Interacting fermions in flux lattices: Ferromagnetism and nematic ordering

Stefan Baur

(with Nigel Cooper) TCM Group, Cavendish Laboratory University of Cambridge

see also Phys. Rev. Lett. 109, 265301 (2012)

Motivation

Itinerant ferromagnetism with cold fermions is (so far) hampered by losses

Novel effects of interacting fermions in optical flux lattices

- Momentum dependent interactions
- Topological flat bands (2D)

Motivation

Itinerant ferromagnetism with cold fermions is (so far) hampered by losses

rapid decay into bound pairs is observed over times on the order of 10 h/E_F, preventing the study of equilibrium phases of strongly repulsive fermions. Our work suggests that a Fermi gas with strong short-range repulsive interactions does not undergo a ferromagnetic phase transition."

Sanner et al, PRL 2012

Novel effects of interacting fermions in optical flux lattices

 Momentum dependent interactions
 Topological flat bands (2D)

- Flux lattice: Example spin 1/2
- Toy model: Consider spin texture in 2D

Tuesday, February 26, 13

- Flux lattice: Example spin 1/2
- Toy model: Consider spin texture

x-y components of Bloch vector

Wraps 1/2 of Bloch sphere

• Flux lattice: Lattice potential with periodic texture with net positive flux

Gauge potential $\mathbf{A} = i \langle \psi | \nabla_{\mathbf{r}} \psi \rangle$ Flux density $n_{\phi} = (\nabla \times \mathbf{A}) / (2\pi)$ $n_{\phi} = \frac{-1}{4\pi} \mathbf{n} \cdot (\partial_x \mathbf{n} \times \partial_y \mathbf{n})$

 $4 \times (1/2) = 2$ Flux quanta per unit cell

• Flux lattice: Lattice potential with periodic texture with net positive flux

Spin dep. potential

$$H = \frac{p^2}{2m} + \sigma \cdot \mathbf{B}(\mathbf{r})/2$$

Adiabatic approx.

$$\psi(\mathbf{r}) = \begin{pmatrix} e^{-i\phi}\cos(\theta/2) \\ \sin(\theta/2) \end{pmatrix}$$

 $\mathbf{n}(\mathbf{r}) = \psi^{\dagger}(\mathbf{r})\sigma\psi(\mathbf{r}) \mathbf{n} \mid| -\mathbf{B}$

• Flux lattice: Lattice potential with periodic texture with net positive flux

Spin dep. potential p^2

$$H = \frac{P}{2m} + \sigma \cdot \mathbf{B}(\mathbf{r})/2$$

state dep. light shift $\sigma \cdot \mathbf{B}(\mathbf{r}) = \begin{pmatrix} B_z & B_x + iB_y \\ B_x - iB_y & -B_z \end{pmatrix}$

Raman dressing

Cooper and Dalibard, EPL 95, 66004 (2011)

```
Two photon Raman-scheme for
e.g. <sup>171</sup>Yb with J=1/2
```

3 Parameters to play with:

1) Lattice depth V_0/E_R 2) Polarization angle θ 3) Raman coupling ϵ

Cooper and Dalibard, EPL 95, 66004 (2011)

Two photon Raman-scheme for e.g. ¹⁷¹Yb with J=1/2

Cooper and Dalibard, EPL 95, 66004 (2011)

Two photon Raman-scheme for e.g. ¹⁷¹Yb with J=1/2

Fermi surface KK'(weak lattice)

Interactions

Project interactions onto lowest band

$$H = \sum_{\mathbf{k}} c_{\mathbf{k}}^{\dagger} c_{\mathbf{k}} \epsilon_{\mathbf{k}} + \sum_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3} \mathbf{k}_{4}} V_{\mathbf{k}_{1} \mathbf{k}_{1} \mathbf{k}_{3} \mathbf{k}_{4}} c_{\mathbf{k}_{1}}^{\dagger} c_{\mathbf{k}_{2}}^{\dagger} c_{\mathbf{k}_{3}} c_{\mathbf{k}_{4}}$$
$$V_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3} \mathbf{k}_{4}} = g_{2D} \int d^{2} \mathbf{r} \sum_{\sigma} \phi_{\mathbf{k}_{1}\sigma}^{*}(\mathbf{r}) \phi_{\mathbf{k}_{2}\bar{\sigma}}^{*}(\mathbf{r}) \phi_{\mathbf{k}_{3}\bar{\sigma}}(\mathbf{r}) \phi_{\mathbf{k}_{4}\sigma}(\mathbf{r})$$

Interacting spinless fermions! (starting from contact s-wave int.)

Cooper, Dalibard EPL (2011); Williams et al., Science (2012); Cui PRA (2012) ...

Interactions

Project interactions onto lowest band

$$H = \sum_{\mathbf{k}} c_{\mathbf{k}}^{\dagger} c_{\mathbf{k}} \epsilon_{\mathbf{k}} + \sum_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3} \mathbf{k}_{4}} V_{\mathbf{k}_{1} \mathbf{k}_{1} \mathbf{k}_{3} \mathbf{k}_{4}} c_{\mathbf{k}_{1}}^{\dagger} c_{\mathbf{k}_{2}}^{\dagger} c_{\mathbf{k}_{3}} c_{\mathbf{k}_{4}}$$
$$V_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3} \mathbf{k}_{4}} = g_{2D} \int d^{2} \mathbf{r} \sum_{\sigma} \phi_{\mathbf{k}_{1}\sigma}^{*}(\mathbf{r}) \phi_{\mathbf{k}_{2}\overline{\sigma}}^{*}(\mathbf{r}) \phi_{\mathbf{k}_{3}\overline{\sigma}}(\mathbf{r}) \phi_{\mathbf{k}_{4}\sigma}(\mathbf{r})$$

• Hartree-Fock decoupling

$$\begin{split} E[\{n_{\mathbf{k}}\}] &= \sum_{\mathbf{k}} \epsilon_{\mathbf{k}} n_{\mathbf{k}} + \frac{1}{2} \sum_{\mathbf{k}\mathbf{k}'} V_{\mathbf{k}\mathbf{k}'} n_{\mathbf{k}} n_{\mathbf{k}'} \\ V_{\mathbf{k}\mathbf{k}'} &= V_{\mathbf{k}\mathbf{k}'\mathbf{k}'\mathbf{k}} - V_{\mathbf{k}\mathbf{k}'\mathbf{k}\mathbf{k}'} \\ \mathbf{Hartree} \quad \mathbf{Fock} \end{split}$$

Tuesday, February 26, 13

Hartree-Fock phase diagram

Hartree-Fock phase diagram

Up to 4 times weaker bare interaction needed for Stoner.

Huge increase in lifetime at Stoner transition (~100)

Phasediagram: finite T 0 (a) 0.14 N Temperature/Bandwidth ky 0.12 0.10

2.0

$$\begin{split} \tilde{g}_{2D} &\sim 1.9 \\ V_0 &\sim 2E_R \\ (W + \Delta)/W &\sim 4 \end{split}$$

()

1.5

1.0

0.08

0.06

0.04

0.02

Nematic order of fermions: Ubiquitous in correlated fermion systems

See review by Fradkin, Kivelson, Lawler, Eisenstein, McKenzie, Ann. Rev. Cond. Mat. 1, 153 (2010)

Tuesday, February 26, 13

Origin of nematic order: Anisotropic interaction between identical fermions

Connection to models with Ising nematic order

Mean-field model for Ising nematic (2D square)

Yamase, Oganesyan, Metzner, PRB 72, 35114 (2005)

Connection to models with Ising nematic order

Mean-field model for Ising nematic (2D square)

Conclusion

- Optical flux lattices offer route to itinerant ferromagnetism at weaker bare interaction strength
- Coupling between (pseudo) spin and lattice gives rise to lsing-nematic symmetry breaking
- Open questions: Competition of nematic order/magnetism with other correlated states (FQH)