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Outline

Motivation: Experiments with quantum point contacts

• Quantized conductance;

• Temperature dependent corrections & 0.7 structure.

Theory: Transport in long uniform quantum wires

• Corrections to conductance are caused by backscattering of electrons;

• Backscattering can be quantified in terms of rate of equilibration of electrons 

in the wire;

• Equilibration is controlled by spin excitations.



Quantum point contacts

From Berggren & Pepper, 2002

As a function of gate voltage conductance shows multiple steps of height G0 =
2e2

h



Why steps?

Top view Electron motion across the channel

• Gate voltage changes the number 

of parallel channels in the wire

• Each channel has conductance 



Conductance of a single channel

Conductance:Current:
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0.7 structure

Thomas et al., 1996 Cronenwett et al., 2001

Conductance vs. gate voltage at different temperatures:

As the temperature grows,  a negative correction to the conductance 

appears, often developing into a shoulder near 



The problem

Long uniform quantum wire: • Interactions inside the wire

• No interactions in the leads

• No disorder

What is the conductance?



Origin of the corrections to conductance: Backscattering

G =
e2

h
T (EF )Landauer formula

Only the electrons that pass through 

the barrier contribute to conductance

General case: Any backscattering in the wire

Even if there is no barrier, backscattering

can be caused by interactions between 

electrons

Special case: Potential barrier



Correction to conductance due to backscattering of 

electrons

• Consider the current of right-

moving electrons

• The total current

• Exclude the outgoing 

current

• Apply Landauer formula to incoming currents



Interactions give rise to backscattering

Three particle collisions can change 

the number of right-moving electrons:

Two-particle collisions do not change the momenta of 

the electrons because of the conservation laws

Correction to the conductance of a 

quantum wire:

δG = −2e
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[Lunde, Flensberg & Glazman, 2007]



We can do more

• Study the whole dependence of the length of the wire,

• Account for interactions of arbitrary strength,

• Explore the thermoelectric coefficients,

• Include the effects of smooth disorder,

• …



Interacting electrons in one dimension: Luttinger liquid

Particle-hole excitations become acoustic bosons

Example: Wigner crystal

• Strong repulsion between electrons make them form a one-dimensional crystal

• Excitations of a crystal, the “phonons”, are bosons with acoustic 

spectrum, cf. Luttinger liquid

Luttinger liquid theory describes the low-energy properties of one-dimensional 

electron systems at any interaction strength.



Hamiltonian of a Luttinger liquid

N is the total number of particles, J is the 

current quantum number:

In a uniform Luttinger liquid the numbers of right- and left-movers (             ) 

are conserved: No correction to conductance!

[cf. Maslov & Stone 1995; Ponomarenko 1995; Safi and Schulz, 1995]



Equilibrium state of electrons in a long wire

In a long wire collisions between electrons will bring the system to an 

equilibrium state.  Since the collisions conserve momentum, the 

distribution has the form

wi = exp

(
−Ei − uPi

T

)



Momentum of a Luttinger liquid

Distribution of the bosons in equilibrium

Distribution of J:

In equilibrium, u becomes drift velocity:

vd =
I

en
(the velocity at which electron liquid moves as a whole)



Two relaxation times

Quadratic Hamiltonian: 

No relaxation

Relaxation of bosons (particle-hole excitations)

• Relaxation rate:

• Relaxation of J

(backscattering)

Bosons equilibrate much faster than J



Partially equilibrated wire

The bosons are in 

equilibrium with each other:

but not with the system as a whole:

Slow relaxation to full equilibrium

Wire of intermediate length



Momentum conservation

Single backscattering event:

Momentum carried by the bosons:

Electron backscattering rate:



Energy conservation

Cf. particle number conservation

(leads supply no energy current)

Momentum change:

Energy change:

Boson distribution



Backscattering rate

Conservation laws: Kinetics:



Conductance of long and short wires

• Short wire: 

• Long wire:
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Spins!

Kristensen et al.,  2000



What about spins?

Luttinger liquid with two types of bosonic 

excitations: the charge and spin ones

q

εq

spin

charge

vFq

For repulsive interactions:

velocity of charge excitations 

velocity of spin excitations 

vc > vF
vs < vF
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In a long spinless wire the conductance saturates at

Slower spin excitations are more important than the faster charge excitations!



1D electrons at low density: Wigner crystal

Charge excitations: phonons in the Wigner crystal

The maximum phonon energy is larger 

than the Fermi energy for free electrons: h̄ωD ≈ 6.8
EF√
naB

Spin excitations: spinons of the Heisenberg model with weak exchange

Hs =
∑
JSl · Sl+1

Spinon spectrum: εq =
πJ

2
sin q

The maximum spinon energy is exponentially small: επ ∼
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√
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[Klironomos, Ramazashvili & KM 2005; Fogler & Pivovarov 2005]



εp
τ−1 = τ−10 e−EF /T

p
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q

The hole moves in small random steps in momentum space,

∂tP = −B
2
∂q

(
∂qεq

T
+ ∂q

)
P

Such diffusion is described by the Fokker-Planck 

equation, where B is the diffusion constant

Its solution enables one to find the prefactor τ−10 ∝ T3/2

Scattering of a hole near the bottom of the band

Evaluation of the equilibration rate at weak 

interactions



Equilibration rate for strong interactions
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Equilibration of the electron system via backscattering of spinons is controlled by 

an exponentially small activation energy
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Correction to the conductance
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Our result for spinless Luttinger liquid is easily generalized to the case of two 

boson modes (charge and spin).  At low electron density (strong interactions) it 

simplifies to the form

leq ∝ eTA/T , TA 
 EF



Summary

For a long quantum wire we have 

expressed the conductance in terms of 

the equilibration rate and wire length
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The characteristic length scale grows 

exponentially in the zero temperature limit leq ∝ eTA/T

However, at low electron density the 

activation temperature is exponentially small
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At temperatures near �� the correction is of order ��/ℎ even in relatively short wires 


