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Motivation

Itinerant ferromagnetism 
with cold fermions is (so far) 

hampered by losses

Novel effects of 
interacting fermions in 

optical flux lattices

• Momentum dependent 
interactions

• Topological flat bands 
(2D)

3

We attribute this fast initial decay in atom number to
recombination [27, 28] into the weakly bound molecular
state. We obtain an atom loss rate Ṅa/Na = 250 s�1

at 790G in the first 1ms after the magnetic field switch.
Assuming a three-body process we estimate the rate co-
e�cient L

3

at this field to be 3.9⇥10�22 cm6 s�1, though
the interaction is already su�ciently strong for many-
body e↵ects to be significant. For stronger interactions,
about 30% of atom loss occurs already during the rele-
vant 100 µs of ramping through the strongly interacting
region, indicating a lower bound of around 3 ⇥ 103 s�1

for the loss rate which is 13% of the inverse Fermi time
EF /h̄, calculated with a cloud averaged Fermi energy.

After the first millisecond, the molecule formation rate
slows down, by an order of magnitude at a magnetic field
of 790G (and even more dramatically at higher fields)
when it reaches about 50 %. It seems likely that the
molecule fraction has reached a quasi-equilibrium value
at the local temperature, which is larger than the ini-
tial temperature due to local heating accompanying the
molecule formation. Ref. [29] presents a simple model for
the equilibrium between atoms and molecules (ignoring
strong interactions). For phase space densities around
unity and close to resonance, the predicted molecule frac-
tion is 0.5, in good agreement with our observations [30].

For longer time scales (hundred milliseconds) we ob-
serve a steady increase of the molecule fraction to 90 %
for the longest hold time. This occurs due to continuous
evaporation which cools down the system and shifts the
atom-molecule equilibrium towards high molecule frac-
tions. During the same time scale, a slow loss in both
atom number and total number is observed caused by
inelastic collisions (vibrational relaxation of molecules)
and evaporation loss.

Is the rapid conversion into molecules necessarily faster
than the evolution of ferromagnetic domains? Our an-
swer is tentatively yes. First, for strong interactions with
kFa around 1, one expects both instabilities (pair forma-
tion and Stoner instability) to have rates which scale with
the Fermi energy EF and therefore with n2/3. Therefore,
one cannot change the competition between the instabil-
ities by working at higher or lower densities. According
to Ref. [21] the fastest unstable modes for domain for-
mation have a wavevector q ⇡ kF /2 and grow at a rate of
up to EF /4h̄ when the cloud is quenched su�ciently far
beyond the critical interaction strength. Unstable modes
with such wavevectors will develop “domains” of half a
wavelength or size ⇠ = ⇡/q = 2⇡/kF containing 5 atoms
per spin state in a volume ⇠3. This rate is comparable
to the observed conversion rates into pairs of 0.13EF .
Therefore, at best, “domains” of a few particles could
form, but before they can grow further and prevent the
formation of pairs (in a fully polarized state), rapid pair
formation takes over and populates the lower branch of
the Feshbach resonance. Based on our observations and
these arguments, it seems that it is not possible to realize
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FIG. 3: Characterization of molecule formation at short and
long hold times, and at di↵erent values of the interaction
strength. The closed symbols, circles (black) at 790G with
kF a = 1.14, squares (blue) at 810G with kF a = 2.27 and dia-
monds (red) at 818G with kF a = 3.5 represent the normalized
number of free atoms, the open symbols the total number of
atoms including those bound in Feshbach molecules (open cir-
cles at 790G with kF a = 1.14). The crosses (green) show the
molecule fraction. The characteristic time scale is set by the
Fermi time h̄/EF = 43µs, calculated with a cloud averaged
Fermi energy.

ferromagnetism with strong short range interaction, and
therefore the basic Stoner model cannot be realized in
nature.

One possibility to suppress pair formation is provided
by narrow Feshbach resonances. Here the pairs have
dominantly closed channel character and therefore a
much smaller overlap matrix element with the free atoms.
However, narrow Feshbach resonances are characterized
by a long e↵ective range and do not realize the Stoner
model which assumes short-range interactions. Other
interesting topics for future research on ferromagnetism
and pair formation include the e↵ects of dimensionality
[31, 32], spin imbalance [33, 34], mass imbalance [35],
lattice and band structure [36, 37].

We now discuss whether ferromagnetism is possible af-
ter atoms and molecules have rapidly established local
equilibrium. In other words, starting at T = 0, one could
heat up the fully paired and superfluid system and cre-
ate a gas of atomic quasiparticles which are similar to
free atoms with repulsive interactions. Density and tem-
perature of the atoms are now coupled. It is likely that
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FIG. 3: Characterization of molecule formation at short and
long hold times, and at di↵erent values of the interaction
strength. The closed symbols, circles (black) at 790G with
kF a = 1.14, squares (blue) at 810G with kF a = 2.27 and dia-
monds (red) at 818G with kF a = 3.5 represent the normalized
number of free atoms, the open symbols the total number of
atoms including those bound in Feshbach molecules (open cir-
cles at 790G with kF a = 1.14). The crosses (green) show the
molecule fraction. The characteristic time scale is set by the
Fermi time h̄/EF = 43µs, calculated with a cloud averaged
Fermi energy.

ferromagnetism with strong short range interaction, and
therefore the basic Stoner model cannot be realized in
nature.

One possibility to suppress pair formation is provided
by narrow Feshbach resonances. Here the pairs have
dominantly closed channel character and therefore a
much smaller overlap matrix element with the free atoms.
However, narrow Feshbach resonances are characterized
by a long e↵ective range and do not realize the Stoner
model which assumes short-range interactions. Other
interesting topics for future research on ferromagnetism
and pair formation include the e↵ects of dimensionality
[31, 32], spin imbalance [33, 34], mass imbalance [35],
lattice and band structure [36, 37].

We now discuss whether ferromagnetism is possible af-
ter atoms and molecules have rapidly established local
equilibrium. In other words, starting at T = 0, one could
heat up the fully paired and superfluid system and cre-
ate a gas of atomic quasiparticles which are similar to
free atoms with repulsive interactions. Density and tem-
perature of the atoms are now coupled. It is likely that
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“Over a wide range of interaction strengths a 
rapid decay into bound pairs is observed over 
times on the order of 10 h/EF, preventing the 
study of equilibrium phases of strongly 
repulsive fermions. Our work suggests that a 
Fermi gas with strong short-range repulsive 
interactions does not undergo a 
ferromagnetic phase transition.”

Sanner et al, PRL 2012
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What is an optical flux lattice?

• Flux lattice: Example spin 1/2

• Toy model: Consider spin texture in 2D

1 2 3 4

0.2

0.4

0.6

0.8

1.0

x-y components of Bloch vector
nz

z component of Bloch vector

r

(n
x

, n
y

)

Real space x

Real space 
y

Tuesday, February 26, 13



What is an optical flux lattice?

• Flux lattice: Example spin 1/2

• Toy model: Consider spin texture

x-y components of Bloch vector

(n
x

, n
y

)

Wraps 1/2 of Bloch sphere
Real space x

Real space 
y

Tuesday, February 26, 13



What is an optical flux lattice?

• Flux lattice: Lattice potential with periodic 
texture with net positive flux
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What is an optical flux lattice?

• Flux lattice: Lattice potential with periodic 
texture with net positive flux

Example: square
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• Flux lattice: Lattice potential with periodic 
texture with net positive flux
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Proposal by Cooper and Dalibard
N.R. Cooper and J. Dalibard

interactions and to the formation of strongly correlated
FQH states. We show that, even for fermions interacting
with contact interactions, there remain significant inter-
particle interactions within this low energy band. Thus,
our scheme will allow experiments on cold atomic gases to
explore strong correlation phenomena related to the frac-
tional quantum Hall effect for both fermions and bosons.
In the first part of this paper we consider an atomic

species with a ground level g of angular momentum Jg =
1/2. Examples of atoms in this category that have already
been laser-cooled are 171Yb or 199Hg (level 6 1S0) [9, 10].
The atoms are irradiated by laser waves of frequency ωL

that connect g to an excited state e also with angular mo-
mentum Je = 1/2. For Ytterbium and Mercury atoms,
we can choose e to be the first excited level 6 3P0 entering
in the so-called ‘optical clock’ transition. The very long
lifetime of e (∼ 10 s for Yb [11] and ∼ 1 s for Hg [12]) guar-
antees that heating due to random spontaneous emissions
of photons is negligible on the time scale of an experi-
ment. Another possible choice could be 6Li atoms, but we
estimated in this case a photon scattering rate that is too
large to maintain the gas at the required low temperature.
We assume that the atomic motion is restricted to the

xy plane and described by the Hamiltonian

Ĥ =
p2

2M
1̂ + V̂ (r) , (1)

where M is the atomic mass and p its momentum. The
matrix V̂ acts in the Hilbert space describing the internal
atomic dynamics. For an off-resonant excitation, we can
assume that the population of e is negligible at all times,
so that V̂ is a 2×2 matrix acting the g± manifold [13]. Its
coefficients depend on the local value of the laser electric
field, which we characterize by the Rabi frequencies κm,
m = 0,±1, where m! is the angular momentum along z
gained by the atom when it absorbs a photon.
In order to increase our control on the spatial variations

of V̂ , we suppose that a magnetic field parallel to the z-axis
lifts the degeneracy between the states g±. The resulting
splitting δ is supposed to be much larger than the κm’s.
Hence for a monochromatic laser excitation at frequency
ωL, the off-diagonal matrix elements V+− and V−+ are
negligible compared to the diagonal ones. However we
also assume that another laser field at frequency ωL + δ,
propagating along the z axis with σ− polarization (i.e.
m = −1 with the notation above), is shone on the atoms.
The association of this field with the π component (m = 0)
of the light at ωL provides the desired resonant Raman
coupling between |g±〉 (figure 1a). Using standard angular
momentum algebra we find in the {|g+〉, |g−〉} basis:

V̂ =
!κ2

tot

3∆
1̂ +

!

3∆

(

|κ−|2 − |κ+|2 Eκ0

Eκ∗
0 |κ+|2 − |κ−|2

)

. (2)

Here κ2
tot =

∑

m |κm|2, ∆ = ωL − ωA, where ωA is
the atomic resonance frequency, and we assume |∆| %
|δ|, |κm|. The quantity E characterizes the field of the ad-
ditional laser at ωL + δ. This beam is assumed to be a

g
−

g+

Je = 1/2

ωL + δ

σ
−

pol.

ωL

ωLωL

(a) (b)

Fig. 1: (Colour on line) (a) A ground level with angular mo-
mentum Jg = 1/2 is coupled to an excited level also with an-
gular momentum Je = 1/2 by laser beams at frequency ωL and
ωL + δ. The Zeeman splitting between the two ground states
g± is δ. (b) Three linearly polarized beams at frequency ωL

with equal intensity and with wave vectors at an angle of 2π/3
propagate in the xy plane. The fourth, circularly polarized
beam at frequency ωL + δ propagates along the z axis.

plane wave propagating along z, so that E is a uniform,
adjustable coupling. The a.c. Starkshift due to this addi-
tional laser is incorporated in the definition of δ.
We consider the laser configuration represented in

Fig. 1(b). The laser field at frequency ωL is formed by
the superposition of three plane travelling waves of equal
intensity with wavevectors ki in the xy plane. We fo-
cus on a situation of triangular symmetry, in which the
three beams make an angle of 2π/3 with each other,
k1 = −k/2

(√
3, 1, 0

)

, k2 = k/2
(√

3,−1, 0
)

and k3 =
k (0, 1, 0). Each beam is linearly polarized at an angle θ
to the z-axis, which leads to

κ = κ
3

∑

i=1

eiki·r
[

cos θ ẑ + sin θ (ẑ × k̂i)
]

, (3)

where κ is the Rabi frequency of a single beam. In the
following we denote V = !κ2/(3∆) the energy associated
with the atom-light interaction and ε = E/κ the relative
amplitude of the ωL + δ field with respect to the ωL field.
The recoil energy ER = !2k2/2M sets the characteristic
energy scale of the problem.
The coupling V̂ is written in Eq. (2) as the sum of

the scalar part !κ2
tot/(3∆) 1̂ and a zero-trace component

that can be cast in the form Ŵ = σ̂ · B/2, where the
σ̂i are the Pauli matrices (i = x, y, z). For E '= 0 and
sin 2θ '= 0, the coupling B is everywhere non-zero. Sup-
pose that the atom is prepared in the local eigenstate
|χ(r)〉 of Ŵ , with a maximal angular momentum pro-
jection along n = −B/|B|. Suppose also that it moves
sufficiently slowly to follow adiabatically this eigenstate,
which is valid when V % ER. This leads to the Berry’s-
phase-related gauge potential i!〈χ|∇χ〉, representing a
non-zero effective magnetic flux density [14]. For most
optical lattice configurations, the periodic variation of the
atom-laser coupling leads to a zero net flux of the effective

p-2
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plane wave propagating along z, so that E is a uniform,
adjustable coupling. The a.c. Starkshift due to this addi-
tional laser is incorporated in the definition of δ.
We consider the laser configuration represented in

Fig. 1(b). The laser field at frequency ωL is formed by
the superposition of three plane travelling waves of equal
intensity with wavevectors ki in the xy plane. We fo-
cus on a situation of triangular symmetry, in which the
three beams make an angle of 2π/3 with each other,
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3, 1, 0

)

, k2 = k/2
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to the z-axis, which leads to

κ = κ
3

∑
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]

, (3)

where κ is the Rabi frequency of a single beam. In the
following we denote V = !κ2/(3∆) the energy associated
with the atom-light interaction and ε = E/κ the relative
amplitude of the ωL + δ field with respect to the ωL field.
The recoil energy ER = !2k2/2M sets the characteristic
energy scale of the problem.
The coupling V̂ is written in Eq. (2) as the sum of

the scalar part !κ2
tot/(3∆) 1̂ and a zero-trace component

that can be cast in the form Ŵ = σ̂ · B/2, where the
σ̂i are the Pauli matrices (i = x, y, z). For E '= 0 and
sin 2θ '= 0, the coupling B is everywhere non-zero. Sup-
pose that the atom is prepared in the local eigenstate
|χ(r)〉 of Ŵ , with a maximal angular momentum pro-
jection along n = −B/|B|. Suppose also that it moves
sufficiently slowly to follow adiabatically this eigenstate,
which is valid when V % ER. This leads to the Berry’s-
phase-related gauge potential i!〈χ|∇χ〉, representing a
non-zero effective magnetic flux density [14]. For most
optical lattice configurations, the periodic variation of the
atom-laser coupling leads to a zero net flux of the effective
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interactions and to the formation of strongly correlated
FQH states. We show that, even for fermions interacting
with contact interactions, there remain significant inter-
particle interactions within this low energy band. Thus,
our scheme will allow experiments on cold atomic gases to
explore strong correlation phenomena related to the frac-
tional quantum Hall effect for both fermions and bosons.
In the first part of this paper we consider an atomic

species with a ground level g of angular momentum Jg =
1/2. Examples of atoms in this category that have already
been laser-cooled are 171Yb or 199Hg (level 6 1S0) [9, 10].
The atoms are irradiated by laser waves of frequency ωL

that connect g to an excited state e also with angular mo-
mentum Je = 1/2. For Ytterbium and Mercury atoms,
we can choose e to be the first excited level 6 3P0 entering
in the so-called ‘optical clock’ transition. The very long
lifetime of e (∼ 10 s for Yb [11] and ∼ 1 s for Hg [12]) guar-
antees that heating due to random spontaneous emissions
of photons is negligible on the time scale of an experi-
ment. Another possible choice could be 6Li atoms, but we
estimated in this case a photon scattering rate that is too
large to maintain the gas at the required low temperature.
We assume that the atomic motion is restricted to the

xy plane and described by the Hamiltonian

Ĥ =
p2

2M
1̂ + V̂ (r) , (1)

where M is the atomic mass and p its momentum. The
matrix V̂ acts in the Hilbert space describing the internal
atomic dynamics. For an off-resonant excitation, we can
assume that the population of e is negligible at all times,
so that V̂ is a 2×2 matrix acting the g± manifold [13]. Its
coefficients depend on the local value of the laser electric
field, which we characterize by the Rabi frequencies κm,
m = 0,±1, where m! is the angular momentum along z
gained by the atom when it absorbs a photon.
In order to increase our control on the spatial variations

of V̂ , we suppose that a magnetic field parallel to the z-axis
lifts the degeneracy between the states g±. The resulting
splitting δ is supposed to be much larger than the κm’s.
Hence for a monochromatic laser excitation at frequency
ωL, the off-diagonal matrix elements V+− and V−+ are
negligible compared to the diagonal ones. However we
also assume that another laser field at frequency ωL + δ,
propagating along the z axis with σ− polarization (i.e.
m = −1 with the notation above), is shone on the atoms.
The association of this field with the π component (m = 0)
of the light at ωL provides the desired resonant Raman
coupling between |g±〉 (figure 1a). Using standard angular
momentum algebra we find in the {|g+〉, |g−〉} basis:

V̂ =
!κ2

tot

3∆
1̂ +

!

3∆

(

|κ−|2 − |κ+|2 Eκ0

Eκ∗
0 |κ+|2 − |κ−|2

)

. (2)

Here κ2
tot =

∑

m |κm|2, ∆ = ωL − ωA, where ωA is
the atomic resonance frequency, and we assume |∆| %
|δ|, |κm|. The quantity E characterizes the field of the ad-
ditional laser at ωL + δ. This beam is assumed to be a

g
−

g+

Je = 1/2

ωL + δ

σ
−

pol.

ωL

ωLωL

(a) (b)

Fig. 1: (Colour on line) (a) A ground level with angular mo-
mentum Jg = 1/2 is coupled to an excited level also with an-
gular momentum Je = 1/2 by laser beams at frequency ωL and
ωL + δ. The Zeeman splitting between the two ground states
g± is δ. (b) Three linearly polarized beams at frequency ωL

with equal intensity and with wave vectors at an angle of 2π/3
propagate in the xy plane. The fourth, circularly polarized
beam at frequency ωL + δ propagates along the z axis.

plane wave propagating along z, so that E is a uniform,
adjustable coupling. The a.c. Starkshift due to this addi-
tional laser is incorporated in the definition of δ.
We consider the laser configuration represented in

Fig. 1(b). The laser field at frequency ωL is formed by
the superposition of three plane travelling waves of equal
intensity with wavevectors ki in the xy plane. We fo-
cus on a situation of triangular symmetry, in which the
three beams make an angle of 2π/3 with each other,
k1 = −k/2

(√
3, 1, 0

)

, k2 = k/2
(√

3,−1, 0
)

and k3 =
k (0, 1, 0). Each beam is linearly polarized at an angle θ
to the z-axis, which leads to

κ = κ
3

∑

i=1

eiki·r
[

cos θ ẑ + sin θ (ẑ × k̂i)
]

, (3)

where κ is the Rabi frequency of a single beam. In the
following we denote V = !κ2/(3∆) the energy associated
with the atom-light interaction and ε = E/κ the relative
amplitude of the ωL + δ field with respect to the ωL field.
The recoil energy ER = !2k2/2M sets the characteristic
energy scale of the problem.
The coupling V̂ is written in Eq. (2) as the sum of

the scalar part !κ2
tot/(3∆) 1̂ and a zero-trace component

that can be cast in the form Ŵ = σ̂ · B/2, where the
σ̂i are the Pauli matrices (i = x, y, z). For E '= 0 and
sin 2θ '= 0, the coupling B is everywhere non-zero. Sup-
pose that the atom is prepared in the local eigenstate
|χ(r)〉 of Ŵ , with a maximal angular momentum pro-
jection along n = −B/|B|. Suppose also that it moves
sufficiently slowly to follow adiabatically this eigenstate,
which is valid when V % ER. This leads to the Berry’s-
phase-related gauge potential i!〈χ|∇χ〉, representing a
non-zero effective magnetic flux density [14]. For most
optical lattice configurations, the periodic variation of the
atom-laser coupling leads to a zero net flux of the effective
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interactions and to the formation of strongly correlated
FQH states. We show that, even for fermions interacting
with contact interactions, there remain significant inter-
particle interactions within this low energy band. Thus,
our scheme will allow experiments on cold atomic gases to
explore strong correlation phenomena related to the frac-
tional quantum Hall effect for both fermions and bosons.
In the first part of this paper we consider an atomic

species with a ground level g of angular momentum Jg =
1/2. Examples of atoms in this category that have already
been laser-cooled are 171Yb or 199Hg (level 6 1S0) [9, 10].
The atoms are irradiated by laser waves of frequency ωL

that connect g to an excited state e also with angular mo-
mentum Je = 1/2. For Ytterbium and Mercury atoms,
we can choose e to be the first excited level 6 3P0 entering
in the so-called ‘optical clock’ transition. The very long
lifetime of e (∼ 10 s for Yb [11] and ∼ 1 s for Hg [12]) guar-
antees that heating due to random spontaneous emissions
of photons is negligible on the time scale of an experi-
ment. Another possible choice could be 6Li atoms, but we
estimated in this case a photon scattering rate that is too
large to maintain the gas at the required low temperature.
We assume that the atomic motion is restricted to the

xy plane and described by the Hamiltonian

Ĥ =
p2

2M
1̂ + V̂ (r) , (1)

where M is the atomic mass and p its momentum. The
matrix V̂ acts in the Hilbert space describing the internal
atomic dynamics. For an off-resonant excitation, we can
assume that the population of e is negligible at all times,
so that V̂ is a 2×2 matrix acting the g± manifold [13]. Its
coefficients depend on the local value of the laser electric
field, which we characterize by the Rabi frequencies κm,
m = 0,±1, where m! is the angular momentum along z
gained by the atom when it absorbs a photon.
In order to increase our control on the spatial variations

of V̂ , we suppose that a magnetic field parallel to the z-axis
lifts the degeneracy between the states g±. The resulting
splitting δ is supposed to be much larger than the κm’s.
Hence for a monochromatic laser excitation at frequency
ωL, the off-diagonal matrix elements V+− and V−+ are
negligible compared to the diagonal ones. However we
also assume that another laser field at frequency ωL + δ,
propagating along the z axis with σ− polarization (i.e.
m = −1 with the notation above), is shone on the atoms.
The association of this field with the π component (m = 0)
of the light at ωL provides the desired resonant Raman
coupling between |g±〉 (figure 1a). Using standard angular
momentum algebra we find in the {|g+〉, |g−〉} basis:

V̂ =
!κ2

tot

3∆
1̂ +

!

3∆

(

|κ−|2 − |κ+|2 Eκ0

Eκ∗
0 |κ+|2 − |κ−|2

)

. (2)

Here κ2
tot =

∑

m |κm|2, ∆ = ωL − ωA, where ωA is
the atomic resonance frequency, and we assume |∆| %
|δ|, |κm|. The quantity E characterizes the field of the ad-
ditional laser at ωL + δ. This beam is assumed to be a
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Fig. 1: (Colour on line) (a) A ground level with angular mo-
mentum Jg = 1/2 is coupled to an excited level also with an-
gular momentum Je = 1/2 by laser beams at frequency ωL and
ωL + δ. The Zeeman splitting between the two ground states
g± is δ. (b) Three linearly polarized beams at frequency ωL

with equal intensity and with wave vectors at an angle of 2π/3
propagate in the xy plane. The fourth, circularly polarized
beam at frequency ωL + δ propagates along the z axis.

plane wave propagating along z, so that E is a uniform,
adjustable coupling. The a.c. Starkshift due to this addi-
tional laser is incorporated in the definition of δ.
We consider the laser configuration represented in

Fig. 1(b). The laser field at frequency ωL is formed by
the superposition of three plane travelling waves of equal
intensity with wavevectors ki in the xy plane. We fo-
cus on a situation of triangular symmetry, in which the
three beams make an angle of 2π/3 with each other,
k1 = −k/2

(√
3, 1, 0

)

, k2 = k/2
(√

3,−1, 0
)

and k3 =
k (0, 1, 0). Each beam is linearly polarized at an angle θ
to the z-axis, which leads to

κ = κ
3

∑

i=1

eiki·r
[

cos θ ẑ + sin θ (ẑ × k̂i)
]

, (3)

where κ is the Rabi frequency of a single beam. In the
following we denote V = !κ2/(3∆) the energy associated
with the atom-light interaction and ε = E/κ the relative
amplitude of the ωL + δ field with respect to the ωL field.
The recoil energy ER = !2k2/2M sets the characteristic
energy scale of the problem.
The coupling V̂ is written in Eq. (2) as the sum of

the scalar part !κ2
tot/(3∆) 1̂ and a zero-trace component

that can be cast in the form Ŵ = σ̂ · B/2, where the
σ̂i are the Pauli matrices (i = x, y, z). For E '= 0 and
sin 2θ '= 0, the coupling B is everywhere non-zero. Sup-
pose that the atom is prepared in the local eigenstate
|χ(r)〉 of Ŵ , with a maximal angular momentum pro-
jection along n = −B/|B|. Suppose also that it moves
sufficiently slowly to follow adiabatically this eigenstate,
which is valid when V % ER. This leads to the Berry’s-
phase-related gauge potential i!〈χ|∇χ〉, representing a
non-zero effective magnetic flux density [14]. For most
optical lattice configurations, the periodic variation of the
atom-laser coupling leads to a zero net flux of the effective
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FIG. 3: Left: Magnetization for V0/ER = 2, ✓ = 0.3, ✏ = 0.4
and g̃ = 1.9 as a function of temperature and chemical poten-
tial (scale same for mz as in Fig. 2). W is the bandwidth, and
µ� ✏min is the chemical potential measured from the bottom
of the lowest band. The red dots lie on the spinodal where
the symmetric state becomes unstable (the line is a guide to
the eye). Right: Occupation numbers nk within the first Bril-
louin zone for (µ� ✏min)/W = 0.89, 1.69, 2.19 correspond to
(a), (b), (c).

the Stoner instability, detailed numerical studies of re-
lated models show a robust ferromagnetic phase [4, 5, 31].
Strongly correlated phases, related to fractional quantum
Hall states, which cannot be accessed in HF theory, can
commonly coexist with ferromagnetism (at specific fill-
ings) [32–34]. We expect the reduction of the critical
coupling strength that we predict to be a robust feature,
since the shallow optical flux lattice leads to a significant
reduction in the bandwidth with small decrease in the
interaction matrix elements.

Experimental studies of the ferromagnetic transition
we predict will require the use of an atomic species for
which both strong interactions and Raman coupling can
be achieved without significant heating. For a hyper-
fine ground state of F = 1/2, the natural candidates are
171Yb or 199Hg [14]. For 171Yb, s-wave contact inter-
actions between the two states of the lowest hyperfine
manifold (as spin-"/#) can be conveniently tuned via an
optical Feshbach resonance [35, 36]. Another possibility
is to use an e↵ective two-level system formed by exploit-
ing the quadratic Zeeman e↵ect to Raman couple two of
the hyperfine states in the F = 9/2 ground-state man-
ifold of 40K with neighboring m

F

[10]. The interstate
interactions can be conveniently tuned by one of the set
of magnetic Feshbach resonances that exist for these lev-
els.

The most direct way to measure the order parameter,
in Figs. 2 and 3, is by individually imaging the total spin
populations N",#. An important practical consequence of
the coupling of spin and orbital degrees of freedom is that
total magnetization is not conserved. Hence this allows

FIG. 4: Experimental signatures of adiabatic band mapping.
(a) Contour plot of the dispersion ✏k for V0/ER = 1.8, indicat-
ing a rhombus-shaped reciprocal lattice unit cell. The Bloch
states inside the upper red (lower blue) triangle in (a) map
to spin-" (#) states with free-space momentum q illustrated
in (b). For a completely filled lowest band one would observe
a fully occupied hexagram (b). When the atoms pass sub-
sequently through a Stern-Gerlach filter, the two spin states
can be separately resolved. This would allow clear signatures
of the transition from the (c) unmagnetized to the (d) mag-
netized phase.

the formation of a macroscopic net magnetization start-
ing from an initially unpolarized gas. Measurements of
the net magnetization will give the average properties of
the inhomogeneous cloud in the trap. If in addition one
could measure the local in situ spin populations n",#(r)
along a contour of fixed filling factor one could then
map out the phase diagram at di↵erent fillings and lat-
tice depth analogous to recent studies of two-dimensional
Bose gases [37].
Another complementary probe sensitive to the (trap

averaged) Fermi surface of the dressed lowest band
fermions is the adiabatic band mapping technique [38,
39]. This probe has the additional advantage that it also
allows the detection of unmagnetized phases with di↵er-
ent Fermi surface topologies. Here the lattice potential
is ramped down at a rate slow compared to that of the
band gap and fast compared to that of many-particle dy-
namics. Then the Raman-dressed Bloch states are adia-
batically mapped onto free-particle plane-wave states of
definite spin, which can be imaged after time-of-flight
expansion.
The form of this mapping can be deduced by recall-

ing that for vanishing lattice depth, V0 = 0, the spin-#
(") free-particle state with zero kinetic energy has crystal
momentum 1 (�2) (or any point related by reciprocal
lattice vectors). Under adiabatic band mapping, a Bloch
state whose crystal momentum k is closer to 1 than to
�2 is mapped to the spin-# state with free-space mo-
mentum q = k�1; if k is closer to �2, the Bloch state
is mapped to the spin-" state with free-space momentum
q = k+ 2. This construction is illustrated in Fig. 4.
For a completely filled lowest band the occupied states

appear then as a hexagram (superimposed triangles for
spins " and #) after band mapping as shown in Fig. 4(b).
A spin-resolved image of the cloud of atoms after band
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interactions and to the formation of strongly correlated
FQH states. We show that, even for fermions interacting
with contact interactions, there remain significant inter-
particle interactions within this low energy band. Thus,
our scheme will allow experiments on cold atomic gases to
explore strong correlation phenomena related to the frac-
tional quantum Hall effect for both fermions and bosons.
In the first part of this paper we consider an atomic

species with a ground level g of angular momentum Jg =
1/2. Examples of atoms in this category that have already
been laser-cooled are 171Yb or 199Hg (level 6 1S0) [9, 10].
The atoms are irradiated by laser waves of frequency ωL

that connect g to an excited state e also with angular mo-
mentum Je = 1/2. For Ytterbium and Mercury atoms,
we can choose e to be the first excited level 6 3P0 entering
in the so-called ‘optical clock’ transition. The very long
lifetime of e (∼ 10 s for Yb [11] and ∼ 1 s for Hg [12]) guar-
antees that heating due to random spontaneous emissions
of photons is negligible on the time scale of an experi-
ment. Another possible choice could be 6Li atoms, but we
estimated in this case a photon scattering rate that is too
large to maintain the gas at the required low temperature.
We assume that the atomic motion is restricted to the

xy plane and described by the Hamiltonian

Ĥ =
p2

2M
1̂ + V̂ (r) , (1)

where M is the atomic mass and p its momentum. The
matrix V̂ acts in the Hilbert space describing the internal
atomic dynamics. For an off-resonant excitation, we can
assume that the population of e is negligible at all times,
so that V̂ is a 2×2 matrix acting the g± manifold [13]. Its
coefficients depend on the local value of the laser electric
field, which we characterize by the Rabi frequencies κm,
m = 0,±1, where m! is the angular momentum along z
gained by the atom when it absorbs a photon.
In order to increase our control on the spatial variations

of V̂ , we suppose that a magnetic field parallel to the z-axis
lifts the degeneracy between the states g±. The resulting
splitting δ is supposed to be much larger than the κm’s.
Hence for a monochromatic laser excitation at frequency
ωL, the off-diagonal matrix elements V+− and V−+ are
negligible compared to the diagonal ones. However we
also assume that another laser field at frequency ωL + δ,
propagating along the z axis with σ− polarization (i.e.
m = −1 with the notation above), is shone on the atoms.
The association of this field with the π component (m = 0)
of the light at ωL provides the desired resonant Raman
coupling between |g±〉 (figure 1a). Using standard angular
momentum algebra we find in the {|g+〉, |g−〉} basis:

V̂ =
!κ2

tot

3∆
1̂ +

!

3∆

(

|κ−|2 − |κ+|2 Eκ0

Eκ∗
0 |κ+|2 − |κ−|2

)

. (2)

Here κ2
tot =

∑

m |κm|2, ∆ = ωL − ωA, where ωA is
the atomic resonance frequency, and we assume |∆| %
|δ|, |κm|. The quantity E characterizes the field of the ad-
ditional laser at ωL + δ. This beam is assumed to be a
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Fig. 1: (Colour on line) (a) A ground level with angular mo-
mentum Jg = 1/2 is coupled to an excited level also with an-
gular momentum Je = 1/2 by laser beams at frequency ωL and
ωL + δ. The Zeeman splitting between the two ground states
g± is δ. (b) Three linearly polarized beams at frequency ωL

with equal intensity and with wave vectors at an angle of 2π/3
propagate in the xy plane. The fourth, circularly polarized
beam at frequency ωL + δ propagates along the z axis.

plane wave propagating along z, so that E is a uniform,
adjustable coupling. The a.c. Starkshift due to this addi-
tional laser is incorporated in the definition of δ.
We consider the laser configuration represented in

Fig. 1(b). The laser field at frequency ωL is formed by
the superposition of three plane travelling waves of equal
intensity with wavevectors ki in the xy plane. We fo-
cus on a situation of triangular symmetry, in which the
three beams make an angle of 2π/3 with each other,
k1 = −k/2

(√
3, 1, 0

)

, k2 = k/2
(√

3,−1, 0
)

and k3 =
k (0, 1, 0). Each beam is linearly polarized at an angle θ
to the z-axis, which leads to

κ = κ
3

∑

i=1

eiki·r
[

cos θ ẑ + sin θ (ẑ × k̂i)
]

, (3)

where κ is the Rabi frequency of a single beam. In the
following we denote V = !κ2/(3∆) the energy associated
with the atom-light interaction and ε = E/κ the relative
amplitude of the ωL + δ field with respect to the ωL field.
The recoil energy ER = !2k2/2M sets the characteristic
energy scale of the problem.
The coupling V̂ is written in Eq. (2) as the sum of

the scalar part !κ2
tot/(3∆) 1̂ and a zero-trace component

that can be cast in the form Ŵ = σ̂ · B/2, where the
σ̂i are the Pauli matrices (i = x, y, z). For E '= 0 and
sin 2θ '= 0, the coupling B is everywhere non-zero. Sup-
pose that the atom is prepared in the local eigenstate
|χ(r)〉 of Ŵ , with a maximal angular momentum pro-
jection along n = −B/|B|. Suppose also that it moves
sufficiently slowly to follow adiabatically this eigenstate,
which is valid when V % ER. This leads to the Berry’s-
phase-related gauge potential i!〈χ|∇χ〉, representing a
non-zero effective magnetic flux density [14]. For most
optical lattice configurations, the periodic variation of the
atom-laser coupling leads to a zero net flux of the effective
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Summary of single particle properties

• Lowest band ~ similar to lowest Landau level

Coupled Ferromagnetic and Nematic Ordering of Fermions in an Optical Flux Lattice

Stefan K. Baur and Nigel R. Cooper
T.C.M. Group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom

(Dated: January 8, 2013)

Ultracold atoms in Raman-dressed optical lattices allow for e↵ective momentum-dependent in-
teractions among single-species fermions originating from short-range s-wave interactions. These
dressed-state interactions combined with very flat bands encountered in the recently introduced
optical flux lattices push the Stoner instability towards weaker repulsive interactions, making it
accessible with current experiments. As a consequence of the coupling between spin and orbital
degrees of freedom, the magnetic phase features Ising nematic order.

PACS numbers: 67.85.Lm, 03.75.Ss, 03.65.Vf, 73.22.Gk

Recently, considerable e↵ort has been made to observe
the Stoner instability to itinerant ferromagnetism with
ultracold gases [1–5]. So far, this e↵ort has been fruit-
less and it has been argued that rapid dimer formation
at the large coupling strength that is required for fer-
romagnetism precludes the formation of magnetic do-
mains [6, 7]. Here we show that atoms subjected to opti-
cal lattices involving coherent Raman coupling of internal
states can have a strongly enhanced Stoner instability.
The ferromagnetic phase appears at much weaker cou-
pling strength where the gas is less susceptible to dimer
formation. Furthermore, our results display several in-
triguing novel phenomena, such as interaction-induced
phase transitions between distinct Fermi surface topolo-
gies and nematic ordering, allowing close parallels be-
tween the physics of cold gases and phenomena in di-
verse systems such as high-temperature superconductors,
ruthenates and quantum Hall systems [8].

Central to our studies are the novel e↵ects that arise
when atoms are subjected to Raman dressing. Raman
dressing has recently been used in experiments to cre-
ate artificial gauge potentials [9–11] and to induce ef-
fective higher partial-wave interactions among identical
bosons from short-ranged s-wave interactions [12]. We
consider an atomic Fermi gas subjected to an optical
flux lattice [13], in which both of these e↵ects are im-
portant. The orbital e↵ects of the gauge field cause the
lowest energy band of the optical flux lattice to be very
narrow in energy even for a shallow lattice far from the
tight-binding limit. Interactions among fermionic atoms
in this lowest band remain sizeable [14]. Simple s-wave
interactions between distinct bare fermions give rise to ef-
fective interactions of nonzero range among single species
fermions of the lowest band [14, 15]. We show that these
interactions, within this narrow band, cause a ferromag-
netic transition at a much smaller coupling than that in
the continuum. In view of the coupling of spin and orbital
motion through the Raman dressing, the ferromagnetic
transition appears as a change in Fermi surface topol-
ogy. Furthermore, it is accompanied by a reduction of
the (spatial) crystal symmetry so also involves nematic
order [8]. As we describe, this coupling of spin and or-

FIG. 1: (Color online) Bandwidth W of the lowest band as a
function of lattice depth of the optical flux lattice discussed
in the main text (with ✓ = 0.3 and ✏ = 0.4). The inset
shows the dispersion of the lowest two bands for V0/ER =
2.25. As the lattice is ramped up, the dispersion of the lowest
band develops a minimum at the center of the Brillouin zone
causing reconstruction of the Fermi surface for noninteracting
particles. The locations where these reconstructions occur for
filling ⌫ = 1/4 are marked by the dashed lines. For vanishing
lattice depth V0 = 0 the Fermi circles of the spin-" (red) and
spin-# (blue) are displaced from each other to the corners of
the Brillouin zone.

bital motion allows the magnetic/nematic ordering to be
readily measured in experiment by band-mapping tech-
niques.

We consider the implementation of an optical flux lat-
tice of Ref. [14], which involves two-photon dressing of
hyperfine states. We focus on an atomic species with
ground-state angular momentum F = 1/2, but our key
ideas are readily extended to atoms with larger F as de-
scribed at the end of the Letter. We further restrict at-
tention to a quasi-2D geometry, assuming an in-plane
confinement energy that is large compared to all other
energy scales.
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• Lowest band ~ similar to lowest Landau level

Chern # of lowest band is 1
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Interactions

Interacting spinless fermions! 
(starting from contact s-wave int.)

Cooper, Dalibard EPL (2011);  Williams et al.,  Science (2012); 
Cui PRA (2012) ...

• Project interactions onto lowest band

2

The optical flux lattice is formed by interference of
three linearly polarized in-plane laser beams with wave
vectors 1 = �/2(

p
3, 1), 2 = /2(

p
3,�1), and

3 = (0, 1). A fourth circular polarized laser beam, ori-
ented perpendicular to the 2D plane, provides the other
frequency required for two-photon Raman coupling of the
Zeeman-split hyperfine states.

This optical potential leads to a single particle Hamil-
tonian

Ĥ0 =
p2

2m
1̂1 + Vsc(r)1̂1 + �̂ ·B(r), (1)

in which the atom experiences a scalar potential

Vsc = V0(3 cos
2(✓)� 1)

X

j

cos(0
j

· r) (2)

and its spin �̂ couples to an e↵ective magnetic field

B
z

=
p
3V0 sin

2(✓)
X

j

sin(0
j

· r) (3)

B
x

+ iB
y

= ✏V0 cos(✓)
X

j

e�ij ·r. (4)

V0 denotes the lattice depth, ✓ is the polarization angle of
the in-plane beams with respect to the surface normal, ✏
is proportional to the ratio between Raman coupling and
scalar potential, and 0

1 = 1 � 2, 0
2 = 3 � 1, and

0
3 = 2 � 3 [14]. The geometry of the Raman beams

is such that conversion from spin-" to spin-# involves a
momentum exchange of 1, 2 or 3. This causes the
spin character of the Bloch states to vary with crystal
momentum within the Brillouin zone. (The reciprocal
lattice basis vectors can be taken to be G1 ⌘ 1 � 3

and G2 ⌘ 2 �3.) Notably, for vanishing lattice depth
V0 = 0, when the energy eigenstates are simply plane
waves for spin-" and spin-#, the crystal momentum for
the spin-# (") state with zero kinetic energy is simply 1

(�2), or any equivalent point related by the addition of
reciprocal lattice vectors. Hence, the crystal momenta of
the two spin states are displaced from each other within
the Brillouin zone. In this limit V0 = 0, an unpolarized
state of noninteracting fermions therefore appears as two
filled Fermi circles, centered on 1 (�2) for spin-# (")
and shown in blue (red) in Fig. 1. The di↵erence from
the conventional picture of two Fermi circles centered on
k = 0 just reflects the spin-dependent momentum o↵-
sets common to all forms of Raman coupling involving
momentum exchange [9].

The width of the lowest-energy band is shown in Fig. 1
as a function of the overall lattice depth V0 for fixed val-
ues of ✏ and ✓. The bandwidth passes through a min-
imum at V0/ER

' 2, with the recoil energy defined by
E

R

⌘ ~22/(2m). This is the regime where the optical
flux lattice best mimics the orbital e↵ects of a uniform
magnetic field. The lowest energy band is similar to a

Landau level: with small bandwidth and Chern number
of one [14]. In the vicinity of this point the positions of
the band minima change within the Brillouin zone. (Sim-
ilar features are found in tight-binding models of Chern
insulators when next nearest-neighbor hoppings are in-
cluded [16].) This reconstruction is illustrated in Fig. 1
by the non-interacting Fermi surfaces shown for a band
filling of ⌫ = 1/4. Note that at V0 = 0 the Fermi surface
consists of two disconnected circles: these are the spin-up
and spin-down Fermi surfaces, displaced in crystal mo-
mentum as described above.
For nonzero V0/ER

the spin composition of the Bloch
state continuously varies with crystal momentum. As
a result, s-wave interactions between spin-up and spin-
down components lead to e↵ective momentum-dependent
interactions between fermions in this band. It is remark-
able that even though we started with a model of short-
ranged interactions, we obtain an e↵ective theory of in-
teracting spinless fermions [14].
Atoms restricted to states in the lowest band are de-

scribed by the e↵ective Hamiltonian

H
lb

=
X

k

✏kc
†
kck +

1

2

X

k1k2k3k4

Vk1k2k3k4c
†
k1
c†k2

ck3ck4 (5)

where ✏k is the band dispersion, c(†)k are the fermionic
field operators for state of crystal momentum k, and

Vk1k2k3k4 = g2D

Z
d2r

X

�

�⇤
k1�

(r)�⇤
k2�̄

(r)�k3�̄(r)�k4�(r)

is the e↵ective interaction in the lowest band in terms of
the eigenfunctions (�k"(r),�k#(r))T of the single particle
Hamiltonian (1). In the following we characterize the
bare interaction strength by the dimensionless coupling
parameter g̃ ⌘ mg2D/~2. In terms of the 3D s-wave
scattering length a

s

and the harmonic oscillator length
of the transverse confinement l

z

(assuming the atoms are
confined to a 2D plane via a tight harmonic potential
along the z axis) one has g̃ =

p
8⇡a

s

/l
z

, valid in the
limit where |a

s

| ⌧ l
z

[18].
To study the e↵ects of interactions, we perform a

Hartree-Fock (HF) variational approximation which re-
sults in the energy functional

E[{nk}] =
X

k

✏knk +
1

2

X

kk0

Vkk0nknk0 (6)

with Vkk0 = Vkk0k0k � Vkk0kk0 . For our zero-temperature
results, we find the ground states that minimize Eq. (6)
for a fixed total number of particles N =

P
k nk. This is

achieved by setting the occupation numbers nk equal to
unity for the N orbitals with lowest HF energies

⇠k = ✏k +
X

k0

Vkk0nk0 . (7)

H =
X

k

c†kck✏k +
X

k1k2k3k4

Vk1k1k3k4c
†
k1
c†k2

ck3ck4
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Interactions
• Project interactions onto lowest band

• Hartree-Fock decoupling
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The optical flux lattice is formed by interference of
three linearly polarized in-plane laser beams with wave
vectors 1 = �/2(

p
3, 1), 2 = /2(

p
3,�1), and

3 = (0, 1). A fourth circular polarized laser beam, ori-
ented perpendicular to the 2D plane, provides the other
frequency required for two-photon Raman coupling of the
Zeeman-split hyperfine states.

This optical potential leads to a single particle Hamil-
tonian

Ĥ0 =
p2

2m
1̂1 + Vsc(r)1̂1 + �̂ ·B(r), (1)

in which the atom experiences a scalar potential

Vsc = V0(3 cos
2(✓)� 1)
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cos(0
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and its spin �̂ couples to an e↵ective magnetic field
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3V0 sin
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B
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V0 denotes the lattice depth, ✓ is the polarization angle of
the in-plane beams with respect to the surface normal, ✏
is proportional to the ratio between Raman coupling and
scalar potential, and 0

1 = 1 � 2, 0
2 = 3 � 1, and

0
3 = 2 � 3 [14]. The geometry of the Raman beams

is such that conversion from spin-" to spin-# involves a
momentum exchange of 1, 2 or 3. This causes the
spin character of the Bloch states to vary with crystal
momentum within the Brillouin zone. (The reciprocal
lattice basis vectors can be taken to be G1 ⌘ 1 � 3

and G2 ⌘ 2 �3.) Notably, for vanishing lattice depth
V0 = 0, when the energy eigenstates are simply plane
waves for spin-" and spin-#, the crystal momentum for
the spin-# (") state with zero kinetic energy is simply 1

(�2), or any equivalent point related by the addition of
reciprocal lattice vectors. Hence, the crystal momenta of
the two spin states are displaced from each other within
the Brillouin zone. In this limit V0 = 0, an unpolarized
state of noninteracting fermions therefore appears as two
filled Fermi circles, centered on 1 (�2) for spin-# (")
and shown in blue (red) in Fig. 1. The di↵erence from
the conventional picture of two Fermi circles centered on
k = 0 just reflects the spin-dependent momentum o↵-
sets common to all forms of Raman coupling involving
momentum exchange [9].

The width of the lowest-energy band is shown in Fig. 1
as a function of the overall lattice depth V0 for fixed val-
ues of ✏ and ✓. The bandwidth passes through a min-
imum at V0/ER

' 2, with the recoil energy defined by
E

R

⌘ ~22/(2m). This is the regime where the optical
flux lattice best mimics the orbital e↵ects of a uniform
magnetic field. The lowest energy band is similar to a

Landau level: with small bandwidth and Chern number
of one [14]. In the vicinity of this point the positions of
the band minima change within the Brillouin zone. (Sim-
ilar features are found in tight-binding models of Chern
insulators when next nearest-neighbor hoppings are in-
cluded [16].) This reconstruction is illustrated in Fig. 1
by the non-interacting Fermi surfaces shown for a band
filling of ⌫ = 1/4. Note that at V0 = 0 the Fermi surface
consists of two disconnected circles: these are the spin-up
and spin-down Fermi surfaces, displaced in crystal mo-
mentum as described above.
For nonzero V0/ER

the spin composition of the Bloch
state continuously varies with crystal momentum. As
a result, s-wave interactions between spin-up and spin-
down components lead to e↵ective momentum-dependent
interactions between fermions in this band. It is remark-
able that even though we started with a model of short-
ranged interactions, we obtain an e↵ective theory of in-
teracting spinless fermions [14].
Atoms restricted to states in the lowest band are de-
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is the e↵ective interaction in the lowest band in terms of
the eigenfunctions (�k"(r),�k#(r))T of the single particle
Hamiltonian (1). In the following we characterize the
bare interaction strength by the dimensionless coupling
parameter g̃ ⌘ mg2D/~2. In terms of the 3D s-wave
scattering length a

s

and the harmonic oscillator length
of the transverse confinement l

z

(assuming the atoms are
confined to a 2D plane via a tight harmonic potential
along the z axis) one has g̃ =
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, valid in the
limit where |a
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| ⌧ l
z

[18].
To study the e↵ects of interactions, we perform a

Hartree-Fock (HF) variational approximation which re-
sults in the energy functional

E[{nk}] =
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✏knk +
1

2

X

kk0

Vkk0nknk0 (6)

with Vkk0 = Vkk0k0k � Vkk0kk0 . For our zero-temperature
results, we find the ground states that minimize Eq. (6)
for a fixed total number of particles N =

P
k nk. This is

achieved by setting the occupation numbers nk equal to
unity for the N orbitals with lowest HF energies

⇠k = ✏k +
X

k0

Vkk0nk0 . (7)
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three linearly polarized in-plane laser beams with wave
vectors 1 = �/2(
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3, 1), 2 = /2(
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3,�1), and

3 = (0, 1). A fourth circular polarized laser beam, ori-
ented perpendicular to the 2D plane, provides the other
frequency required for two-photon Raman coupling of the
Zeeman-split hyperfine states.

This optical potential leads to a single particle Hamil-
tonian

Ĥ0 =
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2m
1̂1 + Vsc(r)1̂1 + �̂ ·B(r), (1)

in which the atom experiences a scalar potential

Vsc = V0(3 cos
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V0 denotes the lattice depth, ✓ is the polarization angle of
the in-plane beams with respect to the surface normal, ✏
is proportional to the ratio between Raman coupling and
scalar potential, and 0

1 = 1 � 2, 0
2 = 3 � 1, and

0
3 = 2 � 3 [14]. The geometry of the Raman beams

is such that conversion from spin-" to spin-# involves a
momentum exchange of 1, 2 or 3. This causes the
spin character of the Bloch states to vary with crystal
momentum within the Brillouin zone. (The reciprocal
lattice basis vectors can be taken to be G1 ⌘ 1 � 3

and G2 ⌘ 2 �3.) Notably, for vanishing lattice depth
V0 = 0, when the energy eigenstates are simply plane
waves for spin-" and spin-#, the crystal momentum for
the spin-# (") state with zero kinetic energy is simply 1

(�2), or any equivalent point related by the addition of
reciprocal lattice vectors. Hence, the crystal momenta of
the two spin states are displaced from each other within
the Brillouin zone. In this limit V0 = 0, an unpolarized
state of noninteracting fermions therefore appears as two
filled Fermi circles, centered on 1 (�2) for spin-# (")
and shown in blue (red) in Fig. 1. The di↵erence from
the conventional picture of two Fermi circles centered on
k = 0 just reflects the spin-dependent momentum o↵-
sets common to all forms of Raman coupling involving
momentum exchange [9].

The width of the lowest-energy band is shown in Fig. 1
as a function of the overall lattice depth V0 for fixed val-
ues of ✏ and ✓. The bandwidth passes through a min-
imum at V0/ER

' 2, with the recoil energy defined by
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⌘ ~22/(2m). This is the regime where the optical
flux lattice best mimics the orbital e↵ects of a uniform
magnetic field. The lowest energy band is similar to a

Landau level: with small bandwidth and Chern number
of one [14]. In the vicinity of this point the positions of
the band minima change within the Brillouin zone. (Sim-
ilar features are found in tight-binding models of Chern
insulators when next nearest-neighbor hoppings are in-
cluded [16].) This reconstruction is illustrated in Fig. 1
by the non-interacting Fermi surfaces shown for a band
filling of ⌫ = 1/4. Note that at V0 = 0 the Fermi surface
consists of two disconnected circles: these are the spin-up
and spin-down Fermi surfaces, displaced in crystal mo-
mentum as described above.
For nonzero V0/ER

the spin composition of the Bloch
state continuously varies with crystal momentum. As
a result, s-wave interactions between spin-up and spin-
down components lead to e↵ective momentum-dependent
interactions between fermions in this band. It is remark-
able that even though we started with a model of short-
ranged interactions, we obtain an e↵ective theory of in-
teracting spinless fermions [14].
Atoms restricted to states in the lowest band are de-
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where ✏k is the band dispersion, c(†)k are the fermionic
field operators for state of crystal momentum k, and
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is the e↵ective interaction in the lowest band in terms of
the eigenfunctions (�k"(r),�k#(r))T of the single particle
Hamiltonian (1). In the following we characterize the
bare interaction strength by the dimensionless coupling
parameter g̃ ⌘ mg2D/~2. In terms of the 3D s-wave
scattering length a
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and the harmonic oscillator length
of the transverse confinement l
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(assuming the atoms are
confined to a 2D plane via a tight harmonic potential
along the z axis) one has g̃ =

p
8⇡a

s

/l
z

, valid in the
limit where |a

s

| ⌧ l
z

[18].
To study the e↵ects of interactions, we perform a
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sults in the energy functional
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with Vkk0 = Vkk0k0k � Vkk0kk0 . For our zero-temperature
results, we find the ground states that minimize Eq. (6)
for a fixed total number of particles N =

P
k nk. This is

achieved by setting the occupation numbers nk equal to
unity for the N orbitals with lowest HF energies
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scalar potential, and 0
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0
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is such that conversion from spin-" to spin-# involves a
momentum exchange of 1, 2 or 3. This causes the
spin character of the Bloch states to vary with crystal
momentum within the Brillouin zone. (The reciprocal
lattice basis vectors can be taken to be G1 ⌘ 1 � 3

and G2 ⌘ 2 �3.) Notably, for vanishing lattice depth
V0 = 0, when the energy eigenstates are simply plane
waves for spin-" and spin-#, the crystal momentum for
the spin-# (") state with zero kinetic energy is simply 1

(�2), or any equivalent point related by the addition of
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the two spin states are displaced from each other within
the Brillouin zone. In this limit V0 = 0, an unpolarized
state of noninteracting fermions therefore appears as two
filled Fermi circles, centered on 1 (�2) for spin-# (")
and shown in blue (red) in Fig. 1. The di↵erence from
the conventional picture of two Fermi circles centered on
k = 0 just reflects the spin-dependent momentum o↵-
sets common to all forms of Raman coupling involving
momentum exchange [9].

The width of the lowest-energy band is shown in Fig. 1
as a function of the overall lattice depth V0 for fixed val-
ues of ✏ and ✓. The bandwidth passes through a min-
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flux lattice best mimics the orbital e↵ects of a uniform
magnetic field. The lowest energy band is similar to a

Landau level: with small bandwidth and Chern number
of one [14]. In the vicinity of this point the positions of
the band minima change within the Brillouin zone. (Sim-
ilar features are found in tight-binding models of Chern
insulators when next nearest-neighbor hoppings are in-
cluded [16].) This reconstruction is illustrated in Fig. 1
by the non-interacting Fermi surfaces shown for a band
filling of ⌫ = 1/4. Note that at V0 = 0 the Fermi surface
consists of two disconnected circles: these are the spin-up
and spin-down Fermi surfaces, displaced in crystal mo-
mentum as described above.
For nonzero V0/ER

the spin composition of the Bloch
state continuously varies with crystal momentum. As
a result, s-wave interactions between spin-up and spin-
down components lead to e↵ective momentum-dependent
interactions between fermions in this band. It is remark-
able that even though we started with a model of short-
ranged interactions, we obtain an e↵ective theory of in-
teracting spinless fermions [14].
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the eigenfunctions (�k"(r),�k#(r))T of the single particle
Hamiltonian (1). In the following we characterize the
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parameter g̃ ⌘ mg2D/~2. In terms of the 3D s-wave
scattering length a

s
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confined to a 2D plane via a tight harmonic potential
along the z axis) one has g̃ =

p
8⇡a

s

/l
z

, valid in the
limit where |a

s

| ⌧ l
z

[18].
To study the e↵ects of interactions, we perform a

Hartree-Fock (HF) variational approximation which re-
sults in the energy functional

E[{nk}] =
X

k

✏knk +
1

2

X

kk0

Vkk0nknk0 (6)
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Hartree Fock
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3

We determine these energies self-consistently by numeri-
cal iteration, discretizing momenta of the Brillouin zone
on a fine grid [17]. For our results at nonzero temperature
T , we instead find nk by minimizing the thermodynamic
potential ⌦ = E � TS � µN where µ is the chemical po-
tential and S = �k

B

P
k nk ln(nk)+(1�nk) ln(1�nk) is

the entropy. The grand canonical potential is stationary
(�⌦/�nk = 0) when nk = 1/(e(⇠k�µ)/kBT + 1) which we
numerically iterate to self-consistency with Eq. (7). We
start from trial states with di↵erent symmetry and ran-
dom initial occupation numbers and then compare their
grand canonical potentials in order to find the minimum
free energy configuration [20].

Our results show a robust ferromagnetic phase for a
wide range of parameters. To characterize this phase we
use the magnetization per particle along the z direction
as an order parameter

m
z

=
1

⌫

Z

Acell

d2r [n"(r)� n#(r)] . (8)

In Fig. 2 we show the (modulus of the) calculated or-
der parameter at zero temperature for a band filling of
⌫ = 1/4, as a function of 2D coupling g̃ and of lattice
depth V0/ER

. These results are representative of other
fillings with ⌫ . 1/2. In the absence of any lattice,
V0/ER

= 0, there is a transition from paramagnet to
ferromagnet at g̃

c

= 2⇡. This is the conventional Stoner
instability for fermions with contact repulsion in 2D [19].
This transition appears as a reconstruction of the Fermi
surface from two Fermi circles to one Fermi circle. As
the lattice depth is increased, our results show a steady
decrease of the coupling at which the ferromagnetic tran-
sition occurs. The minimum coupling for ferromagnetism
arises for V0/ER

' 2, close to the condition for mini-
mum bandwidth, Fig. 1. We find that the interaction
strength g̃

c

required is reduced from its free-space value
by a factor of about 1/4. This is one of the main results
of this Letter: the reduction of coupling as compared
to the free-space case means that ferromagnetism can be
achieved without requiring as close an approach to a Fes-
hbach resonance. A change of coupling by a factor of 1/4
is expected to have a very dramatic reduction in the rate
of dimer formation [21–23]. Given this reduction in re-
quired interaction strength, we can estimate the increase
in lifetime in a 2D gas from the experimental data of the
Cambridge group [24], where the lifetime of the repulsive
Fermi polaron has been measured as a function of inter-
action strength. A change of coupling by a factor of 1/4
is expected to increase the lifetime of the upper branch
from about h/E

F

by 2 decades to 100 h/E
F

[25].
In addition to transitions between distinct Fermi sur-

face topologies, phases of interacting fermions can also
spontaneously break lattice symmetries. For our model,
we find that the appearance of ferromagnetism, with
nonzero magnetization, is also accompanied by a break-
ing of rotational symmetry. We argue that this is a gen-

FIG. 2: Magnetization of the ground state of interacting
fermions in the lowest band of the optical flux lattice at uni-
form filling factor ⌫ = 1/4 as a function of lattice depth V0/ER

and dimensionless coupling strength g̃. The gray shaded areas
on the insets illustrate occupied states in the first Brillouin
zone. White lines mark transitions between unmagnetized
states of di↵erent Fermi surface topology.

eral feature of Raman-dressed atomic systems. While
spin-rotational invariance is explicitly broken by the cou-
pling of spin and orbital degrees of freedom, the optical
flux lattice retains a discrete symmetry. It is invariant
under a spin-flip combined with a 2⇡/6 rotation in real
space

Û6 = �̂
x

R̂2⇡/6. (9)

The Stoner ferromagnetic transition (e↵ectively a
Pomeranchuk instability in the spin channel) causes
spontaneous symmetry breaking of the C6 spin-rotation
symmetry arising from Û6 down to a residual C3 sym-
metry associated with Û2

6 = R̂2⇡/3. This phase transi-
tion is analogous to the lattice symmetry breaking in the
electronic Ising nematic phases in solid-state materials
[8, 26–28]. Since the order parameter of the symmetry
broken phase is in the 2D Ising universality class, we ex-
pect this phase to survive to nonzero temperature.
The phase diagram at nonzero temperature is shown in

Fig. 3 as a function of chemical potential for a lattice with
V0/ER

= 2 and g̃ = 1.9. This shows that the ferromag-
netic phase is a robust phase across a range of densities
and temperatures. The maximum transition tempera-
ture of k

B

T ' 0.14W at µ � ✏min ' 1.54W corresponds
to an entropy per particle of S/N ' 1.1kB. Entropies
of this order are being reached in current optical lattice
experiments [29].
While our mean-field theory neglects correlations [30]

that can lead to quantitative changes in the location of

Hartree-Fock phase diagram
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potential ⌦ = E � TS � µN where µ is the chemical po-
tential and S = �k

B

P
k nk ln(nk)+(1�nk) ln(1�nk) is
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Phasediagram: finite T 4
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FIG. 3: Left: Magnetization for V0/ER = 2, ✓ = 0.3, ✏ = 0.4
and g̃ = 1.9 as a function of temperature and chemical poten-
tial (scale same for mz as in Fig. 2). W is the bandwidth, and
µ� ✏min is the chemical potential measured from the bottom
of the lowest band. The red dots lie on the spinodal where
the symmetric state becomes unstable (the line is a guide to
the eye). Right: Occupation numbers nk within the first Bril-
louin zone for (µ� ✏min)/W = 0.89, 1.69, 2.19 correspond to
(a), (b), (c).

the Stoner instability, detailed numerical studies of re-
lated models show a robust ferromagnetic phase [4, 5, 31].
Strongly correlated phases, related to fractional quantum
Hall states, which cannot be accessed in HF theory, can
commonly coexist with ferromagnetism (at specific fill-
ings) [32–34]. We expect the reduction of the critical
coupling strength that we predict to be a robust feature,
since the shallow optical flux lattice leads to a significant
reduction in the bandwidth with small decrease in the
interaction matrix elements.

Experimental studies of the ferromagnetic transition
we predict will require the use of an atomic species for
which both strong interactions and Raman coupling can
be achieved without significant heating. For a hyper-
fine ground state of F = 1/2, the natural candidates are
171Yb or 199Hg [14]. For 171Yb, s-wave contact inter-
actions between the two states of the lowest hyperfine
manifold (as spin-"/#) can be conveniently tuned via an
optical Feshbach resonance [35, 36]. Another possibility
is to use an e↵ective two-level system formed by exploit-
ing the quadratic Zeeman e↵ect to Raman couple two of
the hyperfine states in the F = 9/2 ground-state man-
ifold of 40K with neighboring m

F

[10]. The interstate
interactions can be conveniently tuned by one of the set
of magnetic Feshbach resonances that exist for these lev-
els.

The most direct way to measure the order parameter,
in Figs. 2 and 3, is by individually imaging the total spin
populations N",#. An important practical consequence of
the coupling of spin and orbital degrees of freedom is that
total magnetization is not conserved. Hence this allows

FIG. 4: Experimental signatures of adiabatic band mapping.
(a) Contour plot of the dispersion ✏k for V0/ER = 1.8, indicat-
ing a rhombus-shaped reciprocal lattice unit cell. The Bloch
states inside the upper red (lower blue) triangle in (a) map
to spin-" (#) states with free-space momentum q illustrated
in (b). For a completely filled lowest band one would observe
a fully occupied hexagram (b). When the atoms pass sub-
sequently through a Stern-Gerlach filter, the two spin states
can be separately resolved. This would allow clear signatures
of the transition from the (c) unmagnetized to the (d) mag-
netized phase.

the formation of a macroscopic net magnetization start-
ing from an initially unpolarized gas. Measurements of
the net magnetization will give the average properties of
the inhomogeneous cloud in the trap. If in addition one
could measure the local in situ spin populations n",#(r)
along a contour of fixed filling factor one could then
map out the phase diagram at di↵erent fillings and lat-
tice depth analogous to recent studies of two-dimensional
Bose gases [37].
Another complementary probe sensitive to the (trap

averaged) Fermi surface of the dressed lowest band
fermions is the adiabatic band mapping technique [38,
39]. This probe has the additional advantage that it also
allows the detection of unmagnetized phases with di↵er-
ent Fermi surface topologies. Here the lattice potential
is ramped down at a rate slow compared to that of the
band gap and fast compared to that of many-particle dy-
namics. Then the Raman-dressed Bloch states are adia-
batically mapped onto free-particle plane-wave states of
definite spin, which can be imaged after time-of-flight
expansion.
The form of this mapping can be deduced by recall-

ing that for vanishing lattice depth, V0 = 0, the spin-#
(") free-particle state with zero kinetic energy has crystal
momentum 1 (�2) (or any point related by reciprocal
lattice vectors). Under adiabatic band mapping, a Bloch
state whose crystal momentum k is closer to 1 than to
�2 is mapped to the spin-# state with free-space mo-
mentum q = k�1; if k is closer to �2, the Bloch state
is mapped to the spin-" state with free-space momentum
q = k+ 2. This construction is illustrated in Fig. 4.
For a completely filled lowest band the occupied states

appear then as a hexagram (superimposed triangles for
spins " and #) after band mapping as shown in Fig. 4(b).
A spin-resolved image of the cloud of atoms after band
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lated models show a robust ferromagnetic phase [4, 5, 31].
Strongly correlated phases, related to fractional quantum
Hall states, which cannot be accessed in HF theory, can
commonly coexist with ferromagnetism (at specific fill-
ings) [32–34]. We expect the reduction of the critical
coupling strength that we predict to be a robust feature,
since the shallow optical flux lattice leads to a significant
reduction in the bandwidth with small decrease in the
interaction matrix elements.
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we predict will require the use of an atomic species for
which both strong interactions and Raman coupling can
be achieved without significant heating. For a hyper-
fine ground state of F = 1/2, the natural candidates are
171Yb or 199Hg [14]. For 171Yb, s-wave contact inter-
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total magnetization is not conserved. Hence this allows
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the formation of a macroscopic net magnetization start-
ing from an initially unpolarized gas. Measurements of
the net magnetization will give the average properties of
the inhomogeneous cloud in the trap. If in addition one
could measure the local in situ spin populations n",#(r)
along a contour of fixed filling factor one could then
map out the phase diagram at di↵erent fillings and lat-
tice depth analogous to recent studies of two-dimensional
Bose gases [37].
Another complementary probe sensitive to the (trap
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Nematic order of fermions: Ubiquitous in 
correlated fermion systems

See review by Fradkin, Kivelson, Lawler, Eisenstein, McKenzie,  Ann. Rev. Cond. Mat. 1, 153 (2010)

Ruthenates: Sr3Ru2O7 2DES, magnetic field Cuprates

28 Fradkin, Kivelson, Lawler, Eisenstein & Mackenzie

Figure 4: (a) Temperature dependence of ⇢hard at ⌫ = 9/2 for the various in-plane magnetic fields

B|| indicated in the legend. (b) Temperature dependence of the order parameter of the 2D XY

model for various symmetry breaking potentials h/J . Arrow denotes Kosterlitz-Thouless transition

temperature for h = 0. [After Cooper et al. [84]]

Figure 5: The two diagonal components ⇢
aa

and ⇢
bb

of the in-plane magnetoresistivity tensor of a

high purity single crystal of Sr3Ru2O7. (a) For an applied field parallel to the crystalline c axis (with

an alignment accuracy of better than 2�), ⇢
aa

(blue line) and ⇢
bb

(red line) are almost identical. (b)

With the crystal tilted such that the field is 13� from c, giving an in-plane component along a, a

pronounced anisotropy is seen, with the easy direction for current flow being along b, perpendicular

to the in-plane field component. If the in-plane field component is aligned along b instead, the easy

direction switches to being for current flow along a. c) The temperature dependence of the nematic

order parameter defined by the resistive anisotropy for a tilt angle of 18�. [After Borzi et al. [5]]

26 Fradkin, Kivelson, Lawler, Eisenstein & Mackenzie

Figure 2: Longitudinal resistances in a high mobility 2D electron system at T = 25 mK in a

perpendicular magnetic field. Dashed gray line: current flow along h110i. Solid blue line: current

flow along h110i. Strongly anisotropic transport is observed at Landau level filling factors ⌫ = 9/2,

11/2, 13/2, etc. No analogous anisotropy is present at very low magnetic fields or at fields above

B ⇡ 2.7 T where the Fermi level falls into the N = 1 Landau level. [After Lilly et al. [3].]

Kohsaka et al, Science 2007Lilly et al, PRL 1999Borzi et al, Science 2007
STMResistivity anisotropyResistivity anisotropy
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Origin of nematic order: 
Anisotropic interaction between 

identical fermions
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Connection to models with 
Ising nematic order

Yamase, Oganesyan, Metzner, PRB 72, 35114 (2005)

Vkk0 = u� gdkdk0 dk = cos(k
x

)� cos(k
y

)

• Mean-field model for Ising nematic (2D square)
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Connection to models with 
Ising nematic order

7

FIG. 1: The mean-field solution for t′/t = −1/6, t′′/t = 0, g/t = 1, and u = 0. (a) µ-T phase

diagram; the total transition line, Tc(µ), contains a second order transition line, T 2nd
c , at high

temperatures and two first order lines, T 1st
c , at low temperatures; the solid circles are tricritical

points; the dashed line, ”T 2nd
c ”, denotes a fictitious second order transition that is preempted by

the first order transition; the dotted line indicates the van Hove energy, µ = ε0
vH = −2t/3. (b) and

(c) Fermi surface in the symmetry-broken phase near the first order transition; the Fermi surface

for g = 0 is also shown by a gray line. (d) µ dependence of |η| at T = 0.01t and 0.15t. (e) µ

dependence of n at T = 0.01t and 0.15t; the results for g = 0 are plotted also. (f) n-T phase

diagram; T 2nd
c is a second order transition temperature and solid circles are tricritical points. In

the shaded regions, which are surrounded by TPS
c , the system undergoes phase separation.

of the density jumps are generic features required by the concavity of the grand canonical

potential.

In Fig. 1(f) the phase diagram is plotted in the n-T plane. The second order transition

7

FIG. 1: The mean-field solution for t′/t = −1/6, t′′/t = 0, g/t = 1, and u = 0. (a) µ-T phase

diagram; the total transition line, Tc(µ), contains a second order transition line, T 2nd
c , at high

temperatures and two first order lines, T 1st
c , at low temperatures; the solid circles are tricritical

points; the dashed line, ”T 2nd
c ”, denotes a fictitious second order transition that is preempted by

the first order transition; the dotted line indicates the van Hove energy, µ = ε0
vH = −2t/3. (b) and

(c) Fermi surface in the symmetry-broken phase near the first order transition; the Fermi surface

for g = 0 is also shown by a gray line. (d) µ dependence of |η| at T = 0.01t and 0.15t. (e) µ

dependence of n at T = 0.01t and 0.15t; the results for g = 0 are plotted also. (f) n-T phase

diagram; T 2nd
c is a second order transition temperature and solid circles are tricritical points. In

the shaded regions, which are surrounded by TPS
c , the system undergoes phase separation.

of the density jumps are generic features required by the concavity of the grand canonical

potential.

In Fig. 1(f) the phase diagram is plotted in the n-T plane. The second order transition

Yamase, Oganesyan, Metzner, PRB 72, 35114 (2005)

• Mean-field model for Ising nematic (2D square)

d-wave Pomeranchuk instability near 
van Hove singularity
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Conclusion

• Optical flux lattices offer route to itinerant 
ferromagnetism at weaker bare interaction 
strength

• Coupling between (pseudo) spin and lattice 
gives rise to Ising-nematic symmetry 
breaking 

• Open questions: Competition of nematic 
order/magnetism with other correlated 
states (FQH)

Tuesday, February 26, 13


