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• Mn atoms substituting Ga atoms in GaAs provide both 

localized magnetic moments (S= 5/2) and itinerant 

acceptors (holes). 

 

• New magnetic entities: acceptor Mn nanomagnets 

• Can we assign an effective ``giant spin´´ J ? 

• Orbital vs spin contributions 

• Previous studies (ESR): J = 1 for Mn in bulk 

• What about when Mn is on surface? 

• What about when there two or more intereacting Mn? 

• Can we derive an effective quantum Hamiltonian for J? 

 

Ga: [Ar] 3d10  4s2p1 

Mn: [Ar] 3d 5 4s2p0 

Mn 
Mn 

hole 
hole 
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Outline 

• Motivation -- Review of recent STM experiments 

 

• Theoretical modelling of magnetic impurities in semiconductors -- 

Mn in GaAs:  electronic stucture of acceptor states 

 

• Quantization of magnetic degrees of freedom of acceptor magnets 

          -  Chern number spins and spin Hamiltonians 

               - Predictions and implications for experiments 

 

• Conclusions and outlook 



Fundamentals of 

cross-sectional 

STM (XSTM) 

(Weber’s homepage) 

”Recently, it has become possible 

to [….] identify the effects of a   

solitary dopant […] locally on the  

fundamental properties of a  

semiconductor.” 



 
STM experiments on magnetic impurities 
 
in semiconductors: Mn in GaAs 

• Yakunin et al., PRL 92 (2004) 

• Yakunin et al., PRL 96 (2005) 

• Kitchen et al., Nature 442 (2006) 

• Marczinowski et al, PRL 99 (2007) 

• Jancu et al., PRL 101(2008) 

• Garleff et al., PRB 78 (2008) 

• Kitchen et al., PRB 80 (2009) 

• Celebi et al., PRL 104 (2010) 

• Garleff et al., PRB 82 (2010) 

• Lee et al., Science 330 (2010) 

 

STM image of 

acceptor wf. for 

neutral Mn on the 

(110) GaAs   

subsurface layer 

Possible building blocks of  

single-spin devices in 

quantum information and nanospintronics 



Mn atoms on GaAs (110) surface by STM: 
novel nanomagnets  

Mn pair coupled  

ferromagnetically 

Acceptor level for Mn atom 

- Anisotropic    

  acceptor splitting 

- Related to    

  exchange energy ? 

Acceptor levels for Mn pair 



surface 1st sublayer 2nd sublayer 
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Theory of electronic states of Mn impurities on (110) 

GaAs surfaces and subsurfaces 
T.O. Strandberg, CMC, A.H. MacDonald, 2009-2010 

• 1 Mn in GaAs: 

   - Tight-binding model + kinetic exchange 

   - Magnetic anisotropy and LDOS 

 

• 2 Mn impurities in GaAs:  

  - ”interacting” acceptors  FM double-exchange 

                                                

Previous work by  

J.-M. Tang & M. Flatté 

PRL 92, 047201 (2004) 

PRB 72, 161315 (2005) 

(mainly Mn in bulk GaAs) 

• From bulk Mn impurites to surface impurities 

 

• Quantization of Mn magnetic moment 

  dynamics via Chern-number Berry phase theory 

 
C.M.C, Cehovin & MacDonald, PRL 91 46805 (2003) 

PRB 80, 024425 (2009) 

PRB, 81, 054401  (2010) 



1 Mn replacing 1 Ga in bulk GaAs:  
pd kinetic exchange  

Crystal 

field 

Direction of spin polarization on Mn site is opposite to spin polarization on  

nearest neighbor anion As sites  AFM coupling between Mn 3d and As p orbitals 

Mn 3d 

Atomic 

Exchange 
Hybridization 

As 4p 

A. Zunger et al 

APL, 84 (2004) 

 

Jpd 



Tight-binding model with kinetic 
exchange and spin-orbit interaction 

Hopping and Onsite 

Energies for GaAs Bulk [1] 

Spin-Orbit [1] 

Dielectric Screening: 

reduced at surface! On (Mn) and Offsite (NN As) Coulomb corrections: 

Off-site sets bulk acceptor @ 113 meV 

Mn classical spin vector S=5/2 

NN As p-spins 

[2] Timm , MacDonald PRB 71, 155206 (2005)  

Exchange on nearest neighbour 
As p-electrons: J = 1.5 eV [2] 

Long Range Coulomb  

[1] D.J. Chadi, PRB V19,  p2074 (1979) 



Tight-binding calculations on clusters of  3200 atoms 
(20 x 20 x 32 atomic layers) – Strandberg et al prb 2009 

Bulk: - one Mn replacing a Ga in the center of cluster 

           - periodic boundary conditions in all directions 

Surface: - one Mn replacing a Ga on the (110) surface 

                - periodic BC in 2 directions  

                - relaxation of (110) surface and subsurface 

                  [see Chadi PRB 19, 2074, (1979) ] 

cut exposing (110) surface 



Single Mn in ‘bulk’ GaAs 
easy hard directions 

LDOS of acceptor state  

on parallel (110) planes: 

- extended + anisotropic LDOS 

- 20% spectral weight in core 

- strong dependence on  

      moment direction 
 

Level structure inside the gap 

”LUMO” 

”Fermi level” 

Agreement with Tang & Flatté 



Substitutional Mn on (110) GaAs Surface 

• Deep acceptor!: 0.8-1.2 eV 

– Sensitive to off-site  

    Coulomb repulsion 

 

• Highly Localized hole WF: 

      60% in core (too much?) 
Easy axis 

Level structure  

inside the gap with bulk 

parameters in the Hamiltonian 

Anisotropy energy 

~ 2 meV 



Acceptor binding energy is enhanced near 

the surface but approaches v.b. quickly with  

layer depth 

 

See also:  

Lee and Gupta, Science, 330 (2010) 

 
Can manipulate the binding 

energy with As vacancies! 



• Acceptor WF extends with depth 

 

• Characteristic bow-tie shape  

      Koenraad’s group  experiments  

 

• Strong dependence on Mn direction 

 

    Can we control tunneling current 

    by steering the Mn moment with an 
external magnetic field? 

1 Mn in (110) subsurface layers 



in a magnetic field 

 6 T a magnetic field 

no magnetic field 

 6 T  magnetic field not strong enough 

 to overcome anisotroy barrier 



Magnetic anisotropy energy consistent  

with tight-binding calculations 

Can provide microscopic parameters for TB models 



Mn pairs in bulk GaAs and on (110) GaAs surface 
T.O. Strandberg, CMC, A.H. MacDonald, PRB, 2010 

Spin-orbit and/or surface 

induced splitting 

Super-exchange  

favors AFM 

Double-exchange  

favors FM 

- Two sets of doubly  

  degenerate levels 

- NO acceptor splitting 

- Bonding vs antibonding 

- Acceptor level splitting 

• Compare EAFM and EFM 

• For 10 electrons FM  stable for 

  large parameter space (Jpd,  , T) 

pdJ

pdJ

pdJ

pdJ

2

~
pdJ

T

2

~
pdJ

T

T

T

2 interacting Mn: 

Mahadevan, Zunger, Sarma, PRL, 2004 

Flatté, (private communication), 2006 



Mn pairs in bulk GaAs: 

acceptor splitting 

hole 

electron 

No splitting of 

2 acceptors 



Mn pairs in on (110) surface:  FM configuration 

Lower acceptor Higher acceptor 

Bonding 

Very localized wave functions 

Anti-bonding 

Both acceptor splitting (and exchange J) 

decay very rapidly with Mn separation  



How to quantize the Mn magnetic moment and include  
 
spin & orbital contributions of acceptor states? 

Chern Numbers for Spin Models of Transition Metal Nanomagnets  

C.M.C., A. Cehovin & A. H. MacDonald, PRL 91 46805 (2003) 

Implemented in TM magnetic clusters by DFT 

-  Strandberg et al., Nat. Mat. 6, 648 (2007) 

-  Strandberg et al., PRB 77, 174416 (2008) 

Quantum spin dynamics of  Mn acceptor magnets 



Berry curvature 

No spin-orbit 

Quantum action for the coherent  
magnetization-orientation direction        )(ˆ n

Berry Phase GS Energy 

spin-orbit 

vary with       and can  

differ from  + -1/2 

n̂

orientation of  

Mn moments 



Berry curvatures near  
level crossing diverge 

 

n
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All fluctuations below the 

Fermi level cancel out 

in the comulative curvature 

Example: one Mn in GaAs 
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Berry Curvature Chern Numbers 

J is always half of an integer      Chern number 

•  J is a topological invariant 

•  J can change only when level crossing at EF occurs 

Mn

occ
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5
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Why do we care about the Chern number J? 

 

• It turns out that J plays the role of an 

effective ``giant spin´´ for the Mn acceptor 

magnet! 

• Important result 
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Chern Number  Effective ``Giant Spin´´ J  
for Mn acceptor magnets 

1 Mn 

Bulk 

(Sub-)Surface 

2 Mn 

Bulk 

(Sub-)Surface 

J =  1 = 

5/2(Mn) – 3/2(h hole) 

J =  2 = 

5/2(Mn) – 1/2(h hole) 
J =  4 = 2 +2 

always! 

l=1, s = 1/2 

J 

Hole looses orbital contribution? 

2

3
acc j

2

1
acc j

Agreement with 

ESR studies by Schneider et al, PRB 1987 

Infrared spectroscopy by Linnarson er al, PRB 1997 



Experimental implications 

Can we see any evidence of the value of J  

and its change near the surface? 



The acceptor resonance has structure 

It seems to split intro three peaks 

(see Gaussian fitting for layer 2) 

 

Is this an indication of a spin multiplet 

J = 1?? 

 

It could still be J=2 (as predicted from Chern 

number theory) if some of the  levels  

are quasi-degenerate 



Effective Giant ``Spin´´ J Hamiltonian 

Change variables: )','('ˆ),(ˆ  nn 

number)(Chern  ]'ˆ[]ˆ[ Jnn C'C

The (real time) action 

quantum action for an  

effective total ”spin” J 

Quantum Spin Hamiltonian for J 

Semiclassical 

Hamiltonian 



Example: <211>d=2.4a pair 

Quantum spectrum & 

effective anisotropy  

barrier are modified  

by Berry phase 

corrections! 

 



Conclusions: 

 

• New STM experiments in magnetic impurities in semiconductors 

 

• Microscopic quantum theories are helping to elucidate basic 
mechanisms 

       

• Mn impurities in GaAs surfaces lead to deep acceptors 

     but treating surface is HARD! 

 

• Mn impurities + acceptors: novel molecular magnets 

     Prediction for effective ``spin´´ J (Chern number) perhaps visible 
in STM 


