Stability of spin liquid phases of alkaline earth atoms at finite temperature

Graphics: Thomas C. Lang

P. Sinkovicz, A. Zamora, E. Szirmai, G. Szirmai, M. Lewenstein

Wigner Research Centre of the Hungarian Academy of Sciences

ICFO - The Institute of Photonic Sciences, Barcelona

$$H = J \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j$$

J>0 antiferromagnetic coupling

$$H = J \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j$$

J>0 antiferromagnetic coupling

$$H = J \sum_{\langle i,j
angle} ec{S}_i \cdot ec{S}_j$$
 _ antiferromagnetic coupling

Singlet pairs

rotational symmetry preserved

Singlet pairs

rotational symmetry preserved

$$H = J \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j$$

J>0 antiferromagnetic coupling

Schwinger fermions

$$\vec{S}_{i} = \sum_{\alpha,\beta} c_{i,\alpha}^{\dagger} \, \vec{\sigma}_{\alpha,\beta} \, c_{i,\beta} \qquad \left| \uparrow \right\rangle, \left| \downarrow \right\rangle$$

$$\left\{c_{i,\alpha},c_{j,\beta}^{\dagger}\right\} = \delta_{i,j}\delta_{\alpha,\beta} \quad \left\{ \begin{vmatrix} \uparrow \rangle \,, |\downarrow \rangle \\ |\varnothing \rangle \,, |\uparrow \downarrow \rangle \right\}$$

1 particle / site

Singlet pairs

rotational symmetry preserved

$$H = J \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j$$

J>0 antiferromagnetic coupling

Schwinger fermions

$$\vec{S}_{i} = \sum_{\alpha,\beta} c_{i,\alpha}^{\dagger} \, \vec{\sigma}_{\alpha,\beta} \, c_{i,\beta} \qquad \left| \uparrow \right\rangle, \left| \downarrow \right\rangle$$

$$\left\{c_{i,\alpha},c_{j,\beta}^{\dagger}\right\}=\delta_{i,j}\delta_{\alpha,\beta}\quad\left\{\begin{array}{c}\left|\uparrow\right\rangle,\left|\downarrow\right\rangle\\ \text{ in }, \text{ if } \text$$

1 particle / site

Singlet pairs

$$= \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

rotational symmetry preserved

$$H = J \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j$$

J>0 antiferromagnetic coupling

Schwinger fermions

$$\vec{S}_{i} = \sum_{\alpha,\beta} c_{i,\alpha}^{\dagger} \, \vec{\sigma}_{\alpha,\beta} \, c_{i,\beta} \qquad \left| \uparrow \right\rangle, \left| \downarrow \right\rangle$$

$$\left\{c_{i,\alpha},c_{j,\beta}^{\dagger}\right\}=\delta_{i,j}\delta_{\alpha,\beta}\quad\left\{\begin{array}{c}\left|\uparrow\right\rangle,\left|\downarrow\right\rangle\\ \boxed{\emptyset}\end{array}\right.$$

1 particle / site

$$H = -J \sum_{\langle i,j \rangle} c_{i,\alpha}^{\dagger} c_{j,\alpha} c_{j,\beta}^{\dagger} c_{i,\beta} + \sum_{i} \varphi_{i} \left(c_{i,\alpha}^{\dagger} c_{i,\alpha} - 1 \right)$$

$$H = J \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j$$

J>0 antiferromagnetic coupling

Local gauge invariance

$$c_{j,\alpha} \to e^{i\theta_j} c_{j,\alpha}$$

 $c_{j,\alpha}^{\dagger} \to e^{-i\theta_j} c_{j,\alpha}^{\dagger}$

$$H = -J \sum_{\langle i,j \rangle} c_{i,\alpha}^{\dagger} c_{j,\alpha} c_{j,\beta}^{\dagger} c_{i,\beta} + \sum_{i} \varphi_{i} \left(c_{i,\alpha}^{\dagger} c_{i,\alpha} - 1 \right)$$

$$H = J \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j$$

J>0 | antiferromagnetic coupling

Local gauge invariance

$$c_{j,\alpha} \to e^{i\theta_j} c_{j,\alpha}$$

 $c_{j,\alpha}^{\dagger} \to e^{-i\theta_j} c_{j,\alpha}^{\dagger}$

Mean field theory

$$\chi_{i,j} = \left\langle c_{i,\alpha}^{\dagger} c_{j,\alpha} \right\rangle = \chi_{j,i}^{*}$$

$$H = -J \sum_{\langle i,j \rangle} c_{i,\alpha}^{\dagger} c_{j,\alpha} c_{j,\beta}^{\dagger} c_{i,\beta} + \sum_{i} \varphi_{i} \left(c_{i,\alpha}^{\dagger} c_{i,\alpha} - 1 \right)$$

$$H = J \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j$$

J>0 antiferromagnetic coupling

Local gauge invariance

$$c_{j,\alpha} \to e^{i\theta_j} c_{j,\alpha}$$

 $c_{j,\alpha}^{\dagger} \to e^{-i\theta_j} c_{j,\alpha}^{\dagger}$

Mean field theory

$$\chi_{i,j} = \left\langle c_{i,\alpha}^{\dagger} c_{j,\alpha} \right\rangle = \chi_{j,i}^{*}$$

$$H_{\mathrm{mf}} = -J \sum_{\langle i,j \rangle} \left(\chi_{i,j} c_{j,\alpha}^{\dagger} c_{i,\alpha} + \chi_{j,i} c_{i,\alpha}^{\dagger} c_{j,\alpha} - \left| \chi_{i,j} \right|^{2} \right) + \sum_{i} \varphi_{i} \left(c_{i,\alpha}^{\dagger} c_{i,\alpha} - 1 \right)$$

Works well for SU(N) spins when $\, {f N}
ightarrow \infty$

J. B. Marston, I. Affleck, Phys. Rev. B 39, 11538 (1989)

F = I (total hyperfine spin)

J=0 (total electron spin)

2 e on outer orbit

Collisions are spin independent

A. Gorshkov et al, Nat. Phys. 6, 289 (2010)

F = I (total hyperfine spin)

J=0 (total electron spin)

2 e on outer orbit

Collisions are spin independent

A. Gorshkov et al, Nat. Phys. 6, 289 (2010)

SU(N = 2I + 1) symmetric models

F = I (total hyperfine spin)

J=0 (total electron spin)

2 e on outer orbit

Collisions are spin independent

A. Gorshkov et al, Nat. Phys. **6**, 289 (2010)

SU(N = 2I + 1) symmetric models

Example $^{173}\mathrm{Yb}$: $I=\frac{5}{2}\Rightarrow 2I+1=6$ spin components

They realize the SU(N) Hubbard model...

Optical lattice

periodic potential created by standing wave laser light

$$V_{1d}(r,z) = V_0 e^{-2r^2/w^2(z)} \sin^2(k_L z)$$

Tight binding Hamiltonian / Hubbard model

$$H = -t \sum_{\langle i,j \rangle} \left(c_{i\alpha}^{\dagger} c_{j\alpha} + \text{H.c.} \right) + \frac{U}{2} \sum_{i} c_{i\alpha}^{\dagger} c_{i\beta}^{\dagger} c_{i\beta} c_{i\alpha},$$

... and in the strongly interacting limit the SU(N) Heisenberg model

1 particle per site

particle transport is forbidden, but

spins can exchange without current

... and in the strongly interacting limit the SU(N) Heisenberg model

1 particle per site

particle transport is forbidden, but

spins can exchange without current

Low energy effective Hamiltonian (2nd order)

$$H = -J \sum_{\langle i,j \rangle} c_{i,\alpha}^{\dagger} c_{j,\alpha} c_{j,\beta}^{\dagger} c_{i,\beta} + \sum_{i} \varphi_{i} \left(c_{i,\alpha}^{\dagger} c_{i,\alpha} - 1 \right), \qquad J = \frac{4t^{2}}{U}$$

... and in the strongly interacting limit the SU(N) Heisenberg model

1 particle per site

particle transport is forbidden, but

spins can exchange without current

Low energy effective Hamiltonian (2nd order)

$$H = -J \sum_{\langle i,j \rangle} c_{i,\alpha}^{\dagger} c_{j,\alpha} c_{j,\beta}^{\dagger} c_{i,\beta} + \sum_{i} \varphi_{i} \left(c_{i,\alpha}^{\dagger} c_{i,\alpha} - 1 \right), \qquad J = \frac{4t^{2}}{U}$$

for square lattice: M. Hermele et al, Phys. Rev. Lett. 103, 135301 (2009)

inite temperature field theory

Partition function and free energy

$$Z = \int D[c, \bar{c}] e^{-S[c, \bar{c}]}$$

$$S[c, \bar{c}] = \int_0^\beta d\tau \left[\sum_i \bar{c}_{i,\alpha} (\partial_\tau + \varphi_i) c_{i,\alpha} - J \sum_{\langle i,j \rangle} \bar{c}_{i,\alpha} c_{j,\alpha} \bar{c}_{j,\beta} c_{i,\beta} + \sum_i \varphi_i (\bar{c}_{i,\alpha} c_{i,\alpha} - 1) \right]$$

$$F = -k_B T \ln Z$$

inite temperature field theory

Partition function and free energy

$$Z = \int D[c, \bar{c}] e^{-S[c, \bar{c}]}$$

$$S[c, \bar{c}] = \int_0^\beta d\tau \left[\sum_i \bar{c}_{i,\alpha} (\partial_\tau + \varphi_i) c_{i,\alpha} - J \sum_{\langle i,j \rangle} \bar{c}_{i,\alpha} c_{j,\alpha} \bar{c}_{j,\beta} c_{i,\beta} + \sum_i \varphi_i (\bar{c}_{i,\alpha} c_{i,\alpha} - 1) \right]$$

$$F = -k_B T \ln Z$$

the action is quartic, we need to introduce the mean-fields with a Hubbard-Stratonovich transformation.

Introducing the mean fields

Partition function after a Hubbard-Stratonovich transformation

$$Z = \int D[c, \bar{c}, \chi, \chi^*] e^{-S_{HS}[c, \bar{c}, \chi, \chi^*]}$$

$$S_{HS}[c, \bar{c}] = \int_0^\beta d\tau \left[\sum_i \bar{c}_{i,\alpha} (\partial_\tau + \varphi_i) c_{i,\alpha} - \sum_{\langle i,j \rangle} \left(\chi_{i,j} \bar{c}_{j,\alpha} c_{i,\alpha} + \chi^*_{i,j} \bar{c}_{i,\alpha} c_{j,\alpha} - \frac{1}{J} |\chi_{i,j}|^2 \right) \right]$$

Introducing the mean fields

Partition function after a Hubbard-Stratonovich transformation

$$Z = \int D[c, \bar{c}, \chi, \chi^*] e^{-S_{HS}[c, \bar{c}, \chi, \chi^*]}$$

$$S_{HS}[c, \bar{c}] = \int_0^\beta d\tau \left[\sum_i \bar{c}_{i,\alpha} (\partial_\tau + \varphi_i) c_{i,\alpha} - \sum_{\langle i,j \rangle} \left(\chi_{i,j} \bar{c}_{j,\alpha} c_{i,\alpha} + \chi^*_{i,j} \bar{c}_{i,\alpha} c_{j,\alpha} - \frac{1}{J} |\chi_{i,j}|^2 \right) \right]$$

Integrating out the fermions

$$Z = \int D[\chi, \chi^*] e^{-\int_0^\beta \mathrm{d}\tau \sum_{\langle i,j\rangle} \left[\frac{1}{J} |\chi_{i,j}|^2 + \ln \, \det \, \mathcal{G}_{i,j}(\tau)\right]}$$

Introducing the mean fields

Partition function after a Hubbard-Stratonovich transformation

$$Z = \int D[c, \bar{c}, \chi, \chi^*] e^{-S_{HS}[c, \bar{c}, \chi, \chi^*]}$$

$$S_{HS}[c, \bar{c}] = \int_0^\beta d\tau \left[\sum_i \bar{c}_{i,\alpha} (\partial_\tau + \varphi_i) c_{i,\alpha} - \sum_{\langle i,j \rangle} \left(\chi_{i,j} \bar{c}_{j,\alpha} c_{i,\alpha} + \chi^*_{i,j} \bar{c}_{i,\alpha} c_{j,\alpha} - \frac{1}{J} |\chi_{i,j}|^2 \right) \right]$$

Integrating out the fermions

$$Z = \int D[\chi,\chi^*] e^{-\int_0^\beta \mathrm{d}\tau \sum_{\langle i,j\rangle} [\frac{1}{J}|\chi_{i,j}|^2 + \ln\,\det\,\mathcal{G}_{i,j}(\tau)]}$$
 finite temperature Green's function

$$\chi_{i,j} \qquad \chi_{i,j} = J \cdot \operatorname{tr} \left(\mathcal{G} \frac{\delta \mathcal{G}^{-1}}{\delta \chi_{i,j}^*} \right)$$

Gauge invariance:

$$\chi_{i,j} \to \chi_{i,j} e^{i(\theta_j - \theta_i)}$$
 infinitely many solutions

Solutions on a honeycomb lattice @ T=0

$$\begin{array}{c} \Pi_{2} \\ \Pi_{3} \\ \Pi_{3} \\ \Pi_{2} \end{array} \begin{array}{c} \Pi_{2} \\ \chi_{3} \\ \chi_{3} \\ \chi_{4} \\ \chi_{5} \end{array} \Pi_{1} = \chi_{1} \cdot \chi_{2} \cdot \chi_{3} \cdot \chi_{4} \cdot \chi_{5} \cdot \chi_{6} = |\Pi| \, e^{i} \Phi \end{array}$$

$$\chi_{i,j} \qquad \chi_{i,j} = J \cdot \operatorname{tr} \left(\mathcal{G} \frac{\delta \mathcal{G}^{-1}}{\delta \chi_{i,j}^*} \right)$$

Gauge invariance:

$$\chi_{i,j} \to \chi_{i,j} e^{i(\theta_j - \theta_i)}$$
 infinitely many solutions

Solutions on a honeycomb lattice @ T=0

$$E$$
 | Π_1 | Π_2 | Π_3

$$\overbrace{\Pi_3}^{\Pi_2} \overbrace{\Pi_4}^{\Pi_2} \underbrace{\Pi_2}_{\chi_3} \underbrace{\chi_3}^{\chi_2} \underbrace{\Pi_1}_{\chi_4} \underbrace{\chi_5}^{\chi_6} \Pi_1 = \chi_1 \cdot \chi_2 \cdot \chi_3 \cdot \chi_4 \cdot \chi_5 \cdot \chi_6 = |\Pi| \, e^i \Phi$$

Gauge invariance:

$$\chi_{i,j} \to \chi_{i,j} e^{i(\theta_j - \theta_i)}$$

infinitely many solutions

_	E	Π_1	Π_2	Π_3	Φ Φ Φ
I	-6.148 -6.148	-0.159 - 0.276i -0.159 + 0.276i	-0.159 - 0.276i -0.159 + 0.276i	-0.159 - 0.276i -0.159 + 0.276i	Φ Φ Φ

$$\chi_{i,j} \qquad \chi_{i,j} = J \cdot \operatorname{tr}\left(\mathcal{G}\frac{\delta \mathcal{G}^{-1}}{\delta \chi_{i,j}^*}\right)$$

Gauge invariance:

$$\chi_{i,j} \to \chi_{i,j} e^{i(\theta_j - \theta_i)}$$

infinitely many solutions

Solutions on a honeycomb lattice @ T=0

E	Π_1	Π_2	Π_3	. •
-6.148	-0.159 - 0.276i	-0.159 - 0.276i	-0.159 - 0.276i	
-6.148	-0.159 + 0.276i	-0.159 + 0.276i	-0.159 + 0.276i	
-6.062	0.460	-0.223	-0.223	
-6.062	-0.223	0.460	-0.223	
-6.062	-0.223	-0.223	0.460	

$$\begin{array}{c} \Pi_2 \\ \Pi_3 \\ \Pi_4 \\ \Pi_3 \end{array}$$

$$\frac{\Pi_2}{\Pi_3} \sum_{\chi_3}^{\chi_2} \frac{\chi_1}{\chi_1} \frac{\chi_6}{\chi_5} \Pi_1 = \chi_1 \cdot \chi_2 \cdot \chi_3 \cdot \chi_4 \cdot \chi_5 \cdot \chi_6 = |\Pi| e^i \Phi$$

$$\chi_{i,j} \qquad \chi_{i,j} = J \cdot \operatorname{tr} \left(\mathcal{G} \frac{\delta \mathcal{G}^{-1}}{\delta \chi_{i,j}^*} \right)$$

Gauge invariance:

$$\chi_{i,j} \to \chi_{i,j} e^{i(\theta_j - \theta_i)}$$

infinitely many solutions

Solutions on a honeycomb lattice @ T=0

	E	Π_1	Π_2	Π_3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
Ī	-6.148	-0.159 - 0.276i	-0.159 - 0.276i	-0.159 - 0.276i	$\Phi \Phi$			
	-6.148	-0.159 + 0.276i	-0.159 + 0.276i	-0.159 + 0.276i	$\langle \Phi \rangle \langle \Phi \rangle$			
Ī	-6.062	0.460	-0.223	-0.223				
	-6.062	-0.223	0.460	-0.223	$\langle 0 \rangle - \langle 0 \rangle$			
	-6.062	-0.223	-0.223	0.460	π			
ĺ	-6	1	0	0	$\begin{pmatrix} 0 \\ \pi \end{pmatrix} \begin{pmatrix} 0 \\ \pi \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$			
	-6	0	1	0	$\frac{\pi}{0}$			
	-6	0	0	1	\rightarrow			
$\begin{array}{c} \Pi_{2} \\ \Pi_{3} \\ \Pi_{3} \\ \Pi_{2} \end{array} \begin{array}{c} \chi_{2} \\ \chi_{3} \\ \chi_{3} \\ \chi_{4} \end{array} \begin{array}{c} \chi_{1} \\ \chi_{5} \\ \chi_{5} \end{array} \Pi_{1} = \chi_{1} \cdot \chi_{2} \cdot \chi_{3} \cdot \chi_{4} \cdot \chi_{5} \cdot \chi_{6} = \Pi e^{i\Phi} \begin{array}{c} \langle 0 \rangle \langle 0$								

uniform, lattice and SU(6) rotational symmetric,

uniform, lattice and SU(6) rotational symmetric,

has a mean-field generated flux:

$$\Phi = \frac{2\pi}{3}$$

uniform, lattice and SU(6) rotational symmetric,

has a mean-field generated flux:

$$\Phi = \frac{2\pi}{3},$$

violates time reversal symmetry.

has a triple degeneracy,

is the honeycomb analog of the pi-flux phase

is the honeycomb analog of the pi-flux phase

due to the frustrated nature of the dual lattice alternating fluxes are unfavorable here.

has zero fluxes for every plaquette,

has zero fluxes for every plaquette,

is composed of disjoint plaquettes,

has zero fluxes for every plaquette,

is composed of disjoint plaquettes,

is the honeycomb analog of the box phase

The saddle point provides the mean field equations

Gauge invariance:

$$\chi_{i,j} \to \chi_{i,j} e^{i(\theta_j - \theta_i)}$$

infinitely many solutions

Solutions on a honeycomb lattice @ T=0

					$\Phi \rightarrow \Phi$	SU(6) rotational symmetric,
	E	Π_1	Π_2	Π_3	Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ	has a mean-field generated flux:
ĺ	-6.148	-0.159 - 0.276i	-0.159 - 0.276i	-0.159 - 0.276i	$\Phi \Phi$	$\Phi = \frac{2\pi}{3}$,
	-6.148	-0.159 + 0.276i	-0.159 + 0.276i	-0.159 + 0.276i	$\langle \Phi \rangle \langle \Phi \rangle$	violates time reversal symmetry.
	-6.062	0.460	-0.223	-0.223		
	-6.062	-0.223	0.460	-0.223	√ 0>- √ 0	has a triple degeneracy,
	-6.062	-0.223	-0.223	0.460	π	is the honeycomb analog of the pi-flux
	-6	1	0	0	$\left(\begin{array}{c} 0 \\ \pi \end{array}\right) \left(\begin{array}{c} 0 \\ \pi \end{array}\right) \left(\begin{array}{c} 0 \\ \pi \end{array}\right)$	phase due to the frustrated
	-6	0	1	0	π	nature of the dual lattice alternating fluxes are unfavorable
	-6	0	0	1		here.
also has a triple						
	Π_2	χ_2 χ_1 χ_6 χ_6 χ_6			\bigcirc	degeneracy,
		$\langle \Pi_1 \rangle \Pi_1 = \chi_1 \cdot \chi_2 \cdot \chi_3 \cdot \chi_4 \cdot \chi_5 \cdot \chi_6 = \Pi e^{\epsilon} \Phi$				every plaquette,
	Π_3	Π_3 χ_3 χ_4 χ_5	. , , , , , , , , , , , , , , , , , , ,	70- 70- 1 1		is composed of disjoint plaquettes,
		I_2			\bigcirc	is the honeycomb analog of the box phase

The spin liquid phases at finite temperature

all the spin liquid phases "melt" around the same temperature

The spin liquid phases at finite temperature

all the spin liquid phases "melt" around the same temperature

the free energy per plaquette:

$$f(T, V) = -\frac{k_B T}{V} \ln Z(\beta)$$

The spin liquid phases at finite temperature

all the spin liquid phases "melt" around the same temperature

the free energy per plaquette:

$$f(T, V) = -\frac{k_B T}{V} \ln Z(\beta)$$

the free energies at mean-field level approach each other without crossing the chiral spin liquid phase has the lowest free energy also for T>0.

Gaussian approximation of the effective action around the saddle point

$$S_{\text{eff}} = S_0 + \sum_{\langle i,j \rangle, \langle k,l \rangle, n} \begin{bmatrix} \delta \chi_{k,l}^*(i\omega_n) \\ \delta \chi_{k,l}(-i\omega_n) \end{bmatrix} \begin{bmatrix} D_{i,j;k,l}(i\omega_n) & A_{i,j;k,l}(i\omega_n) \\ A_{i,j;k,l}^*(-i\omega_n) & D_{k,l;i,j}(-i\omega_n) \end{bmatrix} \begin{bmatrix} \delta \chi_{i,j}(i\omega_n) \\ \delta \chi_{i,j}^*(-i\omega_n) \end{bmatrix}$$

Gaussian approximation of the effective action around the saddle point

$$S_{\text{eff}} = S_0 + \sum_{\langle i,j \rangle, \langle k,l \rangle, n} \begin{bmatrix} \delta \chi_{k,l}^*(i\omega_n) \\ \delta \chi_{k,l}(-i\omega_n) \end{bmatrix} \begin{bmatrix} D_{i,j;k,l}(i\omega_n) & A_{i,j;k,l}(i\omega_n) \\ A_{i,j;k,l}^*(-i\omega_n) & D_{k,l;i,j}(-i\omega_n) \end{bmatrix} \begin{bmatrix} \delta \chi_{i,j}(i\omega_n) \\ \delta \chi_{i,j}^*(-i\omega_n) \end{bmatrix}$$

$$\begin{array}{c} \sum_{\chi_{k,l}} & D_{i,j;k,l} = \text{tr} \left(\mathcal{G} \frac{\delta \mathcal{G}^{-1}}{\delta \chi_{i,j}} \mathcal{G} \frac{\delta \mathcal{G}^{-1}}{\delta \chi_{k,l}^*} \right) \\ \sum_{\chi_{k,l}} & \lambda_{i,j;k,l} = \text{tr} \left(\mathcal{G} \frac{\delta \mathcal{G}^{-1}}{\delta \chi_{i,j}} \mathcal{G} \frac{\delta \mathcal{G}^{-1}}{\delta \chi_{k,l}} \right) \end{array}$$

Gaussian approximation of the effective action around the saddle point

$$S_{\text{eff}} = S_0 + \sum_{\langle i,j \rangle, \langle k,l \rangle, n} \begin{bmatrix} \delta \chi_{k,l}^*(i\omega_n) \\ \delta \chi_{k,l}(-i\omega_n) \end{bmatrix} \begin{bmatrix} D_{i,j;k,l}(i\omega_n) & A_{i,j;k,l}(i\omega_n) \\ A_{i,j;k,l}^*(-i\omega_n) & D_{k,l;i,j}(-i\omega_n) \end{bmatrix} \begin{bmatrix} \delta \chi_{i,j}(i\omega_n) \\ \delta \chi_{i,j}^*(-i\omega_n) \end{bmatrix}$$

$$\chi_{i,j} \qquad \chi_{k,l} \qquad D_{i,j;k,l} = \operatorname{tr}\left(\mathcal{G}\frac{\delta\mathcal{G}^{-1}}{\delta\chi_{i,j}}\mathcal{G}\frac{\delta\mathcal{G}^{-1}}{\delta\chi_{k,l}^*}\right)$$

$$\chi_{i,j} \qquad \chi_{k,l} \qquad A_{i,j;k,l} = \operatorname{tr}\left(\mathcal{G}\frac{\delta\mathcal{G}^{-1}}{\delta\chi_{i,j}}\mathcal{G}\frac{\delta\mathcal{G}^{-1}}{\delta\chi_{k,l}}\right)$$

the stability of the phase is decided by the excitation spectrum:

$$\det\begin{bmatrix} D_{i,j;k,l}(i\omega_n) & A_{i,j;k,l}(i\omega_n) \\ A_{i,j;k,l}^*(-i\omega_n) & D_{k,l;i,j}(-i\omega_n) \end{bmatrix}_{i\omega_n \to \omega} = 0$$

Gaussian approximation of the effective action around the saddle point

$$S_{\text{eff}} = S_0 + \sum_{\langle i,j \rangle, \langle k,l \rangle, n} \begin{bmatrix} \delta \chi_{k,l}^*(i\omega_n) \\ \delta \chi_{k,l}(-i\omega_n) \end{bmatrix} \begin{bmatrix} D_{i,j;k,l}(i\omega_n) & A_{i,j;k,l}(i\omega_n) \\ A_{i,j;k,l}^*(-i\omega_n) & D_{k,l;i,j}(-i\omega_n) \end{bmatrix} \begin{bmatrix} \delta \chi_{i,j}(i\omega_n) \\ \delta \chi_{i,j}^*(-i\omega_n) \end{bmatrix}$$

$$\chi_{i,j} \qquad \chi_{k,l} \qquad D_{i,j;k,l} = \operatorname{tr}\left(\mathcal{G}\frac{\delta\mathcal{G}^{-1}}{\delta\chi_{i,j}}\mathcal{G}\frac{\delta\mathcal{G}^{-1}}{\delta\chi_{k,l}^*}\right)$$

$$\chi_{i,j} \qquad \chi_{k,l} \qquad A_{i,j;k,l} = \operatorname{tr}\left(\mathcal{G}\frac{\delta\mathcal{G}^{-1}}{\delta\chi_{i,j}}\mathcal{G}\frac{\delta\mathcal{G}^{-1}}{\delta\chi_{k,l}}\right)$$

the stability of the phase is decided by the excitation spectrum:

$$\det \begin{bmatrix} D_{i,j;k,l}(i\omega_n) & A_{i,j;k,l}(i\omega_n) \\ A_{i,j;k,l}^*(-i\omega_n) & D_{k,l;i,j}(-i\omega_n) \end{bmatrix}_{i\omega_n \to \omega} = 0$$

the excitations also give corrections to the free energy.

Gaussian approximation of the effective action around the saddle point

$$S_{\text{eff}} = S_0 + \sum_{\langle i,j \rangle, \langle k,l \rangle, n} \begin{bmatrix} \delta \chi_{k,l}^*(i\omega_n) \\ \delta \chi_{k,l}(-i\omega_n) \end{bmatrix} \begin{bmatrix} D_{i,j;k,l}(i\omega_n) & A_{i,j;k,l}(i\omega_n) \\ A_{i,j;k,l}^*(-i\omega_n) & D_{k,l;i,j}(-i\omega_n) \end{bmatrix} \begin{bmatrix} \delta \chi_{i,j}(i\omega_n) \\ \delta \chi_{i,j}^*(-i\omega_n) \end{bmatrix}$$

$$\chi_{i,j} \qquad \chi_{k,l} \qquad D_{i,j;k,l} = \operatorname{tr}\left(\mathcal{G}\frac{\delta\mathcal{G}^{-1}}{\delta\chi_{i,j}}\mathcal{G}\frac{\delta\mathcal{G}^{-1}}{\delta\chi_{k,l}^*}\right)$$

$$\chi_{i,j} \qquad \chi_{k,l} \qquad A_{i,j;k,l} = \operatorname{tr}\left(\mathcal{G}\frac{\delta\mathcal{G}^{-1}}{\delta\chi_{i,j}}\mathcal{G}\frac{\delta\mathcal{G}^{-1}}{\delta\chi_{k,l}}\right)$$

the stability of the phase is decided by the excitation spectrum:

$$\det \begin{bmatrix} D_{i,j;k,l}(i\omega_n) & A_{i,j;k,l}(i\omega_n) \\ A_{i,j;k,l}^*(-i\omega_n) & D_{k,l;i,j}(-i\omega_n) \end{bmatrix}_{i,i,j} = 0$$

the excitations also give corrections to the free energy.

difficulties arise due to the constraints and also due to gauge invariance.

Summary

We considered thermodynamic properties of spin-5/2 alkaline-earth-metal fermions in a honeycomb lattice.

At low temperatures the charge degrees of freedom are frozen, and the spin dynamics realizes a chiral spin liquid state with a dynamically generated flux that violates time reversal invariance.

The low energy excitations in an infinite system are gauge bosons of U(1) Chern-Simons field theory.

The higher energy spin liquid states are also interesting generalizations of their square lattice counterparts.

Phys. Rev. A 84, 011611(R) (2011)