

Polaritons for optronic applications

A. Bramati

Quantum Optics Group

Quantum Optics Team: topics

Quantum fluid phenomena in polariton gases

Laboratoire Kastler Brosse

⇒ An ideal system to study out of equilibrium quantum fluids

Superfluidity, hydrodynamic dark solitons and vortices (Nature Physics 2009, Science 2011, Nature Photonics 2011, Journal du CNRS, 2011)

Spin dependent non linearities in microcavities

⇒ Towards integrated optoelectronic devices

Logic gates, All Optical Spin Switches (Nature Physics 2007, PRL 2007, Nature Photonics 2010, PRL 2011)

Quantum Effects in semiconductor nano and microcavities in strong coupling regime

⇒ Towards a compact, integrable nano- source of entangled beams

Microcavities, quantum wires, micropillars (PRL 2007, APL 2010, PRB 2011)

Laboratoire Kastler Brossel

Permanent Staff: Elisabeth Giacobino, Alberto Bramati

PhDs G. Leménager Time resolved experiments, pulsed excitation; V.G. Sala micropillars and microcavities M. Manceau **T. Boulier** CW excitation; micropillars and microcavities **R.** Hivet S. Vezzoli Experiments on nanocrystals **Post-Docs Emiliano Cancellieri** Theoretical modeling **Post-doc Quandyde** Experimentalist A. Avoine Experiments on nanocrystals

Collaborations

Lab. LPN, Paris

J. Bloch, A. Amo

Lab. LPA, Paris

J.Tignon

NNL Lab., Lecce

D. Sanvitto

EPFL, Lausanne

R. Houdré

Lab. MPQ, Paris

C. Ciuti

University of Trento

I. Carusotto

Lab. LASMEA, Clermont Ferrand

G. Malpuech

University of Southampton

A. Kavokin

Outline

Introduction

- **Q** Linear regime: Optical Spin Hall effect
- Non Linear regime: Polariton Spin switches
- Summary and perspectives

Microcavity Polaritons

Linear combination of excitons and photons

$$P_{+} = -C a + X b$$
$$P_{-} = X a + C b$$

Polaritons for optronic applications

Semiconductor Microcavities in the strong coupling regime

Polaritons for optronic applications

Semiconductor Microcavities in the strong coupling regime

Laboratoire Kastler Brosse

• All optical, ultrafast, low power, spin sensitive devices

Semiconductor platform
 INTEGRABILITY

Exciton Spin Dynamics

Band Structure

Polariton Pseudospin

Laboratoire Kastler Brossel Physique quentique et applications

Poincaré sphere

Two levels polariton system : +1 et -1

> Polariton spin state

Analysis of the photon spin state

$$\rho_{c} = \frac{I_{\sigma^{+}} - I_{\sigma^{-}}}{I_{\sigma^{+}} + I_{\sigma^{-}}}$$

Optical Spin Hall Effect

Pseudospin Precession

Coupling between +1 et -1 states (via the long-range exchange interaction) and TE-TM optical splitting **Longitudinal-Transverse Splitting** Δ_{LT}

Similar to an *effective magnetic field* in the *xy plane*

_aboratoire Kastler Brosse

Pseudospin Precession around the *effective magnetic field*

$$\frac{\partial \vec{S}}{\partial t} = \vec{S} \wedge \vec{\Omega}$$

Optical Spin Hall Effect

A. Kavokin et al, PRL, 95:136601, 2005

Experimental Setup

Laboratoire Kastler Brossel Physique quentique et applications

Measure of the Longitudinal-Transverse Splitting

 $\Delta_{LT} = 50 \ \mu eV$

Circular polarization degree in far field

•Separation in the real space of «spin up» & «spin down» excitons

Spin Currents Propagation > 100 μm

Spintronic applications?

Leyder et al, Nature Physics, 3, 628 (2007), Liew et al, PRB (2009), Amo et al, PRB (2009) ICPS 30 Seoul

Laboratoire Kastler Brossel Physique quantique et applications

Spintronic: Spin Hall effect

The spin Hall effect generates spin currents propagation on very short distances (<10μm) OSHE : 300 μm

All Optical Logic Gate

polariton modes

Romanelli, Leyder et al, PRL, 98, 106401 (2007)

Copolarized pumps: Observation in far field

Experiment

Theory

Cross polarized pumps: Observation in far field

Laboratoire Kastler Brossel

Experiment

Theory

C. Leyder et al, Phys. Rev. Lett., 99, 196402 (2007)

All Optical switch

All-optical switch

Non-linear transmission ($k \neq 0$)

Laboratoire Kastler Brossel

All-optical switch

Non-linear transmission ($k \neq 0$)

Laboratoire Kastler Brossel

All-optical switch

Non-linear transmission ($k \neq 0$)

Laboratoire Kastler Brosse

Experimental set-up

Pump: big spot 60 μ m Probe: small spot 6 μ m $\left.\right\}$ incident in plane angle = 3.8°

- Sub-threshold Pump
- Weak probe
- Angle of incidence: 3.8°

- Weak probe
- Angle of incidence: 3.8°

switches ON

The whole pump spot

- Pump and probe polariton propagation all over the pump spot
- $v_{polariton} = hk_{//}/m_{polariton} = 0.94 \,\mu m/ps$

Propagation effects: polariton circuits?

Idea : to exploit polariton flow in 2D coming from the address A to control the ON, OFF states of the address B, spatially separated.

Propagation effects: polariton circuits?

Below threshold ; Intensity x 20

Above threshold

First step towards implementation of polariton circuits

CIRCULAR polarisation pump (o+)

Laboratoire Kastler Brossel Physique quentique et applications

Only a co-polarised probe switches the system on

CIRCULAR polarisation pump (o+)

Laboratoire Kastler Brossel Physique quentique et applications

Only a co-polarised probe switches the system on

CIRCULAR polarisation pump (o+)

Laboratoire Kastler Brosse

Only a co-polarised probe switches the system on

σ^{+}

pump σ^+ probe σ^+

Spin-dependent Gross-Pitaevskii equation

ICPS 30 Seoul

pump σ^+ probe σ^-

CIRCULAR polarisation pump (o+)

Laboratoire Kastler Brosse

Only a co-polarised probe switches the system on

pump σ^+ probe σ^+

pump σ^+ probe σ^-

pump	probe	emission
σ+	σ+	Yes (o+)
σ+	σ-	No
σ-	σ+	No
σ-	σ-	Yes (o -)

X-NOR gate

Polarisation control

3.0

Polarisation control Laboratoire Kastler Brossel Physique quentique et applications on Injected polariton density (arb. units) Β LINEAR polarisation pump $\alpha_1 >> |\alpha_2|$ Final polarization: that of the probe

0.0

0.5

1.0

ICPS 30 Seoul

of

2.0

2.5

3.0

1.5

Normalised excitation power (arb. units)

Laboratoire Kastler Brossel

Spin-bistability

At normal incidence, we can observe a hysteresis cycle

(<u>ref :</u> A.Baas, PRB 70, 161307(R), 2004)

ICPS 30 Seoul

Spin rings

Laboratoire Kastler Brossel Physique quentique et applications

Spin spatial control : Spin rings

Laboratoire Kastler Brossel Physique quantique et epplications

Summary and perspectives

Polarisation switching and propagation

(non-local)

- Non-local X-NOR gate
- Polarisation propagation
- Very low switching power

(~1fJ/µm)

Amo et al., Nature Photonics 4, 361 (2010)

Polarisation multistability

Laboratoire Kastler Brossel

Paraïso et al., Nature Materials 9, 655 (2010)

• Spin rings

Adrados et al., PRL, 2010

Sarkar et al., PRL, 2010

Towards realistic spin-optronic applications

