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MESOSCOPIC TRANSPORT III	

l  1-D Conductance Quantization … Revisited 
l  Non-Linear Conductance of QPCs 
l  Bias-Spectroscopy Techniques* 

l  Breakdown of Conductance Quantization* 

l  And Now for Something Completely … New 
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LINEAR Conductance of  
QPCs QUANTIZED in units of 2e2/h 

K. J. Thomas et al. 
Phys. Rev. B 58, 4846 (1998) 
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LINEAR Conductance of  
QPCs QUANTIZED in units of 2e2/h 

Take excess charge per unit length PER OCCUPIED SUBBAND: 	
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This allows us to obtain the CURRENT: 	

But What About LARGE Voltages? 
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A Model for the VOLTAGE 
DROP Across a QPC 

µs µd 

1. Vsd = 0	

2. Vsd > 0	

qVsd 

µs 

µd βqVsd 

(1 – β)qVsd 

BARRIER 
LOWERED HERE	
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QPC Current For SINGLE 
Subband Under Bias 

En(ky)	

ky	

µs	µd	

ks	kd	

I = 2e vg (k)
dk
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1. Current due to SINGLE electron is evg/L	

2. Current due to ALL electrons between 
k & k + dk	

e
vg
L
2dk
2π / L

= 2e
vg
2π

3. Thus the TOTAL current	

= 0 WHEN Vsd = 0 
SINCE kd = –ks	
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QPC Current For SINGLE 
Subband Under Bias 
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1. With Vsd applied the integral becomes 	

2. Since the integrand is just eVsd the 
    DIFFERENTIAL CONDUCTANCE	

JUST WHAT WE 
HAD BEFORE!	
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(1 – β) 
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QPC Current For SINGLE 
Subband Under STRONG Bias 

En(ky)	

ky	

µd	

ks	kd	

µs	

1. Now only carriers from ONE reservoir 
     contribute to the current 
 
2. The current is then written as	

I = 2e
h
E(k)

0

ks =
2e
h
(µs +βeVsd )

3. So the corresponding differential 
     conductance becomes	

∂I
∂Vsd

= β
2e2

h
NO LONGER 
QUANTIZED!	
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QPC Current For SINGLE 
Subband Under STRONG Bias 
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HALF-PLATEAUS For A 
SYMMETRIC Voltage Drop (β = ½) 

∂I
∂Vsd

=
1
2
2e2

h

From the data in Fig. 3 it is seen that the differential
conductance depends rather strongly on Vsd . For the lowest
conductances a pronounced asymmetry is observed: for
negative Vsd the conductance is higher than for positive Vsd .
This effect is always seen when the gate bias is applied rela-
tive to the source contact. It persists in all samples even for
different grounding points. Furthermore, even at the smallest
source-drain bias we observe a strong nonlinearity in the
conductance at the middle of the integer plateaus, where the
chemical potentials lie in the middle of the gap between 1D
subband edges: the integer plateaus in Fig. 3 are not flat
around Vsd!0. In the following we interpret this nonlinear-
ity and the asymmetry in terms of the self-gating effect pre-
sented in Sec. III. We subtract this trivial effect from the data
to obtain data corresponding to a ‘‘rigid’’ QPC not subject to
self-gating.
First we treat the asymmetry of the data, which is stron-

gest for the lowest values of Vgs or equivalently for the low-
est electron densities. A simple reason for this can be found
in the electrostatics of the QPC. We notice that !I/!U is
always antisymmetric with respect to Vsd . However, since
the gate voltage is applied relative to the source contact, no
special symmetry relations are expected in !U/!Vsd as the
polarity Vsd is changed. Especially near pinch-off when the
electron density is low in the QPC, the effect of a polarity
change in Vsd can be important. Thus we expect on general
grounds that, regarded as a function of Vsd , the term
(!I/!U)(!U/!Vsd) from Eq. "5# contains both a symmetric
and an antisymmetric part. This conclusion holds true for
any value of the ratio $ of the voltage drop in Eq. "3#, in
contrast to Ref. 20, where $%1/2 had to be adopted to ex-
plain the asymmetry. The antisymmetric part thus attributed
to rather trivial electrostatics is subtracted from the data by
forming the symmetric combination

I" !Vsd!#& 1
2 'I""Vsd#"I"#Vsd#( . "7#

Next we focus on the four dI/dVsd traces which for Vsd
!0 go right through the center of each of the first four inte-
ger conductance plateaus. As mentioned in Sec. III no appre-
ciable self-gating effect is expected here. Only smooth
changes with Vgs are expected for moderate values of the
bias Vsd . Using a second order Taylor expansion of dI/dVsd
in Vsd we extend Eq. "5# to the form

dI
dVsd

)"*Vgs"+#""*!Vgs"+!#Vsd , "8#

and fit the four parameters * , + , *!, and +! to the four
mid-plateau traces. We then subtract from all the traces the
fitted Vsd dependence. The result of this procedure is shown
in Fig. 4. We end up with plots of the integer plateaus in the
differential conductance that for moderate values of Vsd up to
2–3 mV are independent of the finite bias voltage. Note how
the 0.9 anomalous plateau has also now become flat. We can
thus unambiguously assign constant values for the conduc-
tance plateaus in a wide range. The half plateaus, however,
still show a dependence on the bias voltage, although not as
strongly as before, indicating the large influence of Vsd on
the potential U in the strongly nonequilibrium case where
one reservoir is injecting electrons above the topmost sub-
band edges and the other is not. We note that experimentally
we never see G!0.5 at the first half plateau but rather a
value substantially below; and it is never quite constant but
decreasing with increasing bias; in the present case G
)0.3. This is probably due to the intricate self-consistent
electrostatic effects at pinch-off, but this has to be investi-
gated further. The measured values of the conductance at the
plateaus are discussed further in Sec. IV C.

B. The transconductance

To display the features in the conductance traces more
clearly we study the transconductance dG/dVgs , which is
calculated by numerical differentiation from the measured
differential conductance G!dI/dVsd . The transconductance
is zero "or small# on conductance plateaus and shows peaks
in the transition regions between plateaus. In Fig. 5 is shown
a gray scale plot of the transconductance of sample A, cal-
culated from the data in Fig. 3. The plot covers the range
#10 to 10 mV in source-drain bias and 0.25 to 0.50 V in
gate voltage, corresponding to the first four integer conduc-
tance plateaus. Plateau regions "small transconductance# ap-
pear as light regions bounded by dark transition regions
"high transconductance#. The main features of the plot are
the well-known diamond shaped dark transition regions sur-
rounding the integer plateaus nG2 and the half plateaus (n
#1/2)G2, where n!1,2, . . . .9,14 The transitions in G are
due to the crossing of the chemical potentials ,s and ,d of
the source and drain reservoirs through the subband edges
defining the transmitting subbands. The procedure described

FIG. 4. "a# The symmetrized plot of the dif-
ferential conductance. In the right half are shown
all the conductance traces, while in the left part
are shown only the four center plateau traces "full
lines# together with the best fit "dotted lines# to
the form Eq. "8#. "b# The symmetrized plot after
subtraction of the Vsd dependence due to self-
gating.

PRB 62 10 953BIAS AND TEMPERATURE DEPENDENCE OF THE 0.7 . . .

A. Kristensen et al., Phys. Rev. B 62, 10950 (2000) 
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HALF-PLATEAUS Near 
PINCH-OFF (β << ½) 

qVsd 

µs 

µd βqVsd 

(1 – β)qVsd 

From the data in Fig. 3 it is seen that the differential
conductance depends rather strongly on Vsd . For the lowest
conductances a pronounced asymmetry is observed: for
negative Vsd the conductance is higher than for positive Vsd .
This effect is always seen when the gate bias is applied rela-
tive to the source contact. It persists in all samples even for
different grounding points. Furthermore, even at the smallest
source-drain bias we observe a strong nonlinearity in the
conductance at the middle of the integer plateaus, where the
chemical potentials lie in the middle of the gap between 1D
subband edges: the integer plateaus in Fig. 3 are not flat
around Vsd!0. In the following we interpret this nonlinear-
ity and the asymmetry in terms of the self-gating effect pre-
sented in Sec. III. We subtract this trivial effect from the data
to obtain data corresponding to a ‘‘rigid’’ QPC not subject to
self-gating.
First we treat the asymmetry of the data, which is stron-

gest for the lowest values of Vgs or equivalently for the low-
est electron densities. A simple reason for this can be found
in the electrostatics of the QPC. We notice that !I/!U is
always antisymmetric with respect to Vsd . However, since
the gate voltage is applied relative to the source contact, no
special symmetry relations are expected in !U/!Vsd as the
polarity Vsd is changed. Especially near pinch-off when the
electron density is low in the QPC, the effect of a polarity
change in Vsd can be important. Thus we expect on general
grounds that, regarded as a function of Vsd , the term
(!I/!U)(!U/!Vsd) from Eq. "5# contains both a symmetric
and an antisymmetric part. This conclusion holds true for
any value of the ratio $ of the voltage drop in Eq. "3#, in
contrast to Ref. 20, where $%1/2 had to be adopted to ex-
plain the asymmetry. The antisymmetric part thus attributed
to rather trivial electrostatics is subtracted from the data by
forming the symmetric combination

I" !Vsd!#& 1
2 'I""Vsd#"I"#Vsd#( . "7#

Next we focus on the four dI/dVsd traces which for Vsd
!0 go right through the center of each of the first four inte-
ger conductance plateaus. As mentioned in Sec. III no appre-
ciable self-gating effect is expected here. Only smooth
changes with Vgs are expected for moderate values of the
bias Vsd . Using a second order Taylor expansion of dI/dVsd
in Vsd we extend Eq. "5# to the form

dI
dVsd

)"*Vgs"+#""*!Vgs"+!#Vsd , "8#

and fit the four parameters * , + , *!, and +! to the four
mid-plateau traces. We then subtract from all the traces the
fitted Vsd dependence. The result of this procedure is shown
in Fig. 4. We end up with plots of the integer plateaus in the
differential conductance that for moderate values of Vsd up to
2–3 mV are independent of the finite bias voltage. Note how
the 0.9 anomalous plateau has also now become flat. We can
thus unambiguously assign constant values for the conduc-
tance plateaus in a wide range. The half plateaus, however,
still show a dependence on the bias voltage, although not as
strongly as before, indicating the large influence of Vsd on
the potential U in the strongly nonequilibrium case where
one reservoir is injecting electrons above the topmost sub-
band edges and the other is not. We note that experimentally
we never see G!0.5 at the first half plateau but rather a
value substantially below; and it is never quite constant but
decreasing with increasing bias; in the present case G
)0.3. This is probably due to the intricate self-consistent
electrostatic effects at pinch-off, but this has to be investi-
gated further. The measured values of the conductance at the
plateaus are discussed further in Sec. IV C.

B. The transconductance

To display the features in the conductance traces more
clearly we study the transconductance dG/dVgs , which is
calculated by numerical differentiation from the measured
differential conductance G!dI/dVsd . The transconductance
is zero "or small# on conductance plateaus and shows peaks
in the transition regions between plateaus. In Fig. 5 is shown
a gray scale plot of the transconductance of sample A, cal-
culated from the data in Fig. 3. The plot covers the range
#10 to 10 mV in source-drain bias and 0.25 to 0.50 V in
gate voltage, corresponding to the first four integer conduc-
tance plateaus. Plateau regions "small transconductance# ap-
pear as light regions bounded by dark transition regions
"high transconductance#. The main features of the plot are
the well-known diamond shaped dark transition regions sur-
rounding the integer plateaus nG2 and the half plateaus (n
#1/2)G2, where n!1,2, . . . .9,14 The transitions in G are
due to the crossing of the chemical potentials ,s and ,d of
the source and drain reservoirs through the subband edges
defining the transmitting subbands. The procedure described

FIG. 4. "a# The symmetrized plot of the dif-
ferential conductance. In the right half are shown
all the conductance traces, while in the left part
are shown only the four center plateau traces "full
lines# together with the best fit "dotted lines# to
the form Eq. "8#. "b# The symmetrized plot after
subtraction of the Vsd dependence due to self-
gating.
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GENERAL ASPECTS OF 
MESOSCOPIC TRANSPORT III	

l  1-D Conductance Quantization … Revisited 
l  Non-Linear Conductance of QPCs 
l  Bias-Spectroscopy Techniques* 

l  Breakdown of Conductance Quantization* 
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Determination of 1-D 
Subband SPACING 

N. K.  Patel et al., Phys. Rev. B 44, 13549 (1991) 

L. P. Kouwenhoven et al., Phys. Rev. B 39, 8040 (1991) 
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Determination of 1-D 
Subband SPACING 

T. P. Martin et al., Appl. Phys. Lett. 93, 012105 (2008) 

Make Use of TRANSconductance 

HIGH TRANS- 
CONDUCTANCE	

LOW TRANS- 
CONDUCTANCE	
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Determination of 1-D 
Subband SPACING 

Make Use of TRANSconductance 

in Sec. IV A to get rid of the Vsd dependence of the plateau
values allows for an unambiguous assignment of conduc-
tance values in each of the diamonds of the transconductance
plot. The subband separations !n!1"!n are extracted from
the main diamond structure by reading off the value of Vsd
where the straight black lines surrounding the G#n diamond
intersect, indicating the appearance of the next subband. The
first intersection is at (Vgs ,Vsd)#(0.32 V,6.5 mV). Thus
!1"!0#6.5 mV as listed in Table I.

C. The anomalous subband edge !0! and "„Vgs…
In addition to the main feature, anomalous conductance

plateaus are seen. The most pronounced is the anomalous

G#0.9 plateau, which appears in the left-hand side of the
G#1 diamond between the leftmost black straight edge and
a curved gray anomalous transition line. Note how the
anomalous transition line is continued smoothly into the G
#1.5 diamond. Similar, but much weaker, anomalous struc-
tures are seen running inside the G#2 diamond continuing
into the G#2.5 diamond, and inside the G#3 diamond con-
tinuing into the G#3.5 diamond.
Just as the black straight lines in the gray scale plot of

Fig. 5 are due to the crossing of "s and "d through the
ordinary subband edges !n , it is tempting to associate the
anomalous transitions with the crossing of anomalous sub-
band edges !n! . In particular, the strong transition ridge be-
tween the 1.0 and 0.9 plateaus can be analyzed in those
terms. In the standard theory, changing Vsd for fixed Vgs in
the first half of the first plateau leads to the sequence G
#1.0→G#0.5, since "d drops below the lowest lying spin-
degenerate subband edge. However, this sequence is not ob-
served in the measurements. To make this point clear we
show in Fig. 6 four individual traces at fixed Vgs , denoted A
to D, and four traces at fixed Vsd , denoted E to H. In Fig.
6#a$ these traces are drawn as dashed lines in the Vgs-Vsd
plane. In Fig. 6#b$ is shown the differential conductance
along traces A to D. The zero bias point of these four traces
corresponds to the following positions on the T#0.3 K con-
ductance curve of Fig. 2: below the first plateau #A$, on the
lower half of the first plateau #B$, on the upper half of the
first plateau #C$, and on the lower half of the second plateau
#D$. First follow trace B. It exhibits the plateau sequence
G#1.0→G#0.85→G#0.2. Probably due to the ‘‘soft-
ness’’ of the QPC at low electron densities, the value of the
‘‘0.5 plateau’’ is around 0.2, where the trace meet with trace
A evolving from G#0 into a plateau at G#0.15. It is as if
the conductance in trace B drops in two steps corresponding
to the crossing of two subband edges rather than just one,
perhaps as a consequence of lifting of the spin degeneracy in
the QPC.7,16,18
It seems quite natural to associate the anomalous transi-

tion with an anomalous subband edge !0! split off from and

FIG. 5. Gray scale plot of the transconductance dG/dVgs versus
gate voltage Vgs and bias voltage Vsd for sample A at T#0.3 K.
White corresponds to zero transconductance, i.e., to plateaus in the
differential conductance G#dI/dVsd . Black corresponds to high
transconductance. The dark lines in the plot therefore indicate the
positions (Vgs ,Vsd) of transitions between the various conductance
plateaus. The numbers indicate the value of G in units of 2e2/h on
the various plateaus.

FIG. 6. #a$ A section of the gray scale plot from Fig. 5 displaying the four vertical Vsd scan lines A, B, C, and D of panel #b$ below and
the four horizontal Vgs scan lines E, F, G, and H of panel #c$ below. #b$ The differential conductance G versus bias voltage Vsd for four
different fixed values of the gate voltage corresponding to positions A before the first conductance plateau, B on the lower half of the same
plateau, C on the upper half of it, and D on the lower half of the second plateau. #c$ The transconductance dG/dVgs versus the differential
conductance G#dI/dVsd at four different bias voltages Vsd#0, 1.7, 4.0, and 6.2 mV, traces E, F, G, and H, respectively. #d$ illustrates a
model involving ordinary subband edges !n and anomalous ones !n! . The !n! splits off from !n only for "#("s!"d)/2$!n . Changing
"s""d#eVsd in the lower #upper$ panel corresponds to scanning along trace C #D$. Note how !0! gives rise to the anomalous ridge through
the 1 and 1.5 diamonds, and !1! to that in the 2 diamond.

10 954 PRB 62A. KRISTENSEN et al.

A. Kristensen et al., Phys. Rev. B 62, 10950 (2000) 
 

Δ = 6 meV	
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Determination of 1-D 
Subband SPACING 

l  Typical subband spacings in the range of a 
FEW meV – dependent on STRUCTURE 

l  Subband spacing typically INCREASES as gate 
confinement is made stronger 

l  Bias-Spectroscopy can also be used to 
investigate ZEEMAN splitting of the subbands 	

MORE NEXT WEEK FROM ADAM MICOLICH!	
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GENERAL ASPECTS OF 
MESOSCOPIC TRANSPORT III	

l  1-D Conductance Quantization … Revisited 
l  Non-Linear Conductance of QPCs 
l  Bias-Spectroscopy Techniques* 

l  Breakdown of Conductance Quantization* 

l  And Now for Something Completely … New 

* UNFORTUNATELY, NO TIME FOR THIS TODAY	
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So Far We Have ASSUMED 
NO Scattering Within the QPC 

Allowed SIMPLISTIC Assumption 
of PERFECT Transmission 

SOURCE 
RESERVOIR	

DRAIN 
RESERVOIR	

1.   ELECTRONS TRAVELING TO RIGHT MUST COME FROM SOURCE 

2.   ELECTRONS TRAVELING TO LEFT MUST COME FROM DRAIN 
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Disorder in QPCs Causes 
SCATTERING Between Subbands 

Current in EACH channel now determined by TRANSMISSION 
COEFFICIENT 	

In =
2e2

h
VTn , Tn = Tnm

m =1

N

∑

PROBABILITY FOR 
TRANSMISSION FROM 
SUBBAND “n” TO 
SUBBAND “m”	

PROBABILITY FOR 
TRANSMISSION VIA 
nth SUBBAND	

Current Now SAMPLE Dependent 
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Disorder in QPCs Causes 
SCATTERING Between Subbands 

Calculating TOTAL Current Yields LANDAUER FORMULA	

G =
I
V
=
2e2

h
Tn

n =1

N

∑ =
2e2

h
T

SAMPLE DEPENDENT 
TRANSMISSION 
PROBABILITY	

1.   TRANSMISSION PROBABILITY  DEPENDS STRONGLY ON THE 
NATURE OF THE DISORDER INSIDE THE QPC AND IS ALSO 
STRONGLY ENERGY DEPENDENT  

2.   CONSEQUENTLY THE CONDUCTANCE IS NO LONGER NECESSARILY 
QUANTIZED 
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A Simple Limit – FIXED 
Transmission Per Subband 

1
G
=
h
2e2

1
NTpc

=
h
2e2

1
N
+
h
2e2

1
N
1−Tpc
Tpc

"

#
$
$

%

&
'
'
=
1
GC

+
1
GD

CONTACT- 
RELATED 

RESISTANCE 

DISORDER- 
RELATED 

RESISTANCE CAN NEVER 
BE ZERO 

CAN 
BE ZERO 

1.   RESISTANCE GC
-1 IS AN UNAVOIDABLE QUANTUM CONTACT 

RESISTANCE  

2.   RESISTANCE GD
-1 IS A SAMPLE-DEPENDENT CONTRIBUTION TO THE 

TOTAL RESISTANCE 
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GENERAL ASPECTS OF 
MESOSCOPIC TRANSPORT III	
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l  Bias-Spectroscopy Techniques* 

l  Breakdown of Conductance Quantization* 

l  And Now for Something Completely … New 
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OPTICAL Phonon Emission 
at LARGE Voltages 

35 meV	

GaAs PHONON SPECTRUM	
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Nano Res (2010) 3: 147–169 
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it is approximately three times greater. Typical inelastic 

scattering mean free paths in both silicon and carbon 

nanostructures are of the order ȜOP ƿ 10–50 nm [31]. 

The full electron energy relaxation length is thus even 

longer, i.e., several inelastic mean free paths. This is 

illustrated near a 20 nm wide energy barrier in silicon 

in Fig. 4, where the drift-diffusion approach cannot 

capture the delocalized nature of the power dissipation  

region. 

An improvement is provided by the hydrodynamic 

approach, which introduces the electron temperature 

(Te) and an average electron energy relaxation time 

(Ĳe–L) [48]: 

W �

� ª º � � � �« »¬ ¼
B e L B

V G e L

e L

3 ( ) 3
( ) ( )

2 2

k n T T kP R G E T T    (6) 

where n is the electron density and L denotes the 

lattice. The equation here is written for electrons as 

majority carriers, but the holes can be treated similarly. 

Unlike the drift-diffusion model, this approach is better 

suited for capturing transport near highly peaked 

electric fields. However, this suffers from the sim- 

plification of a single averaged carrier temperature 

and relaxation time, as scattering rates are strongly 

energy-dependent [51]. Neither method gives infor- 

mation regarding the frequencies and wave vectors 

of phonons emitted. Such details are important because 

the emitted phonons have different velocities and 

widely varying contributions to heat transport [52–55]  

and device heating [56, 57]. 

The mechanism through which lattice self-heating 

occurs is that of electron scattering with phonons, and 

therefore a model which deliberately incorporates all 

scattering events will also capture such energy 

dissipation details. Thus, the Monte Carlo method 

[58] originally developed for studying hot electron 

effects [59], is also well-suited for computing a 

detailed picture of energy dissipation. This was the 

approach adopted in Refs. [60–64], where power 

dissipation was computed as a sum of all phonon  

emission minus all phonon absorption events: 

� �Ȧ Ȧ �
' ¦ = =

V ems abs

sim

nP
N t

         (7) 

where n is the real-space carrier density, Nsim is the 

number of simulated particles (e.g., 10 000 simulated 

particles could be used to describe 1019 cm–3 real-space 

concentration), and ̇t is the time. This approach has 

Figure 4� Computed spatial and phonon-resolved power dissipation in silicon. (a) Conduction (cond.) band diagram of a 20 nm wide 

energy barrier and (b) non-localized power dissipation (diss.) near it. Dashed lines represent optical (upper) and acoustic (lower) phonon 
emission computed with a Monte Carlo approach [51]. (c) Phonon dispersion in silicon and (d) corresponding phonon generation 

spectrum from Joule heating. Transverse modes are dashed lines, longitudinal modes are solid lines. Reproduced with permission from 

Ref. [60]. Copyright 2005 American Physical Society 

PHONON EMISSION FOR Si 
E. Pop, Nano. Res. 3, 147 (2010)	
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Hot Ballistic Transport and Phonon Emission in a Two-Dimensional Electron Gas
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Hot-electron transport in a 2D electron gas is investigated as a function of the electron's excess ener-
gy. The inelastic mean free path at energies below the longitudinal-optical-phonon energy is found to be
an order of magnitude longer than theoretical predictions. For higher injection energies, LO-phonon
emission is found to be the main scattering mechanism. This, together with the ballistic motion for ener-
gies below the phonon energy, leads to previously unobserved periodic oscillations in the maximum ener-
gy of hot electrons as a function of their injection energy.

PACS numbers: 73.40.6k, 63.20.Dj, 73.20.Dx, 73.50.6r

Electronic transport in a high-mobility 2D electron gas
(2DEG) over distances shorter than the total mean free
path has recently attracted considerable interest. The
discovery of quantized contact conductance, ' magnetic
focusing, etc., revealed several features characteristic to
ballistic electronic motion. Most of the research, howev-
er, was concerned with cold-electron transport at the sur-
face of the Fermi disk. Most recently, Palevski et al.
have demonstrated ballistic transport, for hot electrons
as well, across short distances (up to 170 nm) in a high-
mobility 2DEG. Here we explore hot, ballistic electron
transport as a function of excess energy relative to the
Fermi energy of the 2D cold-electron background along
distances as large as 2 pm. The long distance, combined
with the energy spectroscopy technique to be described
later, enables a direct probing of the scattering processes
experienced by the hot electrons. We find that the main
scattering mechanism at 4.2 K, for hot electrons with ex-
cess energy larger than the longitudinal-optical- (LO-)
phonon energy (hcoLo 36 meV), is LO-phonon emis-
sion. For electrons with energy below 36 meV we find a
surprisingly long inelastic mean free path (mfp), at least
of the order of the device's size, namely 2 pm. The mea-
sured mean free path is about an order of magnitude
longer than theoretical predictions for electron-hole exci-
tation and more than that for electron-plasmon scatter-
ing. Weaker than expected coupling of hot, ballistic
electrons to plasmons in bulk GaAs was also reported by
Heiblum, Galbi, and Weckwerth. The combination of
short mfp for phonon emission and ballistic motion below
the phonon energy results in a previously unobserved,
periodic oscillation in the maximum energy of the col-
lected electrons as a function of injection energy. Unlike
previously reported phonon-induced oscillations in the
photoconductivity of bulk GaAs and in the tunneling
current through n+-GaAs-A16aAs-n -GaAs struc-
tures, the present oscillations are characteristic of quasi-
ballistic motion of the electrons once they have been
scattered to energies below the phonon energy.
The structure used in the experiment is schematically

shown in Fig. 1. Two pairs of metallic gates [dark areas

in Fig. 1(a)1 were defined employing electron-beam
lithography on the surface of a GaAs-Alo3Gao7As het-
erostructure containing a 2DEG (in the heterojunction
between GaAs and A1GaAs). One pair of gates was uti-
lized to produce a barrier for use as a hot-electron injec-
tor [the injector is designated I in Fig. 1(a)] and the
second one was used to produce a spectrometer barrier
for analyzing the energy distribution of the collected
beam [C in Fig. 1(a)]. The nominal size of the injector
and collector openings were approximately 180 nm and
the distance between the injector and the collector was 2
pm. The various 2DEG regions, namely the injector (I),
the base (having two contacts 8~,82), and the collector
(C), were contacted by standard NiGeAu alloyed Ohmic
contacts. The carrier density and mobility of the 2DEG
were measured at 4.2 K using the standard van der Pauw
procedure and were found to be 2X10" cm 2 and
8 & 105 cm2/V sec, respectively, leading to a Fermi energy
of EF=7 meV and a transport mean free path (for cold
electrons) of l =4.5 pm.
An application of a negative gate voltage with respect

to the 2DEG in the base forms an electrostatic barrier
under the gates, thus confining the electrons to the un-

B)

B2

vc

FIG. l. (a) A schematic drawing of the structure used.
Two pairs of metallic gates (dark regions) define injector (I)
and collector (C) regions in the 2DEG. (b) Schematic presen-
tation of the bottom of the conduction band under operation
conditions [a cut along the dash-dotted line in (a)l.
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FIG. 2. The oscillations in the transfer ratio (solid lines)
and the collector current (dashed lines) vs the injection voltage
for two values of injector gate voltages measured at T 4.2 K.
Notice the negative differential transconductance (dIC/dVI).
The collector barrier is fixed at approximately 23 meV above
the Fermi energy in the base.

gated regions. An even higher gate voltage depletes the
2DEG in the openings of the injector and collector,
creating a potential barrier separating them from the
base [Fig. 1(b)]. Hot electrons were injected by apply-
ing large enough voltage across the injector barrier [Vz
in Fig. 1(b)]. The collector barrier height was controlled
both by changing the collector gate voltage and by
changing the collector biasing relative to the base [Vc in
Fig. 1(b)]. Monitoring the resistance between the two
base contacts, BI and Bq, we ensured that the base was
not depleted of carriers for the gate voltages used in the
experiment. Energy spectroscopy of the current-carrying
states was performed via tnonitoring, for a given injec-
tion energy, the collected current as a function of the
collector barrier height. The variations in that current,
assuming a given distribution for the injected electrons,
contain information on the scattering processes experi-
enced by an electron traversing the base. Since tunnel-
ing through the collector barrier is negligible, only hot
electrons with longitudinal (i.e., perpendicular to the col-
lector) energy larger than the collector barrier height are
collected. Electrons which relax to energies below the
collector barrier height are not collected and are drained
through the base to ground.
Typical results, at 4.2 K, for the collector current IC

(dashed lines) and the transfer ratio a Ig/II (solid
lines), as a function of the injection voltage Vi (all volt-
ages are measured relative to the base), are depicted in
Fig. 2. The two sets of curves correspond to different in-
jector gate voltages VGI —1.2 and 1.24 V, and a fixed
collector barrier height of approximately 23 meV above
the Fermi level in the base. For small injector biasing,
its opening is pinched off. An increased voltage lowers
the injector barrier below the Fermi energy in the injec-
tor, leading to a finite injection current. The collector
current starts as soon as the injection energy exceeds the

Collector Barrier Height (meV)
10 23100 I I1i30 ~ ~ I ~ ~

90
80
70
60

o 50
40

L

30
E 20

10

-1.28-
-1.26-
-1.24-
-1.22-
-1.20

30 40 50 60 70 80
~ ~

'~
'~ ~ '~

~ ~

VI (mV)
~- A.

~ ~

l)- ..
0 '+ '~ '~0 \

-1.05 -1.10 -1.15 -1.20 -1.25 -1.30
Collector Gote Voltage, Vac (V)

Collector Barrier Height (meV)
10 23

I I I I

V) =
r ~ 33 mV

37 mV

41 mV
~ 45 mV
o 49 mV
53 mV

74 mV

600

500— --~

400—

300—
CE,

200 ~~
r

II

100)y .
& ~ c"

I0—1.05 -1.10 -1.15 —1.20 -1.25
Collector Gate Voltage, Vac (V)

(b)

—1.30

FIG. 3. Spectroscopy of the current-carrying states. (a)
The transfer ratio and (b) its derivative vs the collector gate
voltage and the corresponding collector barrier height for
different injection voltages measured at T 4.2 K with a fixed
injector barrier height. The different curves correspond to
various injection voltages (VI). Inset: The periodic oscillations
in the collector gate voltage needed to cut off a as a function of
the injection energy.

collector barrier height, proving ballistic transport. The
transfer ratio, a, reaches a sharp maximum at V~=36
mV, then drops down to a minimum at Vq =55 mV, and
reaches a second peak at VI =70-75 mV and a third one
at approximately 110 mV. The peak magnitude of a
agrees with ballistic transport in the solid angle covered
by the collector (approximately 30 deg), implying no or
very weak large-angle scattering. The three distinct
peaks in a lie in the vicinity of one, two, and three pho-
non energy quanta above the Fermi energy in the base
(i.e., VI 36, 72, and 108 mV) and result from the emis-
sion of one, two, and three sequential LO phonons by the
injected hot electrons.
The transfer ratio, a, as a function of the collector
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We describe the construction of a low-temperature cryostat that may be used to study the
time-dependent conductivity of low-dimensional semiconductors with time resolution of a
few-hundred picoseconds. The system makes use of semirigid coaxial cables to provide the
necessary connections from room-temperature instrumentation to the low-temperature stage, and
features a specially designed launch that provides efficient 50 ! impedance matching to the
semiconductor system of interest. In order to explore the capabilities of the system, we perform
time-resolved measurements of the magnetotransport properties of a high mobility GaAs/AlGaAs
two-dimensional electron gas. © 2005 American Institute of Physics. #DOI: 10.1063/1.2132268$

I. INTRODUCTION

For roughly three decades now, there has been enormous
interest in the electrical properties of low-dimensional semi-
conductors, such as the two-dimensional electron gas
!2DEG" that forms in heterojunctions and quantum wells,
quasi-one-dimensional quantum wires, and strongly confined
quantum dots.1 While a huge amount has been learned from
the study of such systems, the vast majority of this body of
work has focused on studies of the dc, or quasi-dc, properties
of such systems. In many ways, this situation has been
driven by the relative ease with which such studies can be
performed, and by the significantly greater difficulty associ-
ated with measuring transient conductance on the nanosec-
ond scale. For future practical applications of semiconductor
quantum devices, however, it is desirable to be able to char-
acterize their conductance on such short-time scales. Al-
though it is true that time-resolved heating studies have been
used for some time to characterize hot-electron transport in
semiconductors, these experiments have traditionally fo-
cused on an analysis of the time-resolved behavior on the
microsecond scale.2 In contrast, only a small number of stud-
ies have explored the carrier dynamics in the nanosecond
range.3–6 Recently, the demand for experimental measure-
ments in this regime has grown due to the relevance to quan-
tum computing, leading to some state-of-the-art studies of
the subnanosecond response !Rabi oscillations" of coupled
quantum dots.7 In spite of this increased interest, the number
of studies of this type remains limited by the severe experi-
mental demands associated with the low-loss propagation of
signals in the gigahertz range.

In this article, we describe an experimental setup that

can be used for low-temperature !4.2 K" measurements of
the time-resolved conductance of low-dimensional semicon-
ductors, minimizing unwanted signal reflections and provid-
ing time resolution of a few hundred picoseconds. The order
of this article is as follows. We first describe the details of the
cryostat that we have constructed for the time-resolved mea-
surements, including the design of a custom-built launch that
provides an efficient transition from the semirigid coaxial
cables, which source and sink nanosecond-duration voltage
pulses, and the semiconductor device under study. Having
given a detailed description of this system, we then demon-
strate its basic pulse response, and consider some of the para-
sitic sources that limit its ultimate time resolution. After
this, we describe the use of the experimental setup to study
the time-resolved magnetoconductance of a high mobility
GaAs/AlGaAs 2DEG. Our studies reveal a number of im-
portant issues that need to be considered when designing
experiments of this type.

II. DESIGN AND CONSTRUCTION OF THE 50-!
MATCHED CRYOSTAT

Measurement of the conductance on the nanosecond-
time scale places strict demands on impedance matching,
which are compounded by the requirement to achieve this
matching under cryogenic conditions. To meet these de-
mands, we have designed and constructed a 50-!-matched
cryostat system whose signal lines are formed from semi-
rigid coaxial cables, terminated with standard microwave
connectors. The coaxial stage of this system is therefore
somewhat similar to that described by Jun et al.8 A photo-
graph of the cryostat system !with its vacuum can removed"

REVIEW OF SCIENTIFIC INSTRUMENTS 76, 113905 !2005"

0034-6748/2005/76!11"/113905/5/$22.50 © 2005 American Institute of Physics76, 113905-1
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Our Observations: 
1. REGIMES of Transient Response 
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Our Observations: 
2. COMPLEX Rise/Fall Times 
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Our Observations: 
3. Conductance PINNING at 2e2/h! 
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Let’s assume that there are strong (optical) phonon excitations which then connect di↵erent bands
with the band-bottom ✏n and ✏m di↵ering less than the optical phonon energy !OL, i.e, |✏n�✏m| < !OL.
With equi-spacing � between the bands ✏n = ✏0 + n� and the condition for the interaction is given as
|n � m| < M ⇠ !OL/�. Since !OL ⇡ 40 meV and � ⇠ 1 meV, M ⇠ 10 � 100. Then the e↵ect of the
electron-phonon interaction can be re-written in a form similar to electron-electron interaction as

H =
1X

n=0

X

k�

✓
✏n +

~2k2

2m⇤

◆
c†nk�cnk�

�1

2
g
X

nn0mm0

0 X

kk0q

X

��0

c†m,k�q�c†m0,k0+q,�0cn0k0�0cnk�, (2)

where the e↵ective coupling constant g is a complicated function of the phonon environment. Here
I don’t attempt to give any detailed origin for g – it is nearly impossible to accurately predict it.
Hamiltonian, I introduced the interaction between the incoming bands n, n0 and the out-going bands
m, m0 while the longitudinal momentum is conserved. Here the primed summation

P
nn0mm0

0
means

that n, n0 and m, m0 are limited to where all of |n � m|, |n0 � m|, |n � m0| and |n � m0| are equal or
smaller than M .

To approximately solve the Hamiltonian, we use the Hartree-Fock approximation to the interaction
part V̂ ,
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i
. (3)

Since the original Hamiltonian conserves the momentum, hc†m,k�q�cnk�i = 0 for q 6= 0 and

hc†m,k�q�cn0k0�0i = 0 for k � q 6= k0. Therefore,
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Since {n, n0m, m0} summation indices are dummy, the same spin terms (� = �0) in the above expression
cancel.
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In the summation in the parenthesis, there are M number of m0 per n0, and we normalize the coupling
in the form of g ⌘ g0/M . Therefore with a self-consistently defined coupling constant ge↵ as

ge↵ =
g0

M

X

n0m0k0

0
hc†m0k0,��cn0k0,��i, (7)

finally the mean-field Hamiltonian reads as

ĤMF ⇡
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This one-body e↵ective Hamiltonian is already diagonal in k, we only need to diagonalize it for a
single k, say k = 0. Once the one-body eigenstates | ↵k�i at energy E↵k� = E↵+ ~2k2

2m⇤ with ↵ = 0, 1, · · ·
are obtained, the e↵ective coupling ge↵ can be computed as follows. We assume that only right-moving
electrons exist in the channel. The chemical potential for the right-movers Vsd is measured from the
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Since the original Hamiltonian conserves the momentum, hc†m,k�q�cnk�i = 0 for q 6= 0 and
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Since {n, n0m, m0} summation indices are dummy, the same spin terms (� = �0) in the above expression
cancel.
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In the summation in the parenthesis, there are M number of m0 per n0, and we normalize the coupling
in the form of g ⌘ g0/M . Therefore with a self-consistently defined coupling constant ge↵ as

ge↵ =
g0

M

X

n0m0k0

0
hc†m0k0,��cn0k0,��i, (7)

finally the mean-field Hamiltonian reads as
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This one-body e↵ective Hamiltonian is already diagonal in k, we only need to diagonalize it for a
single k, say k = 0. Once the one-body eigenstates | ↵k�i at energy E↵k� = E↵+ ~2k2

2m⇤ with ↵ = 0, 1, · · ·
are obtained, the e↵ective coupling ge↵ can be computed as follows. We assume that only right-moving
electrons exist in the channel. The chemical potential for the right-movers Vsd is measured from the
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FIG. 2: Band bottom energy of excited bands measured from the ground state as a function of bias voltage. The

dashed line shows the curve y = Vsd, and therefore the first excited band remains above Vsd for Vsd > 6.5. In

such regime the electron transport is only through the first subband and the conductance becomes G0 = 2e2/h.
The parameters are g0 = 2, � = 1, M = 50.

new ground state eigenvalue.
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The eigenvectors at k = 0 can be obtained from the (k = 0)-sector Hamiltonian,

H(k = 0) = �
1X

n=0

nc†ncn � ge↵

X

nm

0
c†mcn, (13)

where we suppressed (k = 0, �) indices in cn. Given the ↵-th eigenvector |↵i and eigenvalue E↵, we
evaluate ge↵ as above and complete the self-consistent procedure via Eqs. (12,13). Numerically I have
taken M = 50 and � = 1 and the coupling g0 = 2� in FIG 2. As shown, the gap between the new
lowest and the next lowest band bottoms is substantially larger than the original subband spacing � as
Vsd grows. And for Vsd > 6.5, the first subband spacing remains larger than the bias Vsd and only the
lowest subband contributes to the current. In such regime the di↵erential conductance is quantized at
2e2/h.

The huge enhancement of the first subband gap is due to the bonding e↵ect between subbands. The
subband coupling has been introduced by excited phonons created in the nonequilibrium transport
process. The subband spacing is transverse wave-vector and its coherent superposition in real-space
means narrow transverse wave-packet as depicted in FIG. 2(b). The width of the wave-packet becomes
much narrower than the confinement and its corresponding level spacing becomes much greater than
the original subband spacing.
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