrium
(5) Conclusions

What would happen, if one measures Faraday or Kerr effect in the absence of pump?

What would happen, if one measures Faraday or Kerr effect in the absence of pump?

What would happen, if one measures Faraday or Kerr effect in the absence of pump?

Just noise? Spin noise!

Spin noise spectroscopy

Magnetic resonance in the Faraday-rotation noise spectrum

E. B. Aleksandrov and V. S. Zapasskir

(Submitted 23 January 1981)
Ch. Eksp. Teor. Fiz. 81, 132-138 (July 1981)
A maximum at the magnetic resonance frequency of sodium atoms in the ground state is observed near the $5896 \AA$ absorption line in the fluctuation spectrum of the azimuth of the polarization plane of light crossing a magnetic field in sodium vapor. The experiment is a demonstration of a new EPR method which does not require in principle magnetic polarization of the investigated medium, nor the use of high-frequency or microwave fields to induce the resonance.

$$
\left\langle\vartheta_{\mathcal{F}}(t) \vartheta_{\mathcal{F}}\left(t^{\prime}\right)\right\rangle,
$$

Invited review
Semiconductor spin noise spectroscopy: Fundamentals, accomplishments, and challenges

$$
\left\langle\vartheta_{\mathcal{K}}(t) \vartheta_{\mathcal{K}}\left(t^{\prime}\right)\right\rangle \propto\left\langle S_{z}(t) S_{z}\left(t^{\prime}\right)\right\rangle
$$

Georg M. Müller, Michael Oestreich, Michael Römer, Jens Hübner*
Instient fair Festoriperphysik Leibniz Universitat Hannover, Appelstrage 2, D-30167 Hannover, Germany

Autocorrelations

Transport $\quad \delta \boldsymbol{v}(t)=\delta \boldsymbol{v}(0) e^{-t / \tau_{p}}$

Electron velocity noise:

$$
\left\langle v_{x}(t) v_{x}(0)\right\rangle=\frac{v_{F}^{2}}{2} e^{-t / \tau_{p}}
$$

Diffusion coefficient

$$
D=\int_{0}^{\infty}\left\langle v_{x}(t) v_{x}(0)\right\rangle \mathrm{d} t=\frac{v_{F}^{2} \tau_{p}}{2}
$$

$$
\text { Spin } \quad \delta \boldsymbol{s}(t)=\delta \boldsymbol{s}(0) e^{-t / \tau_{s}}
$$

Electron spin noise:

$$
\left\langle s_{z}(t) s_{z}(0)\right\rangle=\left\langle s_{z}^{2}\right\rangle e^{-t / \tau_{s}}
$$

Magnetic susceptibility

$$
\mu_{z z}(\omega) \propto \int_{0}^{\infty}\left\langle s_{z}(t) s_{z}(0)\right\rangle e^{\mathrm{i} \omega t} \mathrm{~d} t
$$

Autocorrelations

Transport $\quad \delta \boldsymbol{v}(t)=\delta \boldsymbol{v}(0) e^{-t / \tau_{p}}$

Electron velocity noise:

$$
\left\langle v_{x}(t) v_{x}(0)\right\rangle=\frac{v_{F}^{2}}{2} e^{-t / \tau_{p}}
$$

Diffusion coefficient

$$
D=\int_{0}^{\infty}\left\langle v_{x}(t) v_{x}(0)\right\rangle \mathrm{d} t=\frac{v_{F}^{2} \tau_{p}}{2}
$$

Spin $\quad \delta \boldsymbol{s}(t)=\delta \boldsymbol{s}(0) e^{-t / \tau_{s}}$

Electron spin noise:

$$
\left\langle s_{z}(t) s_{z}(0)\right\rangle=\left\langle s_{z}^{2}\right\rangle e^{-t / \tau_{s}}
$$

Magnetic susceptibility

$$
\mu_{z z}(\omega) \propto \int_{0}^{\infty}\left\langle s_{z}(t) s_{z}(0)\right\rangle e^{\mathrm{i} \omega t} \mathrm{~d} t
$$

Spin noise in electron ensembles

Single spin

$$
\left\langle s_{x}\right\rangle=\left\langle s_{y}\right\rangle=\left\langle s_{z}\right\rangle=0 \quad \text { but } \quad\left\langle s_{x}^{2}\right\rangle=\left\langle s_{y}^{2}\right\rangle=\left\langle s_{z}^{2}\right\rangle=\frac{1}{3} \times \frac{1}{2}\left(1+\frac{1}{2}\right)
$$

Spin ensemble

Spin noise theory

Zero field

Nuclei fluctuations

Spin fluctuation $\delta \boldsymbol{s}$ in a dot

$$
\frac{\partial \delta \boldsymbol{s}(t)}{\partial t}+\frac{\delta \boldsymbol{s}(t)}{\tau_{s}}+\delta \boldsymbol{s}(t) \times\left(\boldsymbol{\Omega}_{\boldsymbol{B}}+\boldsymbol{\Omega}_{N}\right)=\boldsymbol{\xi}(t)
$$

Random (Langevin) forces

$$
\left\langle\xi_{\alpha}\left(t^{\prime}\right) \xi_{\beta}(t)\right\rangle=\frac{1}{2 \tau_{s}} \delta_{\alpha \beta} \delta\left(t^{\prime}-t\right)
$$

$$
\begin{aligned}
& \left(\delta s_{\alpha} \delta s_{\beta}\right)_{\omega}= \\
& \int_{-\infty}^{+\infty}\left\langle\delta s_{\alpha}(t+\tau) \delta s_{\beta}(t)\right\rangle \mathrm{e}^{\mathrm{i} \omega \tau} d \tau
\end{aligned}
$$

MMG, Ivchenko (2012)

$$
\begin{aligned}
& \left(\delta s_{\alpha}^{2}\right)_{\omega}=\frac{\pi}{6}\{\Delta(\omega) \\
& +\int_{0}^{\infty} d \Omega_{N} F\left(\Omega_{N}\right)
\end{aligned}
$$

$$
\left.\left[\Delta\left(\omega-\Omega_{N}\right)+\Delta\left(\omega+\Omega_{N}\right)\right]\right\}
$$

- Zero field peak
- Peak at $\Omega \sim\left\langle\sqrt{\Omega_{N}^{2}}\right\rangle$

Spin noise theory

Transverse field

- Zero field peak is reduced
- Main peak shifts $\sim \Omega_{B}$

Random (Langevin) forces

$$
\left\langle\xi_{\alpha}\left(t^{\prime}\right) \xi_{\beta}(t)\right\rangle=\frac{1}{2 \tau_{s}} \delta_{\alpha \beta} \delta\left(t^{\prime}-t\right)
$$

MMG, Ivchenko (2012)

Spin noise theory \& experiment

$$
\frac{\partial \delta \boldsymbol{s}(t)}{\partial t}+\frac{\delta \boldsymbol{s}(t)}{\tau_{s}}+\delta \boldsymbol{s}(t) \times\left(\boldsymbol{\Omega}_{\boldsymbol{B}}+\boldsymbol{\Omega}_{N}\right)=\boldsymbol{\xi}(t)
$$

Random (Langevin) forces

$$
\left\langle\xi_{\alpha}\left(t^{\prime}\right) \xi_{\beta}(t)\right\rangle=\frac{1}{2 \tau_{s}} \delta_{\alpha \beta} \delta\left(t^{\prime}-t\right)
$$

Spin noise spectroscopy

Spin noise spectroscopy

provides information about spin precession and dephasing in close-to-equilibrium conditions

Prospects \& Challenges

Spins in cavities

 entanglement via spinSpin noise spectroscopy

$$
\left\langle S_{i}^{2}\right\rangle=N\left\langle s_{i}^{2}\right\rangle
$$

monitoring Faraday/Kerr/Ellipticity fluctuations (in an absence of a pump)

Aleksandrov, Zapasskii (1981)

Hu, Munro, Rarity (2008)
3D spin tomography

Kosaka et al. (2009)

Smirnov, MMG (2012)

Conclusions

Faraday effect and ellipticity provide complementary information about dynamics of electron and nuclear spins in QDs

Plan

(1) Introduction. Questions to theory
(2) Interaction of light with spins
(3) Spin mode-locking effect

4 Spin dynamics in equilibrium
(5) Conclusions

Co-authors

E.L. Ivchenko, D.S. Smirnov (loffe Inst., Russia)
I.A. Yugova (St.-Petersburg State University, Russia)

AI.L. Efros (Naval Research, USA)
E.A. Zhukov (Moscow State University, Russia)
D.R. Yakovlev, M. Bayer (TU-Dortmund, Germany)

