What lurks below the last plateau
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Another useful review on 1D systems

Quantum Transport in Semiconductor Nanostructures

C. W. J. Beenakker and H. van Houten
Philips Research Laboratories, Eindhoven, The Netherlands

Published in Solid State Physics, 44, 1-228 (1991)
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A rough breakdown of the course...

Lecture 1: Recap on the physics of QPCs and 1D systems, measuring 1D subband
spacing and g-factors, introduction to the 0.7 anomaly, initial observations and initial
theoretical support from density functional theory.

Lecture 2: The Bruus-Cheianov-Flensberg and Reilly models, thermal activation
studies, shot noise, density dependence of 0.7, the 0.7 analogs and complements,
subband tracking experiments, Moving beyond phenomenological models.

Lecture 3: The Kondo effect in metal films and quantum dots, smoking guns and
scaling, Kondo in QPCs, bound states in theory calculations, deliberately inducing
bound states, further studies of Kondo in QPCs, Kondo and holes.

Lecture 4: Bound state controversy, the Fano effect, Fano resonance studies in
mesoscopic devices and coupled QPCs, more complex spontaneous ordering of
electrons — theory and experiment, the edge of knowledge, the disorder problem.
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Introduction: A recap on QPCs
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Reducing dimensions

We can now make semiconductor structures sufficiently small that they are of the
order of the electron wavelength.
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This allows us to study very fundamental quantum mechanical systems, such as the
classic ‘particle in a box’ problem.
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Densities of States: 3, 2, 1 and 0D

See http://britneyspears.ac/physics/dos/dos.htm for full details
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Making low-dimensional systems

® Part of the magic is having control over materials at the atomic level.
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® Molecular beam epitaxy (MBE) lets you grow materials one atomic layer at a time,
and make very thin layers of materials sandwiched between other layers.
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You can take this sort of control a long way...
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The confinement in a 2D well — HJs and QWs

® Two common ways to achieve a 2DEG — A heterojunction and a quantum well.
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Ballistic transport (for now...)

®* Low mobility devices — diffusive transport, trajectory largely determined by random
impurity distribution.

® High mobility devices — ballistic transport, trajectory largely determined by reflection
of structures
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® Conductance quantization in QPCs can only be observed in the ballistic regime.
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Making 1D - The Quantum Point Contact (QPC)

®* |tis fairly easy to realise a 1D system. It is typically done using the ‘split gate’
technique.

2D reservoirs 1D constriction
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Other ways for making QPCs

Etching V-groove
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A. Kristensen et al., PRB 62, 10950 (2000).
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Other ways for making QPCs

Cleaved edge overgrowth
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A. Yacoby et al., PRL 77, 4612 (1996).
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Homage to Wharam and van Wees

® It will be 25 years since these results in January/February next year.
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The waveguide analogy

®* In many respects, a QPC or 1D channel is just a waveguide.

I— v Transmission of one mode:
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Quantization of 1D conductance

®* |If you measure the conductance through the wire as a function of the voltage applied
to the two gates defining it, you see a set of steps in the conductance.
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® This occurs because as you increase the voltage, you decrease the width of the wire
L, which pushes the energy eigenvalues up above the Fermi energy one by one.
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Quantization of 1D conductance

to the two gates defining it, you see a set of steps in the conductance.

G = Step

7 .
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L, which pushes the energy eigenvalues up above the Fermi energy one by one.
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Quantization of 1D conductance

®* |If you measure the conductance through the wire as a function of the voltage applied
to the two gates defining it, you see a set of steps in the conductance.
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® This occurs because as you increase the voltage, you decrease the width of the wire
L, which pushes the energy eigenvalues up above the Fermi energy one by one.
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Quantization of 1D conductance

®* |If you measure the conductance through the wire as a function of the voltage applied
to the two gates defining it, you see a set of steps in the conductance.
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® This occurs because as you increase the voltage, you decrease the width of the wire
L, which pushes the energy eigenvalues up above the Fermi energy one by one.

Nanoelectronics

2P School of Physics Group



Quantization of 1D conductance

to the two gates defining it, you see a set of steps in the conductance.

G =1 x 2e?h

If you measure the conductance through the wire as a function of the voltage applied
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L, which pushes the energy eigenvalues up above the Fermi energy one by one.
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Quantization of 1D conductance

®* |If you measure the conductance through the wire as a function of the voltage applied
to the two gates defining it, you see a set of steps in the conductance.

G = step 15F ."’I
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® This occurs because as you increase the voltage, you decrease the width of the wire
L, which pushes the energy eigenvalues up above the Fermi energy one by one.
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Quantization of 1D conductance

®* |If you measure the conductance through the wire as a function of the voltage applied
to the two gates defining it, you see a set of steps in the conductance.
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® This occurs because as you increase the voltage, you decrease the width of the wire
L, which pushes the energy eigenvalues up above the Fermi energy one by one.
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A QPC’s mode structure is observable
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M. Topinka et al., Science 289, 2323 (2000).
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How do these steps compare to QHE plateaus?

® The plateaus are not perfectly quantized nor are they perfectly sharp steps. This is
partially due to disorder, but also partially due to mode-matching effects.
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Glazman et al., JETP Lett 48, 238 (1988); Szafer & Stone, PRL 62, 300 (1989); Tekman & Ciraci, PRB 40, 8559 (1989).
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Why is the conductance quantized at all?

® Energy terms in the density of states and the electron velocity conveniently cancel to
give a quantized conductance.
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The saddle-point potential

V(x,p) =Vo— 5 moix’+ + mwly?

M. Biittiker, PRB 41, 7906 (1990).
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1D plateaus under a source-drain bias

Conductance (units of 2e2/h)

N.K. Patel et al .,

Increasing V
>

PRB 44, 13549 (1991).
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Measuring the 1D subband spacing

Increasing V4
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N.K. Patel et al., PRB 44, 13549 (1991).
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Measuring the 1D subband spacing

N.K. Patel et al., PRB 44, 13549 (1991).
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Measuring the 1D subband spacing

Now we plot the derivative of G vs V -0.30
(called the transconductance) as a colour _
map against V, and V -
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A.M. Burke et al., Nano Lett. in press. doi: 10.1021/nl1301566d
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Experimental logistics

® The typical 1D subband spacing for QPCs is of order 0.5 to 5 meV. To resolve the 1D
subbands, one needs kgT << AE. This means T << 5.5 — 55K.

®* Experiments are performed at low temperatures, typically below 4K, and as low as
50 mK.
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Tracking 1D subband edges
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Breaking the spin degeneracy

® At zero magnetic field, the 1D subbands are spin degenerate, hence the conductance
steps of 2e?/h. As an in-plane magpnetic field B is applied, the 1D subbands will
Zeeman split...

L\ \i.“““’:\\\x o
R \\‘\\\‘*\\ ________________________________________ _
L\ \\\\\\\\_ A \\\ N\
. 4 $ s { 6 ¢ ;

R. Danneau et al., PRL 97, 026403 (2006).
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Measuring the g-factor of the 1D subbands
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A.M. Burke et al., Nano Lett. in press. doi: 10.1021/nl1301566d
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Measuring the g-factor of the 1D subbands
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N.K. Patel et al., PRB 44, 10973 (1991).
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g* with 1D subband index

Rising g* as the channel is narrowed
— Exchange is important

1.5
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K.J. Thomas et al., PRL 77, 135 (1996).
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Time to introduce the 0.7 anomaly
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The 0.7 anomaly has always been there
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B.J. van Wees et al., PRB 43, 12431 (1991). A.R. Hamilton et al., APL 60, 2782 (1992).
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The first focused study was by Thomas et al.

VOLUME 77, NUMBER 1 PHYSICAL REVIEW LETTERS 1 JuLy 1996

Possible Spin Polarization in a One-Dimensional Electron Gas

K.J. Thomas, J. T. Nicholls, M. Y. Stmmons, M. Pepper, D. R. Mace, and D. A. Ritchie

Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, United Kingdom
(Received 4 March 1996)

In zero magnetic field, conductance measurements of clean one-dimensional (1D) constrictions
defined in GaAs/AlGaAs heterostructures show up to 26 quantized ballistic plateaus, as well as a
structure close to 0.7(2¢?/h). In an in-plane magnetic field all the 1D subbands show linear Zeeman
splitting. and in the wide channel limit the g factor is | g |= 0.4. close to that of bulk GaAs. For the
last subband, spin splitting originates from the structure at 0.7(2¢%/h). indicating spin polarization at
B = (. The measured enhancement of the g factor as the subbands are depopulated suggests that the
“0.7 structure™ is induced by electron-electron interactions. [S0031-9007(96)00520-0]
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The temperature dependence of 0.7

Strongest at
intermediate temperature
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K.J. Thomas et al., PRL 77, 135 (1996).
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G (in units of 2¢*/h)
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The in-plane field dependence of 0.7

Drops to 0.5 with an
in-plane magnetic field

sample B
T =60 mK

-----------

K.J. Thomas et al., PRL 77, 135 (1996).
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Is it just disorder?
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FZN this in Lecture 4
T U
Do & .Oo o
Q [2) ) (@) OO T T
SN S % -
==/0) Yo 14r
29 SaL ~ 12}
@) OO :E
h = Na.) 10r 1
16 — P
——— — Yy o 8r
e[ [® 7=06pm| g
N . o i
12 r— = 6
| V4 o~ o i
(@] 10 7 'h—l o 4r
o g A Y i~ ad 8
2 A g P st N ]
s 2 0.0 . .
o 6
> B — -2.25  -2.20
~— 4 . or Vg (V)
O 1 1 1 1
2 5) -2.0 -1.5 -1.0 -0.5
0 . 1 L - . Gate Voltage (V)
-0.9 -0.7 -0.5 -0.3
V. (V)
J.A. Nixon et al., PRB 43, 12638 (1991). P.L. McEuen et al., Surf. Sci. 229, 312 (1990).

Nanoelectronics
Group

mee OChoOOl of Physics



Increasing AV,

moves the channel Vg+1/2AVg

Channel shifting
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K.J. Thomas et al., PRB 58, 4846 (1998).
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Further proof...

If 0.7 is a transmission resonance, it should be at 0.49 x 2e2/h for two QPCs in series.

3k
| Device A at second cooldown

T=12K
VEr=022 V, Ver=Vez=0

| = VR1=VR=0, VE3=-0.3 V
rm— Vpl-0.22 v, Vmﬂ. VF’- 03V

Left QPC,
right QPC,
and both in Series

27 26 25 24 23
Vsg (V)

C.T. Liang et al., PRB 60, 4846 (1998).
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Initial hypothesis: Spontaneous spin polarization

® The initial hypothesis proposed by Thomas et al. was that the 0.7 anomaly was due
to spontaneous spin-polarization...

By=13T
sample A
T =60 mK
If you look closely, E \ Zero field
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K.J. Thomas et al., PRL 77, 135 (1996).
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Initial theoretical support

® Set of two papers by Wang & Berggren using spin-density functional theory to
investigate exchange and the possibility for zero-field spin polarization in 1D
systems.

® First paper: Focus is on an infinite 1D system. The results reveal that the exchange
interaction produces a large spin-splitting whenever the Fermi energy coincides with
a 1D subband in energy. Full spin polarization predicted at sufficiently low electron
density.

C.K. Wang et al., PRB 54, 14257 (1996).

® Second paper: Focus is on a ballistic QPC potential in the lowest 1D subband limit.
Spin-polarization occurs at the center of the QPC as density is lowered. This
produces different effective barriers for spin-up and spin-down electrons.

C.K. Wang et al., PRB 57, 4552 (1998).
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A primer on density functional theory

DFT came about from a desire to extend beyond the Hartree-Fock (HF) model, and in
particular, to include ‘correlation’ effects more accurately.

‘Correlation’ is basically the tendency for a many-body electron system to have non-
homogeneities in density in order to minimize the overall energy of the system.

Mathematically: Consider two electrons in a system, with p(r,,r,) representing the
probability density of finding one electron at r, and one at r,,.

The system is ‘uncorrelated’ if p(r,,r,) = p(r,)p(ry), and ‘correlated’ if the probability
p(r,) depends on the position of electron b, and vice versa.

There are essentially two types of correlation: Fermi and Coulomb.

Fermi correlation: due to exchange, it prevents two electrons with parallel spins
from occupying the same spatial location.

Coulomb correlation: configures the charge in the system to minimize Coulomb
energy, one example are Friedel oscillations, as charge reorders to screen charge.
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A primer on density functional theory

® Fermi correlation is partially accounted for in HF theory. The antisymmetry
requirement for the fermion wavefunction is built into the mathematical properties of
the Slater determinant (the linear combination of Hartree products).

U(x1,x2) = %{xmxl)m(xg) — xa(x2)xa(x1))
B 1

V2

It is partially accounted for because although electron exchange appears in the HF
model, some aspects related to overall symmetry/spin of the system are not.

x1(x1)  xe(x1)
X1(x2) Xo(x2)

® Coulomb correlation is not accounted for at all. This is the goal of methods like DFT.
The difference between the calculated HF energy and the real energy is often called
the correlation energy. This correlation energy is not all contributions from
correlation though, because some are included in the HF model by the exchange

term.
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A primer on density functional theory

® The idea behind DFT stems from a theorem by Hohenberg and Kohn:

“There exists a universal function of the density F[n(r)], independent of the external
potential V(r), such that the expression E = | V/(r)n(r)dr + F[n(r)] has as its minimum
value the correct ground state energy associated with V(r).”

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

® F[n(r)] is a functional = A function of a function.

® Kohn and Sham introduced a form that divides off the exchange and correlation
contributions to the energy as a separate, individual term E,_[n(r)]:

E[n)=To[n]+ [drn(r)[V (o) +1®(r)] +E . [n]

where T, is the kinetic energy at density n if there are no electron-electron
interactions, @ is the classical Coulomb potential for electrons, and E,_ is the
exchange — correlation energy.

W. Kohn & L.J Sham, Phys. Rev. 140, A1133 (1965); R.O. Jones & O. Gunnarsson, RMP 61, 689 (1989).
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Local density approximation

There is no exact expression for E, [n] for arbitrary n, and so various approximate
expressions are required. The implementation of E,_ is where DFT gets hard. There
are two very commonly used approximations:

® 1 - Local density approximation (LDA):

Ex[n]= / n(r) exe (n(r)) dr

where ¢, is the exchange and correlation energy per electron of a uniform electron
gas of density n. The approximation works if n(r) is sufficiently slowly varying, or
alternatively, you can split off exchange to treat it exactly:

Exn]=En+ [ n()eo(n(x) ) de

and keep ¢_ as the correlation energy per electron. The latter is essentially just the
Hartree-Fock method, with an approximate correction for correlation effects.

W. Kohn & L.J Sham, Phys. Rev. 140, A1133 (1965).
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Local density approximation

There is no exact expression for E, [n] for arbitrary n, and so various approximate
expressions are required. The implementation of E,_ is where DFT gets hard. There
are two very commonly used approximations:

2 — Local spin density approximation (LSDA):

EUSP= [drn(niefn;(r),n,(r)]

where ¢,.[n4, N;] is the exchange and correlation energy per particle of
homogeneous, spin-polarized electron gas with spin-up and spin-down densities
n+(r) and n(r), respectively.

The LSDA allows more directly for variations in the spin-polarization, even at fixed
electron density (i.e., n(r) fixed with n4(r) and n(r) changing).

R.O. Jones & O. Gunnarsson, RMP 61, 689 (1989).
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DFT results for a 1D system

® In Wang’s 1996 paper, the calculation is set up as follows:

r4
y Infinite length quantum wire aligned along x,

with very strong confinement in z, parabolic
confinement in y and a magnetic field B along x.

Start with a full Hamiltonian looking like:

2 2 .
pitpy, (p.t+eBy)”
Im* i Im* + Vcont(y)+ Vcout(z)+ VH+ exch+glufBBO'

Yo (x,y,z)=EY’(x,y,z)

The confinement strength in z due to the heterojunction is much stronger than that in y

due to the gates/etch defining the wire (level separation is ~100 meV vs ~1 meV). So we
can use separation of variables:

l//(r(x y .,Z) — eikx.\"p(r(y ) ¢l (Z)
C.K. Wang et al., PRB 54, 14257 (1996).
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DFT results for a 1D system

and average over z to get:

h?  9?

_2m

% &y2 ‘P?(y) + [ Vconf(y) * VH(y) + Vgxch(y) 3 VB(y) +gMBBO-](P;T(y) =E7‘P;T(y)

This allows us to focus on the eigenfunctions in y, i.e., the 1D subbands. The five
potentials in the Hamiltonian above are:

1: 1D confinement:

2: Hartree potential:

= UNSW

VCOIlf(y): %m*wzyz

e’ =
Veg(y)=— 4W€0€f_xn(y’)dy’{ln[(y—y’)z] —In[(yo—y')*1}

where: n(y')=z n"(y')

1 (2m*

and: n"(y')=; E

1/2
7 (EF_E;T)) le7 ()2
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DFT results for a 1D system

If we integrate the last expression over y’:

we get the 1D electron density n,p which is a specified constant in the calculations.

¥

e
3: Exchange interaction: V. (y)=———z[n"(y)] 12
60677'
> ( ) ezB 2y2
4: Magnetic field: e
5: Zeeman energy term: gugBo

C.K. Wang et al., PRB 54, 14257 (1996).
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DFT results for a 1D system

E (meV)

Solving the Kohn-Sham equations self-consistently as a function of n,, gives:

30

solid lines = { As a given 1D subband populates, the
. dotted lines = ) exchange interaction makes it more
:, dashed line = E favourable to populate with | electrons rather
o0 | & than T electrons, until the subband fills.
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C.K. Wang et al., PRB 54, 14257 (1996).

Nanoelectronics

School of Physics Group



DFT results for a 1D system

® One outcome should be an oscillatory effective Lande g-factor g* for each 1D
subband. What’s shown below is g* for the 15t subband only. We will return to this...

40

Exchange enhancement in the
30 | low density limit, similar to

Thomas et al., but beware, this
isn’t exactly what’s measured

\
g*, 20} \
\
\
10 | \
Oscillatory structure _ 3T
reflects spin- — |
polarization during -
subband population. 0 TR | e
0 5 10 1 20 25
Watch this space... n, (10" cm™)

C.K. Wang et al., PRB 54, 14257 (1996).
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DFT results for a 1D system

Depending on n,, the effective potential for spin-up and spin-down electrons can be
very similar or very different.

V., (meV)

y (nm)

mee OChoOOl of Physics
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C.K. Wang et al., PRB 54, 14257 (1996).
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DFT results for a realistic QPC

® Wang’s 1998 paper moves to a more realistic saddle-point potential for the QPC.

Vo

cosh?( ax)

Vo) = 3m* 02+
conflX»Y 2}?'1 W,V

in the small x limit, this reduces to:

124 ~l*22_1*22+y
| conf(x:y)_zm W,y Zm WX 0

with: @,= \/Q{ZEV{,/m*.

In the calculations z», =1 meV and
ho, =2 meV are used.

y

C.K. Wang et al., PRB 57, 4552 (1998).
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DFT results for a realistic QPC

® Doing calculations with a 2D density/potential adds significantly to the
computational cost, and this requires compromises in the model:

First, since the focus is 0.7, we can assume only the lowest 1D subband is occupied.

Second, the Hartree term plays an insignificant role in the low density limit, and so
this is dropped from the problem. The resulting Hamiltonian is:

2
pﬁp;,

2??’1* +Vconf(x:y)+chh(x:y) (P ( ;y) EU U( ,y)

® The next step is to assume the potential is smooth in x, so that the adiabatic
approximation can be used to write the wavefunction as:

Glazman & Jonson,

cp;k(x,,y)=qu(x,y)(bg(x) JPCM 1, 5547 (1989).

C.K. Wang et al., PRB 57, 4552 (1998).
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DFT results for a realistic QPC

® This allows the problem to be ‘decoupled’ as:

'

o 2771* 8yz quc:-(xay)-l-[Vconf(x’y)_'. Vgxch(xay)]\lri(:-(xay) =E;,T(x)\lf;,’(x,y)

for the transverse motion with local energy E °(x) and:
32
— O/ (x)+ (k7(x))*DF(x)=0

X

for the translational motion with local energy E,°(x).

® The transverse energy E °(x) acts as an effective, renormalized potential that the
translational states ®©°(x) with energy E,°(x) have to penetrate.

® This gives the transmission through the QPC for a single electron with energy E° by
solving the 2"d equation above once E_°(x) is known from the 15t equation above.

C.K. Wang et al., PRB 57, 4552 (1998).
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DFT results for a realistic QPC

Practically, the exchange interaction requires a self-consistent approach accounting
for all electrons in the lowest 1D subband.

As in the pure 1D problem, the electron density is important. Integrating over ¥,°(x,y)
gives the 1D density:

np0)=3 nip(x)=3 3 [0
a a v

with asymptotic limits:
m 1/2

1 [ 2m %
”m(im):;ﬂ 7 [Er—E{(%x=)]

The Kohn-Sham equations are solved numerically, by first slicing the channel along
X. The self-consistent solutions are found for each slice. For a given energy E° the
electron distribution is solved, this is fed back with the constraint that n,p(tw) and
the source/drain chemical potentials being held fixed, until Ec changes by less than
104 meV between iterations.

C.K. Wang et al., PRB 57, 4552 (1998).
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DFT results for a realistic QPC

® One last compromise is to take a semiclassical approximation for n,y(x):

_ k; 1 —2q%(xq—x) 1 —2g%(xn+x)
"ID(x)_z T +477(xo—x)(1_eXp e )+47T(xo+x)(l_eXp B
with: k;[(x):{zm*/ﬁ2[EF_Eclr(x)]}l/2
and: qa(x)z[(Zm*/ﬁz)E‘i’(x)]l/z

and where X, is the effective width of the barrier.

C.K. Wang et al., PRB 57, 4552 (1998).

-Ej UNSW Nanoelectronics

¥._® school of Physics Group



DFT results for a realistic QPC

School of Physics

The cost is the Friedel oscillations:

3

E—

n
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—
i
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C.K. Wang et al., PRB 57, 4552 (1998).

solid lines = exact
dotted lines = n,p approx.
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DFT results for a realistic QPC

The calculations show a barrier for spin up, relative to spin down at the centre of the
QPC, and a corresponding spin polarization, accentuating with V,,.
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C.K. Wang et al., PRB 57, 4552 (1998).
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DFT prediction for the QPC conductance

Plateau at 0.5 not 0.7

1.0
but is clearly driven by
exchange
0.8 |
06
S
Q
o Without Increasing V_ with
0.4 h ’ gV
exchange / fixed 7o, and 7o,
/ With roughly equivalent to
/ exchange pinching off the QPC.
0.2 | ! ' /

C.K. Wang et al., PRB 57, 4552 (1998).
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