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LINEAR Conductance of
QPCs QUANTIZED in units of 2e%/h

Take excess charge per unit length PER OCCUPIED SUBBAND:
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>VBut What About LARGE Voltages?
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A Model for the VOLTAGE
DROP Across a QPC

1.V, =0

BARRIER
2.V,>0 LOWERED HERE
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QPC Current For SINGLE
Subband Under Bias

1. Current due to SINGLE electron is ev,/L

2. Current due to ALL electrons between
k & k + dk

. 2dk =26V_g
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3. Thus the TOTAL current
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QPC Current For SINGLE
Subband Under Bias

1. With V_, applied the integral becomes

k

S

I = 2er (k)

ky

dk 2e

2. Since the integrand is just eV_, the
DIFFERENTIAL CONDUCTANCE

> K 2
ky k, Y ol _ 2e JUST WHAT WE

Py - i HAD BEFORE!
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QPC Current For SINGLE
Subband Under STRONG Bias

1. Now only carriers from ONE reservoir
contribute to the current

2. The current is then written as

2e
h

3. So the corresponding differential
conductance becomes
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QPC Current For SINGLE
Subband Under STRONG Bias

RAPID COMMUNICATIONS

PHYSICAL REVIEW B VOLUME 39, NUMBER 11 15 APRIL 1989-1

Nonlinear conductance of quantum point contacts

L. P. Kouwenhoven, B. J. van Wees, and C. J. P. M. Harmans
Department of Applied Physics, Delft University of Technology, P. O. Box 5046, 2600 GA Delft, The Netherlands
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HALF-PLATEAUS For A
SYMMETRIC Voltage Drop (8 = 2)
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»V A. Kristensen et al., Phys. Rev. B 62, 10950 (2000)
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HALF-PLATEAUS Near
PINCH-OFF (8 << 1)

»‘ A. Kristensen et al., Phys. Rev. B 62, 10950 (2000)
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Determination of 1-D
Subband SPACING

The half plateaus appear
when the number of conducting subbands for the two
directions of transport differs by 1.

N. K. Patel et al., Phys. Rev. B 44, 13549 (1991)
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L. P. Kouwenhoven et al., Phys. Rev. B 39, 8040 (1991)
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Determination of 1-D
Subband SPACING
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T. P. Martin et al., Appl. Phys. Lett. 93, 012105 (2008)

{»V Make Use of TRANSconductance
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Determination of 1-D
Subband SPACING
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Determination of 1-D
Subband SPACING

e Typical subband spacings in the range of a
FEW meV - dependent on STRUCTURE

e Subband spacing typically INCREASES as gate
confinement is made stronger

e Bias-Spectroscopy can also be used to
investigate ZEEMAN splitting of the subbands

MORE NEXT WEEK FROM ADAM MICOLICH!
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So Far We Have ASSUMED
NO Scattering Within the QPC

Ballistic

Y
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1. ELECTRONS TRAVELING TO RIGHT MUST COME FROM SOURCE

2. ELECTRONS TRAVELING TO LEFT MUST COME FROM DRAIN

Allowed SIMPLISTIC Assumption
> of PERFECT Transmission
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Disorder in QPCs Causes
SCATTERING Between Subbands

Current in EACH channel now determined by TRANSMISSION
COEFFICIENT

;22 Tn=§
m=1

PROBABILITY FOR

PROBABILITY FOR
TRANSMISSION FROM
TRANSMISSION VIA SUBBAND “n” TO

nt SUBBAND
SUBBAND “m"”

>y Current Now SAMPLE Dependent
<
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Disorder in QPCs Causes
SCATTERING Between Subbands

Calculating TOTAL Current Yields LANDAUER FORMULA

I 2e% < 2
G=—= T =
V hE" h

n=1 SAMPLE DEPENDENT
TRANSMISSION
PROBABILITY

1. TRANSMISSION PROBABILITY DEPENDS STRONGLY ON THE
NATURE OF THE DISORDER INSIDE THE QPC AND IS ALSO

STRONGLY ENERGY DEPENDENT

2. CONSEQUENTLY THE CONDUCTANCE IS NO LONGER NECESSARILY
QUANTIZED

Y
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A Simple Limit - FIXED
Transmission Per Subband

L_h U _ b h 1[1-T 1

G 2NI, 2N 2°N| T, | G. G,
comer omooe &5 O
RESISTANCE RESISTANCE

CAN NEVER CAN
BE ZERO BE ZERO

1. RESISTANCE G- ! IS AN UNAVOIDABLE QUANTUM CONTACT
RESISTANCE

2. RESISTANCE G, ! IS A SAMPLE-DEPENDENT CONTRIBUTION TO THE
TOTAL RESISTANCE
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OPTICAL Phonon Emission
at LARGE Voltages
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VOLUME 63, NUMBER 9 PHYSICAL REVIEW LETTERS 28 AUGUST 1989

Hot Ballistic Transport and Phonon Emission in a Two-Dimensional Electron Gas

U. Sivan, M. Heiblum, and C. P. Umbach
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598
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Our Study - TRANSIENT
NON-LINEAR Transport in QPCs

REVIEW OF SCIENTIFIC INSTRUMENTS 76, 113905 (2005)

50-Q2-matched system for low-temperature measurements
of the time-resolved conductance of low-dimensional semiconductors

= 5V/div
- 1 ns/div
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Our Observations:

1. REGIMES of Transient Response
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Our Observations:
2. COMPLEX Rise/Fall Times
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Our Observations:
3. Conductance PINNING at 2e2/h!
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THEORETICAL Model:
PHONON-Induced Subband ,Mixing

QLPC  UNDer. STRONG& BIAS.
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> J@Acous'nc_ PHONaN  CoNVelsionN (&) HeATiNG oF 2pEs .
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THEORETICAL Model:
PHONON-Induced Subband Mixing

Z Z (En + —> Clkgcnka

n=0 ko

Z ZZ mkﬁ qo m/ k/—|—q o"cn/k’ ’an0'7

n’mm’ kk'q oo’

where the effective coupling constant ¢ is a complicated function of the phonon environment.

Mixing Results in MODIFICATION
of Subband Structure
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Mixing Results in MODIFICATION
of Subband Structure
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where we suppressed (k = 0,0) indices in ¢,. Given the a-th eigenvector |a) and eigenvalue E,, we
evaluate gog as above and complete the self-consistent procedure via Eqs. (12,13). Numerically I have
taken M = 50 and A = 1 and the coupling go = 2A in FIG 2. As shown, the gap between the new
lowest and the next lowest band bottoms is substantially larger than the original subband spacing A as
Via grows. And for Viq > 6.5, the first subband spacing remains larger than the bias Vyq and only the
lowest subband contributes to the current. In such regime the differential conductance is quantized at
2¢2 /h.

The huge enhancement of the first subband gap is due to the bonding effect between subbands. The
subband coupling has been introduced by excited phonons created in the nonequilibrium transport
process. The subband spacing is transverse wave-vector and its coherent superposition in real-space
means narrow transverse wave-packet as depicted in FIG. 2(b). The width of the wave-packet becomes
much narrower than the confinement and its corresponding level spacing becomes much greater than
the original subband spacing.

In Other Words ... Conductance
Quantization is RESTORED at High
Bias!!!
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