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Another useful review on 1D systemsAnother useful review on 1D systems
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A rough breakdown of the course…A rough breakdown of the course…

Lecture 1: Recap on the physics of QPCs and 1D systems, measuring 1D subband
spacing and g-factors, introduction to the 0.7 anomaly, initial observations and initial 
theoretical support from density functional theory.

Lecture 2: The Bruus-Cheianov-Flensberg and Reilly models, thermal activation 
studies, shot noise, density dependence of 0.7, the 0.7 analogs and complements, 
subband tracking experiments, Moving beyond phenomenological models. 

Lecture 3: The Kondo effect in metal films and quantum dots, smoking guns and 
scaling, Kondo in QPCs, bound states in theory calculations, deliberately inducing 
bound states, further studies of Kondo in QPCs, Kondo and holes.  

Lecture 4: Bound state controversy, the Fano effect, Fano resonance studies in 
mesoscopic devices and coupled QPCs, more complex spontaneous ordering of 
electrons – theory and experiment, the edge of knowledge, the disorder problem. 
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Introduction: A recap on QPCsIntroduction: A recap on QPCs
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Reducing dimensionsReducing dimensions

• We can now make semiconductor structures sufficiently small that they are of the
order of the electron wavelength.

= quantum 
dot

• This allows us to study very fundamental quantum mechanical systems, such as the
classic ‘particle in a box’ problem.
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Densities of States: 3, 2, 1 and 0DDensities of States: 3, 2, 1 and 0D

See http://britneyspears.ac/physics/dos/dos.htm for full details
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Making low-dimensional systemsMaking low-dimensional systems
• Part of the magic is having control over materials at the atomic level.

• Molecular beam epitaxy (MBE) lets you grow materials one atomic layer at a time,
and make very thin layers of materials sandwiched between other layers.
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You can take this sort of control a long way…You can take this sort of control a long way…
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The confinement in a 2D well – HJs and QWsThe confinement in a 2D well – HJs and QWs
• Two common ways to achieve a 2DEG – A heterojunction and a quantum well.

Two dimensional 
electron gas (2DEG)
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Ballistic transport (for now…)Ballistic transport (for now…)
• Low mobility devices – diffusive transport, trajectory largely determined by random 

impurity distribution. 

Diffusive Ballistic

LL

lele

LL lele

• High mobility devices – ballistic transport, trajectory largely determined by reflection 
of structures 

• Conductance quantization in QPCs can only be observed in the ballistic regime.
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Making 1D - The Quantum Point Contact (QPC)Making 1D - The Quantum Point Contact (QPC)

1D constriction2D reservoirs

• It is fairly easy to realise a 1D system. It is typically done using the ‘split gate’ 
technique.
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Other ways for making QPCsOther ways for making QPCs

A. Kristensen et al., PRB 62, 10950 (2000).

D. Kaufman et al., PRB 59, R10434 (1999).

Etching

O. Klochan et al., APL 89, 092105 (2006).

V-groove
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Other ways for making QPCsOther ways for making QPCs

A. Yacoby et al., PRL 77, 4612 (1996). J.M. Krans et al., Nature 375, 767 (1995).

Cleaved edge overgrowth Metallic Break Junctions
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Homage to Wharam and van WeesHomage to Wharam and van Wees

B.J. van Wees et al., PRL 60, 848 (1988). D.A. Wharam et al., J. Phys. C 21, L209 (1988).

• It will be 25 years since these results in January/February next year.
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The waveguide analogyThe waveguide analogy

Transmission of one mode:

1st mode transmitted for w = λF/2

2nd mode transmitted for w = λF
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• In many respects, a QPC or 1D channel is just a waveguide.
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Quantization of 1D conductanceQuantization of 1D conductance
• If you measure the conductance through the wire as a function of the voltage applied

to the two gates defining it, you see a set of steps in the conductance.

• This occurs because as you increase the voltage, you decrease the width of the wire
L, which pushes the energy eigenvalues up above the Fermi energy one by one.

Electron goes

EF

G = 3 × 2e2/h

Electron goes into page
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Quantization of 1D conductanceQuantization of 1D conductance
• If you measure the conductance through the wire as a function of the voltage applied

to the two gates defining it, you see a set of steps in the conductance.

• This occurs because as you increase the voltage, you decrease the width of the wire
L, which pushes the energy eigenvalues up above the Fermi energy one by one.

EF

G = Step
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Quantization of 1D conductanceQuantization of 1D conductance
• If you measure the conductance through the wire as a function of the voltage applied

to the two gates defining it, you see a set of steps in the conductance.

• This occurs because as you increase the voltage, you decrease the width of the wire
L, which pushes the energy eigenvalues up above the Fermi energy one by one.

EF

G = 2 × 2e2/h
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Quantization of 1D conductanceQuantization of 1D conductance
• If you measure the conductance through the wire as a function of the voltage applied

to the two gates defining it, you see a set of steps in the conductance.

• This occurs because as you increase the voltage, you decrease the width of the wire
L, which pushes the energy eigenvalues up above the Fermi energy one by one.

EF

G = step
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Quantization of 1D conductanceQuantization of 1D conductance
• If you measure the conductance through the wire as a function of the voltage applied

to the two gates defining it, you see a set of steps in the conductance.

• This occurs because as you increase the voltage, you decrease the width of the wire
L, which pushes the energy eigenvalues up above the Fermi energy one by one.

EF

G = 1 × 2e2/h
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Quantization of 1D conductanceQuantization of 1D conductance
• If you measure the conductance through the wire as a function of the voltage applied

to the two gates defining it, you see a set of steps in the conductance.

• This occurs because as you increase the voltage, you decrease the width of the wire
L, which pushes the energy eigenvalues up above the Fermi energy one by one.

EF

G = step
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Quantization of 1D conductanceQuantization of 1D conductance
• If you measure the conductance through the wire as a function of the voltage applied

to the two gates defining it, you see a set of steps in the conductance.

• This occurs because as you increase the voltage, you decrease the width of the wire
L, which pushes the energy eigenvalues up above the Fermi energy one by one.

EF

G = 0 × 2e2/h
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A QPC’s mode structure is observableA QPC’s mode structure is observable

M. Topinka et al., Science 289, 2323 (2000).
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How do these steps compare to QHE plateaus?How do these steps compare to QHE plateaus?
• The plateaus are not perfectly quantized nor are they perfectly sharp steps. This is

partially due to disorder, but also partially due to mode-matching effects.

Glazman et al., JETP Lett 48, 238 (1988); Szafer & Stone, PRL 62, 300 (1989); Tekman & Ciraci, PRB 40, 8559 (1989).
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Why is the conductance quantized at all?Why is the conductance quantized at all?
• Energy terms in the density of states and the electron velocity conveniently cancel to

give a quantized conductance.

h
eG

RV
I

V
h
eI

EEv

EEn

dEEveEnI

D

E

D

F

2

2

1

0
1

21

2
,)(

)(

)()(

===

=

∝

∝

= ∫

so

  and

 ,1/ 1D density

Electron 
velocity



Quantum Electronic
Devices Group
Nanoelectronics

Group
UNSW

School of Physics

The saddle-point potentialThe saddle-point potential

x

y

E

M. Büttiker, PRB 41, 7906 (1990).
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1D plateaus under a source-drain bias1D plateaus under a source-drain bias

N.K. Patel et al., PRB 44, 13549 (1991).

EF
μs

μd

eVsd

Increasing Vsd
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Measuring the 1D subband spacingMeasuring the 1D subband spacing

N.K. Patel et al., PRB 44, 13549 (1991).

Increasing Vsd
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Measuring the 1D subband spacingMeasuring the 1D subband spacing

N.K. Patel et al., PRB 44, 13549 (1991).

EF

μs

μd
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Measuring the 1D subband spacingMeasuring the 1D subband spacing

A.M. Burke et al., Nano Lett. in press. doi: 10.1021/nl301566d

Now we plot the derivative of G vs Vg
(called the transconductance) as a colour 

map against Vg and Vsd
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Experimental logisticsExperimental logistics

• The typical 1D subband spacing for QPCs is of order 0.5 to 5 meV. To resolve the 1D 
subbands, one needs kBT << ΔE. This means T << 5.5 – 55K.

• Experiments are performed at low temperatures, typically below 4K, and as low as 
50 mK.
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Tracking 1D subband edgesTracking 1D subband edges

2s
2d3s 3d

μs
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Breaking the spin degeneracyBreaking the spin degeneracy
• At zero magnetic field, the 1D subbands are spin degenerate, hence the conductance 

steps of 2e2/h. As an in-plane magnetic field B|| is applied, the 1D subbands will 
Zeeman split…

R. Danneau et al., PRL 97, 026403 (2006).
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Measuring the g-factor of the 1D subbandsMeasuring the g-factor of the 1D subbands

A.M. Burke et al., Nano Lett. in press. doi: 10.1021/nl301566d
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Measuring the g-factor of the 1D subbandsMeasuring the g-factor of the 1D subbands

N.K. Patel et al., PRB 44, 10973 (1991).

g*2 = 1.08

g*3 = 1.04
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g* with 1D subband indexg* with 1D subband index

K.J. Thomas et al., PRL 77, 135 (1996).

Rising g* as the channel is narrowed
⇒ Exchange is important

Exchange 
enhancement 

of g*
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Time to introduce the 0.7 anomalyTime to introduce the 0.7 anomaly
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The 0.7 anomaly has always been thereThe 0.7 anomaly has always been there

A.R. Hamilton et al., APL 60, 2782 (1992).B.J. van Wees et al., PRB 43, 12431 (1991).
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The first focused study was by Thomas et al.The first focused study was by Thomas et al.
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The temperature dependence of 0.7The temperature dependence of 0.7

K.J. Thomas et al., PRL 77, 135 (1996).

Strongest at 
intermediate temperature
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The in-plane field dependence of 0.7The in-plane field dependence of 0.7

K.J. Thomas et al., PRL 77, 135 (1996).

Drops to 0.5 with an
in-plane magnetic field
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Is it just disorder?Is it just disorder?

J.A. Nixon et al., PRB 43, 12638 (1991). P.L. McEuen et al., Surf. Sci. 229, 312 (1990).

We will return to 
this in Lecture 4
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Channel shiftingChannel shifting

K.J. Thomas et al., PRB 58, 4846 (1998).

Vg−½ΔVg

Vg+½ΔVg

Increasing ΔVg
moves the channel
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Further proof…Further proof…

Left QPC,
right QPC,

and both in Series

C.T. Liang et al., PRB 60, 4846 (1998).

• If 0.7 is a transmission resonance, it should be at 0.49 × 2e2/h for two QPCs in series.
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Initial hypothesis: Spontaneous spin polarizationInitial hypothesis: Spontaneous spin polarization

K.J. Thomas et al., PRL 77, 135 (1996).

• The initial hypothesis proposed by Thomas et al. was that the 0.7 anomaly was due 
to spontaneous spin-polarization…

If you look closely, 
it seems as though 
the spin-splitting 

doesn’t go away at 
zero field.

Zero field 
spin-gap?
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Initial theoretical supportInitial theoretical support

C.K. Wang et al., PRB 54, 14257 (1996).

• Set of two papers by Wang & Berggren using spin-density functional theory to 
investigate exchange and the possibility for zero-field spin polarization in 1D 
systems.

• First paper: Focus is on an infinite 1D system. The results reveal that the exchange 
interaction produces a large spin-splitting whenever the Fermi energy coincides with 
a 1D subband in energy. Full spin polarization predicted at sufficiently low electron 
density.

• Second paper: Focus is on a ballistic QPC potential in the lowest 1D subband limit. 
Spin-polarization occurs at the center of the QPC as density is lowered. This 
produces different effective barriers for spin-up and spin-down electrons.

C.K. Wang et al., PRB 57, 4552 (1998).
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A primer on density functional theoryA primer on density functional theory

• DFT came about from a desire to extend beyond the Hartree-Fock (HF) model, and in 
particular, to include ‘correlation’ effects more accurately.

• ‘Correlation’ is basically the tendency for a many-body electron system to have non-
homogeneities in density in order to minimize the overall energy of the system.

• Mathematically: Consider two electrons in a system, with p(ra,rb) representing the 
probability density of finding one electron at ra and one at rb. 

The system is ‘uncorrelated’ if p(ra,rb) = p(ra)p(rb), and ‘correlated’ if the probability 
p(ra) depends on the position of electron b, and vice versa. 

• There are essentially two types of correlation: Fermi and Coulomb.

Fermi correlation: due to exchange, it prevents two electrons with parallel spins 
from occupying the same spatial location.

Coulomb correlation: configures the charge in the system to minimize Coulomb 
energy, one example are Friedel oscillations, as charge reorders to screen charge.
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A primer on density functional theoryA primer on density functional theory

• Fermi correlation is partially accounted for in HF theory. The antisymmetry
requirement for the fermion wavefunction is built into the mathematical properties of 
the Slater determinant (the linear combination of Hartree products).

It is partially accounted for because although electron exchange appears in the HF 
model, some aspects related to overall symmetry/spin of the system are not.

• Coulomb correlation is not accounted for at all. This is the goal of methods like DFT. 
The difference between the calculated HF energy and the real energy is often called 
the correlation energy. This correlation energy is not all contributions from 
correlation though, because some are included in the HF model by the exchange 
term.
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A primer on density functional theoryA primer on density functional theory
• The idea behind DFT stems from a theorem by Hohenberg and Kohn:

“There exists a universal function of the density F[n(r)], independent of the external 
potential V(r), such that the expression E ≡ ∫ V(r)n(r)dr + F[n(r)] has as its minimum 
value the correct ground state energy associated with V(r).”

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

• F[n(r)] is a functional = A function of a function.

• Kohn and Sham introduced a form that divides off the exchange and correlation 
contributions to the energy as a separate, individual term Exc[n(r)]:

W. Kohn & L.J Sham, Phys. Rev. 140, A1133 (1965);  R.O. Jones & O. Gunnarsson, RMP 61, 689 (1989).

where T0 is the kinetic energy at density n if there are no electron-electron 
interactions, Φ is the classical Coulomb potential for electrons, and Exc is the 
exchange – correlation energy.
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Local density approximationLocal density approximation
• There is no exact expression for Exc[n] for arbitrary n, and so various approximate 

expressions are required. The implementation of Exc is where DFT gets hard. There 
are two very commonly used approximations: 

• 1 – Local density approximation (LDA):

where εxc is the exchange and correlation energy per electron of a uniform electron 
gas of density n. The approximation works if n(r) is sufficiently slowly varying, or 
alternatively, you can split off exchange to treat it exactly:

and keep εc as the correlation energy per electron. The latter is essentially just the 
Hartree-Fock method, with an approximate correction for correlation effects. 

W. Kohn & L.J Sham, Phys. Rev. 140, A1133 (1965).
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Local density approximationLocal density approximation
• There is no exact expression for Exc[n] for arbitrary n, and so various approximate 

expressions are required. The implementation of Exc is where DFT gets hard. There 
are two very commonly used approximations: 

where εxc[n↑, n↓] is the exchange and correlation energy per particle of 
homogeneous, spin-polarized electron gas with spin-up and spin-down densities 
n↑(r) and n↓(r), respectively.

• 2 – Local spin density approximation (LSDA):

R.O. Jones & O. Gunnarsson, RMP 61, 689 (1989).

• The LSDA allows more directly for variations in the spin-polarization, even at fixed 
electron density (i.e., n(r) fixed with n↑(r) and n↓(r) changing).



Quantum Electronic
Devices Group
Nanoelectronics

Group
UNSW

School of Physics
Nanoelectronics

Group
UNSW

School of Physics

DFT results for a 1D systemDFT results for a 1D system

C.K. Wang et al., PRB 54, 14257 (1996).

• In Wang’s 1996 paper, the calculation is set up as follows:

x

y

z

Infinite length quantum wire aligned along x, 
with very strong confinement in z, parabolic 

confinement in y and a magnetic field B along x.

Start with a full Hamiltonian looking like:

The confinement strength in z due to the heterojunction is much stronger than that in y
due to the gates/etch defining the wire (level separation is ~100 meV vs ~1 meV). So we 
can use separation of variables:
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DFT results for a 1D systemDFT results for a 1D system
and average over z to get:

This allows us to focus on the eigenfunctions in y, i.e., the 1D subbands. The five 
potentials in the Hamiltonian above are:

1: 1D confinement:

2: Hartree potential:

where:

and:

is the electron distribution for all occupied states with spin σ and            is normalized to 1. 
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DFT results for a 1D systemDFT results for a 1D system

C.K. Wang et al., PRB 54, 14257 (1996).

If we integrate the last expression over y’:

5: Zeeman energy term: gμBBσ

3: Exchange interaction:

4: Magnetic field:

we get the 1D electron density n1D, which is a specified constant in the calculations.
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DFT results for a 1D systemDFT results for a 1D system

C.K. Wang et al., PRB 54, 14257 (1996).

• Solving the Kohn-Sham equations self-consistently as a function of n1D gives:

B = 3T B = 0.01T

As a given 1D subband populates, the 
exchange interaction makes it more 

favourable to populate with ↓ electrons rather 
than ↑ electrons, until the subband fills.

solid lines = ↓
dotted lines = ↑
dashed line = EF
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DFT results for a 1D systemDFT results for a 1D system

C.K. Wang et al., PRB 54, 14257 (1996).

• One outcome should be an oscillatory effective Lande g-factor g* for each 1D 
subband. What’s shown below is g* for the 1st subband only. We will return to this…

Exchange enhancement in the 
low density limit, similar to 

Thomas et al., but beware, this 
isn’t exactly what’s measured

Oscillatory structure 
reflects spin-

polarization during 
subband population.

Watch this space…

g*1

B = 3T
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DFT results for a 1D systemDFT results for a 1D system

C.K. Wang et al., PRB 54, 14257 (1996).

• Depending on n1D, the effective potential for spin-up and spin-down electrons can be 
very similar or very different.

solid lines = ↓
dotted lines = ↑
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DFT results for a realistic QPCDFT results for a realistic QPC

C.K. Wang et al., PRB 57, 4552 (1998).

• Wang’s 1998 paper moves to a more realistic saddle-point potential for the QPC.

x
y

E

in the small x limit, this reduces to:

with:

In the calculations hωx = 1 meV and 
hωy = 2 meV are used.
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DFT results for a realistic QPCDFT results for a realistic QPC

C.K. Wang et al., PRB 57, 4552 (1998).

• Doing calculations with a 2D density/potential adds significantly to the 
computational cost, and this requires compromises in the model:

First, since the focus is 0.7, we can assume only the lowest 1D subband is occupied.

Second, the Hartree term plays an insignificant role in the low density limit, and so 
this is dropped from the problem. The resulting Hamiltonian is:

• The next step is to assume the potential is smooth in x, so that the adiabatic 
approximation can be used to write the wavefunction as:

Glazman & Jonson,
JPCM 1, 5547 (1989).
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DFT results for a realistic QPCDFT results for a realistic QPC

C.K. Wang et al., PRB 57, 4552 (1998).

• This allows the problem to be ‘decoupled’ as:

for the transverse motion with local energy En
σ(x) and:

for the translational motion with local energy Ek
σ(x).

• The transverse energy En
σ(x) acts as an effective, renormalized potential that the 

translational states Φσ(x) with energy Ek
σ(x) have to penetrate.

• This gives the transmission through the QPC for a single electron with energy Eσ by 
solving the 2nd equation above once En

σ(x) is known from the 1st equation above.
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DFT results for a realistic QPCDFT results for a realistic QPC

C.K. Wang et al., PRB 57, 4552 (1998).

• Practically, the exchange interaction requires a self-consistent approach accounting 
for all electrons in the lowest 1D subband.

• The Kohn-Sham equations are solved numerically, by first slicing the channel along 
x. The self-consistent solutions are found for each slice. For a given energy Eσ the 
electron distribution is solved, this is fed back with the constraint that n1D(±∞) and 
the source/drain chemical potentials being held fixed, until EF changes by less than 
10-4 meV between iterations.

• As in the pure 1D problem, the electron density is important. Integrating over Ψ1
σ(x,y) 

gives the 1D density:

with asymptotic limits:
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DFT results for a realistic QPCDFT results for a realistic QPC

C.K. Wang et al., PRB 57, 4552 (1998).

• One last compromise is to take a semiclassical approximation for n1D(x):

with:

and:

and where x0 is the effective width of the barrier.
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• The cost is the Friedel oscillations:

solid lines = exact
dotted lines = n1D approx.
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• The calculations show a barrier for spin up, relative to spin down at the centre of the 
QPC, and a corresponding spin polarization, accentuating with V0.

V0 = 0.1 meV V0 = 0.15 meV

V0 = 0.2 meVV0 = 0.18 meV

V0 = 0.1 meV V0 = 0.15 meV

V0 = 0.18 meV

V0 = 0.2 meV

All at n1D = 2 × 105 cm-1
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DFT prediction for the QPC conductanceDFT prediction for the QPC conductance

C.K. Wang et al., PRB 57, 4552 (1998).

Increasing Vo with 
fixed hωx and hωy, 

roughly equivalent to 
pinching off the QPC.

Without 
exchange

With 
exchange

Plateau at 0.5 not 0.7 
but is clearly driven by 

exchange


