

Topological transitions in mixed-geometry lattices, and dynamics of fermions in one dimension

Päivi Törmä Aalto University

Pushing the boundaries with cold atoms, Nordita, Stockholm 13.2.2013

Contents

- The FFLO state in 1D-3D crossover (DMFT) (briefly)
- Pairing in *mixed geometries* (mean field)
- Expansion of a band insulator in a lattice (t-DMRG)
- Expansion of an FFLO state (t-DMRG)
- Dynamics of a polaron in 1D (t-DMRG)

• The FFLO state in 1D-3D crossover (DMFT) (briefly)

- Pairing in *mixed geometries* (mean field)
- Expansion of a band insulator in a lattice (t-DMRG)
- Expansion of an FFLO state (t-DMRG)
- Dynamics of a polaron in 1D (t-DMRG)

Spin-Population Imbalanced Fermi Gases

1. Magnetism versus Superconductivity

Chandrasekhar-Clogston limit

Chandrasekhar, APL 1962. Clogston, PRL 1962.

critical magnetic field to break superconductivity

2. Exotic superconducting phase?

Fulde-Ferrell-Larkin-Ovchinnikov States

Oscillating order parameter

FF, PR 1964 LO, JETP 1965

$$\begin{split} \Delta &\equiv \Delta_0 \exp(iqx) \quad \begin{array}{ll} (\mathsf{FF}) \\ \Delta &\equiv \Delta_0 \cos(qx) & (\mathsf{LO}) \end{array} \end{split}$$

Polarized Superfluid States

fully paired + excess unpaired Sarma, J Phys Chem Solids 1963 Liu & Wilczek, PRL 2003; Sheehy & Radzihovsky, PRL 2006, Pao, Wu, Yip PRB 2006; Parish et al., PRL 2007, Pilati & Giorgini PRL 2008, etc.

Spin-imbalanced fermions in 3D elongated traps

Experiments:

Shin et. al., PRL 97, 030401 (2006) Partridge et. al., Science 311, 5760 (2006) Partridge et. al., PRL 97, 190407 (2006) Nascimbene et. al., PRL 103, 170402 (2009)

QMC:

Lobo et. al., PRL 97, 200403 (2006)

DMFT:

D.-H. Kim, J. J. Kinnunen, J.-P. Martikainen, PT, PRL 106, 095301 (2011)

FFLO in quasi-1D lattices

D. H. Kim, PT, PRB 85, 180508(R) (2012)

Stronger FFLO signature in quasi-1D?

Somewhere between 3D and 1D: an ideal place for FFLO?

The long-range order may stabilize FFLO.

Mean-field theory (T=0) Parish et al., PRL 99, 250403 (2007)

Experiment in 1D (density profiles) Liao et al., Nature 467, 567 (2010)

In 1D, an exact solution gives FFLO, but no long-range order is possible.

 In 3D, the FFLO area may be very narrow.

Stronger FFLO signature in quasi-1D?

Anisotropic 3D optical lattice for DMFT calculations

(1D)
$$0 < t \equiv rac{t_\perp}{t_\parallel} \leq 1$$
 (3D)

Homogeneous 2D lattice of trapped 1D chains

$$U \to U_* \ (a \to \infty)$$

DMFT Phase Diagram at T=0

The phase is inhomogeneous in the trap.

- The FFLO state in 1D-3D crossover (DMFT) (briefly)
- Pairing in mixed geometries (mean field)
- Expansion of a band insulator in a lattice (t-DMRG)
- Expansion of an FFLO state (t-DMRG)
- Dynamics of a polaron in 1D (t-DMRG)

Pairing in *mixed geometries*

- Pairing with spin-imbalance (mass-imbalance)
 - Chandrasekhar-Clogston limit, FFLO, polarized superfluids, breach pair superfluids, etc.
- Pairing in mixed dimensions
 - A couple of theory papers (Tan, Iskin)
- Our question: pairing in *mixed geometries*
 - D.-H. Kim, J.S.J. Lehikoinen, PT, PRL 110, 055301 (2013)
- Motivation
 - Spin-dependent confinement
 - Spin-dependent lattices experimentally possible (Hamburg group, NIST group)
 - Two fermionic atoms (Li, K) trapped, Feshbach resonances (Innsbruck group, others)
 - Novel superfluids? High T_c? Polarized superfluid?

Our choice of geometry: honeycomb lattice for the up-component, triangular for the down-component

Mean-field theory for this system

The non-interacting system: two braches for the honeycomb

Interaction at site A

$$\mathcal{H}_{\mathrm{U}} = -U \sum_{i} \hat{n}^{a}_{i\uparrow} \hat{n}^{a}_{i\downarrow}$$

Corresponds to pairing between spin-down and the two honeycomb braches

.

$$\mathcal{H}_{\rm U} = \sum_{\vec{k}} [g_1(\vec{k})\hat{c}^{\dagger}_{1\vec{k}}\hat{c}^{\dagger}_{3,-\vec{k}} + g_2(\vec{k})\hat{c}^{\dagger}_{2\vec{k}}\hat{c}^{\dagger}_{3,-\vec{k}} + h.c.] + \frac{|\Delta|^2}{U}$$

Pairing ansatz at site A

$$\Delta = U \langle \hat{a}_{i\downarrow} \hat{a}_{i\uparrow} \rangle$$

Leads to a momentum-dependent coupling in the momentum space

$$g_{1,2}(\vec{k}) = -\frac{\Delta}{\sqrt{2}} \left[1 \pm \frac{\tilde{\epsilon}}{\sqrt{\tilde{\epsilon}^2 + |h_{\uparrow}(\vec{k})|^2}} \right]^{\frac{1}{2}}$$
$$h_{\uparrow}(\vec{k}) = -t_{\uparrow} \left[e^{\frac{ik_x}{\sqrt{3}}} + 2e^{\frac{-ik_x}{2\sqrt{3}}} \cos\frac{k_y}{2} \right]$$

Diagonalize by a Bogoliubov transformation (third order eigenvalue equation)

$$\begin{split} \mathcal{H} = & \sum_{\vec{k}} E_1(\vec{k}) \tilde{\gamma}_{1\vec{k}}^{\dagger} \tilde{\gamma}_{1\vec{k}} + E_2(\vec{k}) \tilde{\gamma}_{2\vec{k}}^{\dagger} \tilde{\gamma}_{2\vec{k}} + E_3(\vec{k}) \tilde{\gamma}_{3\vec{k}}^{\dagger} \tilde{\gamma}_{3\vec{k}} \\ &+ \sum_{\vec{k}} \xi_{\downarrow}(-\vec{k}) + \frac{|\Delta^2|}{U} \end{split}$$

$$\begin{pmatrix} \tilde{\gamma}_{1\vec{k}} \\ \tilde{\gamma}_{2\vec{k}} \\ \tilde{\gamma}_{3\vec{k}} \end{pmatrix} = \mathbf{U}_{\vec{k}}^{\dagger} \begin{pmatrix} \hat{c}_{1\vec{k}} \\ \hat{c}_{2\vec{k}} \\ \hat{c}_{1\vec{k}}^{\dagger} \\ \hat{c}_{2\vec{k}} \\ \hat{c}_{3,-\vec{k}}^{\dagger} \end{pmatrix}$$

Find the phases by minimizing the grand potential, and from the gap equation

$$\begin{split} \Omega &= -\frac{1}{\beta} \sum_{\vec{k}} \left[\ln \left(1 + e^{-\beta E_1(\vec{k})} \right) + \ln \left(1 + e^{-\beta E_2(\vec{k})} \right) + \ln \left(1 + e^{-\beta E_3(\vec{k})} \right) \right] \\ &+ \sum_{\vec{k}} \xi_{\downarrow}(-\vec{k}) + \frac{|\Delta|^2}{U} \end{split}$$

The Fermi surface

Results

Non-BCS behaviour in Δ/T_c

Three quasiparticle branches

Aalto University School of Science

$$\mu_{\uparrow} = -0.1, \ \mu_{\downarrow} = -1.505, \ U = 5, \ \Delta = 0.93$$

A new stable polarized superfluid phase: *incomplete breach pair (iBP) state*

Quantum phase transitions between topologically distinct states

Changing the energy offset between the A and B sites ^a 0.5

interacting

8

noninteracting

- The FFLO state in 1D-3D crossover (DMFT) (briefly)
- Pairing in *mixed geometries* (mean field)
- Expansion of a band insulator in a lattice (t-DMRG)
- Expansion of an FFLO state (t-DMRG)
- Dynamics of a polaron in 1D (t-DMRG)

Motivation

- Dynamics of a many-body Fermion system
- U. Schneider, L. Hackermuller, J.P. Ronzheimer, S. Will, S. Braun, T. Best, I. Bloch, E. Demler, S. Mandt, D. Rasch, A. Rosch, *Breakdown of diffusion: From collisional hydrodynamics to a continuous quantum walk in a homogeneous Hubbard model*, Nat. Phys. 2012

Core expansion speed as a function of interaction

The system

$$\bullet \bullet \bullet \bullet \bigoplus_{E_{L-1}} E_L O_L \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet O_R E_R E_{R+1} \bullet \bullet \bullet \bullet$$

$$H = U \sum_{i} \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow} - J \sum_{i,\sigma=\uparrow,\downarrow} c^{\dagger}_{i\sigma} c_{i+1\sigma} + h.c.$$

J. Kajala, F. Massel, PT, PRL 106, 206401 (2011)

Earlier 1D dynamics:Kollath, Schollwöck, Zwerger, Heidrich-Meisner, Tezuka, Ueda, Diehl, Daley, Zoller, our group, etc.

Results (t-DMRG)

$$\sqrt{n_{\uparrow}}$$
 for $rac{|U|}{J} = 0.0$

$$\sqrt{n_{\uparrow}}$$
 for $\frac{|U|}{J} = 1.0$

$$\sqrt{n_{\uparrow}}$$
 for $\frac{|U|}{J} = 10.0$

• With TEBD one can also calculate the doublon density

$$n_{i\uparrow\downarrow}(t) = <\Phi(t)|c_{i\uparrow}^{\dagger}c_{i\uparrow}c_{i\uparrow}c_{i\downarrow}^{\dagger}c_{i\downarrow}|\Phi(t)>$$

• Here we call doublons excitations of the form $c_{i\uparrow}^{\dagger}c_{i\downarrow}^{\dagger}|\emptyset\rangle$

Inspired by two-fluid models in the imbalanced 1D ultracold gas context: Zhao, Liu, Orso, Hu, Liu, Drummond, etc.

Left:
$$\sqrt{n_{\uparrow}}$$
, Right: $\sqrt{n_{\uparrow\downarrow}}$, $\frac{|U|}{J} = 10.0$

• Our explanation for the numerical findings: describe the two last sites by the Hubbard dimer

- We are interested in the paired state <-> singlet time evolution.
- The singlet state $\frac{1}{\sqrt{2}}(|\uparrow,\downarrow>-|\downarrow,\uparrow>)$

•
$$n_{Singlet}(t) = \frac{8}{16 + \frac{U^2}{J^2}} \left(1 - \cos\left(\sqrt{U^2 + 16J^2}t\right) \right)$$

• Compare to numerics

$$\sqrt{n_{Singlet}(t)}$$
 for $\frac{|U|}{J} = 5.0$

The frequency comparison.

The amplitude comparison.

The amplitude decay comparison.

• In the light of the Dimer analysis, let us take another look at the TEBD results.

- The FFLO state in 1D-3D crossover (DMFT) (briefly)
- Pairing in *mixed geometries* (mean field)
- Expansion of a band insulator in a lattice (t-DMRG)
- Expansion of an FFLO state (t-DMRG)
- Dynamics of a polaron in 1D (t-DMRG)

Expansion of an FFLO state in a 1D lattice Inspired by the (continuum) 1D experiment: Liao et al., Nature 467, 567 (2010) Time (units of 1 / J) Position (units of L)

J. Kajala, F. Massel, PT, PRA 106, 206401(R) (2011)

Feiguing and Heidrich-Meisner 2007, Batrouni et al. 2008, Rizzi et al. 2008

v^{max}_{un} = 2J sin(k^{max}_{un})

• $v_{\uparrow\downarrow}^{max} = 2J \sin(k_{\uparrow\downarrow}^{max})$

Consistent with Bethe ansatz in the large U limit

- We find that $k_{\uparrow\downarrow}^{max} = k_{\neq\downarrow}$
- and k_{un}^{max} = q.
- Therefore, by measuring the maximum expansion velocity of the unpaired particles, one can detect the FFLO momentum. The wavefront corresponding to the maximum velocity is the cloud edge.
- q = arcsin(^{Vmax}/_{2J}).

In trap, + comparison with an uncorrelated (non-FFLO) state

Summary: measuring the expansion velocity of the edge (majority particles) gives the FFLO q-vector!

J. Kajala, F. Massel, PT, PRA 106, 206401(R) (2011)

c.f. C.J. Bolech, F. Heidrich-Meisner, S. Langer, I.P. McCulloch, G. Orso, M. Rigol, PRL 109, 110602 (2012): FFLO correlations lost during the expansion; however, as we point out the initial FFLO q is imprinted to the fastest majority particles that travel at the edge of the cloud.

- The FFLO state in 1D-3D crossover (DMFT) (briefly)
- Pairing in *mixed geometries* (mean field)
- Expansion of a band insulator in a lattice (t-DMRG)
- Expansion of an FFLO state (t-DMRG)
- Dynamics of a polaron in 1D (t-DMRG)

Dynamics of an impurity in a one-dimensional lattice

etc.

Aalto University School of Science C.f. 1D impurity dynamics experiments for bosons: Inguscio group, Bloch group Kick to the down particle: $k = 0.1 \pi$

$$H = -J\sum_{i\sigma} c_{i\sigma}^{\dagger} c_{i+1\sigma} + U\sum_{i} n_{i\uparrow} n_{i\downarrow} + V\sum_{i} n_{i\downarrow} \left(i - \frac{L-1}{2}\right)$$

Bath of up-fermions, one down-particle, lattice for both, trap only for the impurity. Kick of k to the impurity: oscillations observed (t-DMRG)

Doublon dynamics: strong interactions $\langle n_{i\uparrow}n_{i\downarrow}\rangle(t)$

 $N_{\uparrow} = 100$ half filling

Aalto University School of Science Doublon dynamics: weak interactions $\langle n_{i\uparrow}n_{i\downarrow}\rangle(t)$

Aalto University School of Science N_{\uparrow} =100 half filling

Fourier transform (doublon center of mass motion) strong interactions U/J=10

Aalto University School of Science

 $\Delta E = \omega_{hi} + 2J \left[(1 - \cos k_p) - (1 - \cos k_F \uparrow) \right]$

Independent of U!

Offset: non-uniform $k_{F\uparrow}(x)$ due to Friedel oscillations

 $\Delta E = \omega_{hi} + 2J \left[(1 - \cos k_p) - (1 - \cos k_F \uparrow) \right]$

Aalto University School of Science

Fourier transform (doublon center of mass motion), weak interactions U/J=1

Scl

Same phenomena seen also for strongly repulsive bosonic bath, in the weak interaction case

U range	Bath population	Dynamics regime
Strong interaction	Large N_{\uparrow}	Free particle
Strong interaction	Intermediate N_{\uparrow}	Bound pair + polaron internal dynamic
Strong interaction	Small N_{\uparrow}	Bound pair
Weak interaction	Large N_{\uparrow}	Free particle
Weak interaction	Intermediate & small N_{\uparrow}	Free particle + polaron

$$\omega_{pol} = E_{\uparrow} + E_{\downarrow} - E_{\uparrow\downarrow} = -2J \left[1 + \cos(k_F_{\uparrow})\right] + \sqrt{U^2 + 16J^2}$$

$$|\Psi\rangle = \sqrt{Z}c_{0\downarrow}^{+}|FS\rangle_{\uparrow}|0\rangle_{\downarrow} + \phi_{k_{F\uparrow},0}c_{k_{F\uparrow}\uparrow}^{+}c_{0\uparrow}c_{0\downarrow}^{+}|FS\rangle_{\uparrow}|0\rangle_{\downarrow}$$

Virtual pair breaking; Polaron internal dynamics

Alto University
School of Science

$$|\Psi\rangle = \sqrt{Z} |FS - 1\rangle_{\uparrow} |Pair\rangle_{\uparrow\downarrow} + \phi_{\pi,k_{F\uparrow}} c_{\pi\uparrow}^{+} c_{k_{F\uparrow}\uparrow} |FS - 1\rangle_{\uparrow} |Pair\rangle_{\uparrow\downarrow}$$

Conclusions

- The FFLO state in 1D-3D crossover (DMFT) (briefly)
 - Intermediate dimension and polarization stabilizes FFLO
- Pairing in *mixed geometries* (mean field)
 - New iBP state, topological transitions, stability of exotic superfluidity connected with multiband pairing
- Expansion of a band insulator in a lattice (t-DMRG)
 - Two-site Hubbard physics describes the dynamics well
- Expansion of an FFLO state (t-DMRG)
 - FFLO directly visible in the free particle expansion
- Dynamics of a polaron in 1D (t-DMRG)
 - Bound pair and new types of polaron dynamics

Francesco Massel (now at University of Helsinki)

Jussi Kajala now at S P I N V E R S E

Capital & Consulting

Dong-Hee Kim (1.3.2013 assistant professor at GIST, South Korea)

Joel Lehikoinen (now at his own start-up)

Thanks: Academy of Finland