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Introduction

In Condensed Matter Physics study of metals and
insulators has been a major theme of research.

Whether a material is metal or insulator can be explained
by simple band theory of noninteracting electrons.

However, a new class of materials by name Topological
Insulators emerged in the last decade which insulating in
the bulk but metallic on the surface.
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Introduction

In these new class of materials, the bulk band is gapped
while the gapless modes exist on the surface/edge.

Band-structures of 2D (left) and 3D (right) Topological
Insulators.

The edge/surface states are helical
protected by Time-reversal symmetric.
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Magnetic field induced Fabry-Pérot resonances in helical edge states

Introduction

Following the seminal work of Kane and Mele (2005),
Bernevig-Hughes-Zhang proposed that HgTe/CdTe
quantum wells (that have strong spin orbit coupling) can be
2D TI (Science-2006).
This was experimentally confirmed by
König et al (Science-2007).
The edge state wavefunction decays exponentially into the
bulk at the spatial boundary.
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Introduction

Following the seminal work of Kane and Mele (2005),
Bernevig-Hughes-Zhang proposed that HgTe/CdTe
quantum wells (that have strong spin orbit coupling) can be
2D TI (Science-2006).
This was experimentally confirmed by
König et al (Science-2007).
The edge state wavefunction decays exponentially into the
bulk at the spatial boundary.
At a given edge the states are helical.
Described by 1D massless Dirac equation, edge states are
robust against static (Time-reversal-invariant) disorder due
to Klein tunneling.
Magnetic field applied to these ballistic channels can
produce backscattering.
We show that magnetic field Zeeman-coupled with these
helical 1D-channels over a patch can be used to tune the
transmission and shows resonances.
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The edge state Hamiltonian is given by-

H0 = −i~vF

∫

dx ψ†(x)σZ ∂xψ(x), where ψ = [ψ↑ ψ↓]
T

Note spin-momentum locking.
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Edge state Hamiltonian and ~B-field

The edge state Hamiltonian is given by-

H0 = −i~vF

∫

dx ψ†(x)σZ ∂xψ(x), where ψ = [ψ↑ ψ↓]
T

Note spin-momentum locking.

Magnetic field is introduced by Zeeman-coupling over a
region ∆L(x)

HB = gµB

∫

dx ∆L(x)~S(x) · ~B

0

x L

2
−L

2

ẐX̂ ~B = BXX̂ +BZẐ
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In the ~B-field patch, dispersion changes. BX opens up a
gap in the spectrum.
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0

x L

2
−L

2

ẐX̂ ~B = BXX̂ +BZẐ

Above: Schematic of the set-up.

Right: Dispersion for various
~B-field configurations. −0.4 −0.2 0 0.2 0.4
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In the ~B-field patch, dispersion changes. BX opens up a
gap in the spectrum.

Also, the spin orientation of the L/R-modes in the patch get
twisted and are no more orthogonal.
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Magnetic field induced Fabry-Pérot resonances in helical edge states
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Fabry-Pérot Resonances

Now, consider the ~B-field over a finite region on the helical
edge states.

Due to interference between the left-moving and right
moving modes, one can expect resonance.

The wavefunction will look like

ψ =











| ↑ 〉eiki x + rki
| ↓ 〉e−iki x

AR ψEi R eikRx + AL ψEi L e−ikLx

tki
eikix | ↑ 〉

for x < −L/2, |x | < L/2 and
x > L/2 respectively.

Subgap 
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dI/dV vs the angle φ between ~B and Ẑ .
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Fabry-Pérot Resonances

Look at the total phase acquired by the electron in
traversing one complete cycle back and forth in the patch.

Resonance condition is:

(kR + kL)L = n · 2π

i.e.,
√

k2
i − b2

X L = n · π

Number of peaks can be found from the above condition to
be- greatest integer less than kiL/π.

Evenescent modes do not contribute to resonances. The
wavefunction in the patch decays exponentially for these
modes.
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The spin component 〈SZ (x)〉 is a conserved quantity and
is same everywhere.

But 〈SX (x)〉 and 〈SY (x)〉 show a helical texture across the
length of the patch.
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Fabry-Pérot Resonances

The spin component 〈SZ (x)〉 is a conserved quantity and
is same everywhere.

But 〈SX (x)〉 and 〈SY (x)〉 show a helical texture across the
length of the patch.

Resonance is when 〈~S〉 makes an integer number of
complete precessions.
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Fabry-Pérot Resonances

These resonances persist even when the ~B-field changes
smoothly on the edge.
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When the edge states are purely helical, Klein tunneling
prohibits backscattering due to a static impurity.
However, when BX is finite, due to a finite overlap between
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potential barrier/well charecterised by a height η and width
ℓ positioned at xℓ in the patch (|xℓ| < L/2).
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Fabry-Pérot Resonances

When the edge states are purely helical, Klein tunneling
prohibits backscattering due to a static impurity.
However, when BX is finite, due to a finite overlap between
the L/R-modes, a static impurity in the patch backscatters
an electron.
The static impurity can be modelled as a rectangular
potential barrier/well charecterised by a height η and width
ℓ positioned at xℓ in the patch (|xℓ| < L/2).

In a good sample we expect
such impurity to be weak and
sparsely spaced.

Parameters:
ξ/L = 0.05, ℓ/L = 0.1. The
legend shows (η, xℓ/L) for
different curves.
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Conditions for experimental realization

Our calculation inherently assumes that the helical edge
has a finite ~B-field patch and reservoirs are away from this
patch.

Length of the patch should be sufficiently large to observe
a number of peaks.

The ratio ξ/L has to be small. ξ/L < 0.25 would be a
reasonable limit for a typical case as mentioned earlier.

The gap opened up by the ~B-field should be less than the
bulk-gap and the Fermi energy should be well within the
bulk-gap.

Coherence: A realistic sample can have inelastic
backscatterings (König et al-2007) on the edge which
causes spin decoherence. It is essential that spin
decoherence length - ld ≫ L.
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Conditions for experimental realization

Summary and Conclusions

We have studied what happens to the helical edge states
in presence of a magnetic field (~B) Zeeman-coupled to the
edge states.

We have shown that ~B-field over a finite patch on the
helical edge channel affects the transmission and the
direction of ~B-field could be used to control the
transmission.

Hence this is a concrete proposal for a spin-transistor.

In a realistic sample, the resonances also give an idea of
the spin decoherence length which is important in
spintronic applications.
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Magnetic field induced Fabry-Pérot resonances in helical edge states

Conditions for experimental realization

Important References

Review on Topological Insulators:
X-L Qi and S-C Zhang, Rev. Mod. Phys. 83, 1057 (2011);
M. Z. Hasan and C. L. Kane, Rev.Mod.Phys. 82, 3045
(2010).

Experiment:
M. Konig et al., Science 318, 766 (2007)
M. Konig et. al., J. Phys. Soc. Japan 77, 31007 (2008).

Our work:
A. Soori, S. Das and S. Rao, arXiv: 1112.5400.
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