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Brief History

Cooper pair and BCS Theory (1956-57)

Richardson exact solution (1963).

Gaudin magnet (1976).

Proof of Integrability. CRS (1997).

Recovery of the exact solution in applications to ultrasmall grains (2000).
SU(2) Richardson-Gaudin models (2001). Rational and Hyperbolic families.
Applications of rational RG model to superconducting grains, atomic nuclei,
cold atoms, quantum dots, etc...

Generalized RG Models for r>1 (2006-2009). SO(6) Color pairing . SO(5) T=1
and SO(8) T=0,1 p-n pairing model and spin 3/2 cold atoms.

Realization of the hyperbolic family in terms of a p-wave integrable pairing

Hamiltonian (2010). Applications to nuclear structure (2011).




The Cooper Problem

PHYSICAL REVIEW

Letters to the Editor

UBLICATION of brief reporis of important discoveries in

physics may be secured by addressing them to this department.

The closing date for this department is five weeks prior to the date of

issue. No proof will be sent to the authors. The Board of Editors does

not hold itself responsible for the opinions expressed by the corre-

spondents. Communications should not exceed 600 words in length
and should be submitted in duplicate.

Bound Electron Pairs in a Degenerate
Fermi Gas™*

Leon N. CoorEr
Physics Department, University of Illinois, Urbana, Illinois
(Received September 21, 1956)

T has been proposed that a metal would display
superconducting properties at low temperatures if
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= (1/V) exp[i(ky-r1+ks-12)] which satisfy periodic
boundary conditions in a box of volume V, and where
r1 and r; are the coordinates of electron one and elec-
tron two. (One can use antisymmetric functions and
obtain essentially the same results, but alternatively
we can choose the electrons of opposite spin.) Defining
relative and center-of-mass coordinates, R=%(r1+rs),
r= (l’g—' 1’1), K= (k1+ kz) and k= 5(1‘2"' k1), and Ietting
Ex+e=(h/m) 3K+ k%), the Schrodinger equation
can be written

(gK—I- EM—E)Gk-I-zkf [+ (k I H]_I k’)
X5(K—K")/8(0)=0 (1)
¥ (R,1)= (1/4/V)e® Ry (r,K),
X(T,K) =Ek (ak/,\/V)eik-r}

where
(2)

and
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Problem : A pair of electrons with an attractive interaction on top of

an inert Fermi sea.
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“Bound” pair for arbitrary small attractive interaction. The FS is unstable
against the formation of these pairs

If the many-body system could be considered (at
least to a lowest approximation) a_collection of pairs
of this kind above a Fermi sea, we would have (whether
or not the pairs had significant Bose properties) a model
similar to that proposed by Bardeen which would
display many of the equilibrium propertles of the

- superconducting state.




Bardeen-Cooper-Schrieffer

PHYSICAL REVIEW VOLUME 108, NUMBER 5§ DECEMBER 1, 1957

Theory of Superconductivity™

J. BarpeeN, L. N. CoopEr,f aND J. R. SCHRIEFFER]
Department of Physics, University of Illinois, Urbana, Illinois
(Received July 8, 1957)

A theory of superconductivity is presented, based on the fact
that the interaction between electrons resulting from virtual
exchange of phonons is attractive when the energy difference
between the electrons states involved is less than the phonon
energy, fw. It is favorable to form a superconducting phase when
this attractive interaction dominates the repulsive screened
Coulomb interaction. The normal phase is described by the Bloch
individual-particle model. The ground state of a superconductor,
formed from a linear combination of normal state configurations
in which electrons are virtually excited in pairs of opposite spin
and momentum, is lower in energy than the normal state by
amount proportional to an average (#w)? consistent with the
isotope effect. A mutually orthogonal set of excited states in

one-to-one correspondence with those of the normal phase is
obtained by specifying occupation of certain Bloch states and by
using the rest to form a linear combination of virtual pair con-
figurations. The theory yields a second-order phase transition and
a Meissner effect in the form suggested by Pippard. Calculated
values of specific heats and penetration depths and their temper-
ature variation are in good agreement with experiment. There is
an energy gap for individual-particle excitations which decreases
from about 3.5kT. at T'=0°K to zero at T.. Tables of matrix
elements of single-particle operators between the excited-state
superconducting wave functions, useful for perturbation expan-
sions and calculations of transition probabilities, are given.




Richardson’s Exact Solution

mme 3, number 6 PHYSICS LETTERS 1 February 1963

A RESTRICTED CLASS OF EXACT EIGENSTATES
OF THE PAIRING-FORCE HAMILTONIAN *

R.W. RICHARDSON
H.M.Randall Laboratory of Physics,
University of Michigan, Ann Arbor, Michigan

Received 23 November 1962




Exact Solution of the BCS Model

_ T AT
Ho =D &M +92 €l C Gy
k k,k'
Eigenvalue equation:

HP‘LP> — E‘LP>

Ansatz for the eigenstates (generalized Cooper ansatz)

M
1 + At
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Richardson equations

M 1 M
1—|— + 2 — 01 E — Ea
gz 2‘C"k a gﬂ(?'ﬁzal)=1 Ea - Eﬂ ;

Properties:
This is a set of M nonlinear coupled equations with M unknowns (E ).
The pair energies are either real or complex conjugated pairs.

There are as many independent solutions as the dimension of the Hilbert
space. The solutions can be classified in the weak coupling limit (g—0).

Exact solvability reduces an exponential complexity of the many-body
problem to an algebraic problem.
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Evolution of the real and imaginary part of the pair energies with g.

L=16, M=8




Hilbert space dimension: 9.06x10%8 . Exact solution 100 non-linear
coupled equation.

Solid lines represent the continuous limit of the Richardson equations.
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Integrals of motion of the Richardson-Gaudin Models

L. Amico, A. Di Lorenzo, and A. Osterloh , Phys. Rev. Lett. 86, 5759 (2001).
J. D., C. Esebbag and P. Schuck, Phys. Rev. Lett. 87, 066403 (2001).

« Pair realization of the SU(2) algebra

1
+ _ = + At
ZaJm jm Sj - zzajma im
m

« The most general comblnatlon of Ilnear and quadratic generators, with the
restriction of being hermitian and number conserving, is

+2gz { L(S7S; +S/S; )+zijsizs;}

« The integrability condition [Ri, Rj] =0 leadsto

*These are the same conditions encountered by Gaudin (J. de Phys. 37
(1976) 1087) in a spin model known as the Gaudin magnet.




Gaudin (1976) found three solutions

XXX (Rational)

XXZ (Hyperbolic)

i = o - _ o N zijzcoth(xi_xj):”i“?j
Sinh(x,—x,) -7, —

Exact solution

Ri‘qj>:ri‘qj>

Eigenstates of the Rational Model : Richardson Ansatz

o) =TI 22 o |m>=H[Z Jn sr}|o>
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« Any function of the R operators defines an exactly solvable Hamiltonian..

« Within the pair representation two body Hamiltonians can be obtained by a
linear combination of R operators

H = Zg, ng +C

« The parameters g, 's and ¢’s are arbitrary. There are 2 L+1 free
parameters to define an integrable Hamiltonian in each of the families. (L
number of single particle levels)

 The BCS Hamiltonian solved by Richardson can be obtained from the XXX
family by choosing r = ¢.

Hges = Zzg]'siz + gZSi+Sj_
i ij

* An important difference between RG models and any other ES model is the
large number of free parameters. They can be used to define physical
interactions. They can even be chosen randomly.




Some models derived from rational (XXX) RG

@ BCS Hamiltonian (Fermion and Boson).

@ Generalized Pairing Hamiltonians (Fermion and Bosons).
@ The Universal Hamiltonian of quantum dots.

@ Central Spin Model.

@ Generalized Gaudin magnets.

@ Lipkin Model.

@ Two-level boson models (IBM, molecular, etc..)

@ Atom-molecule Hamiltonians (Feshbach resonances), or
Generalized Jaynes-Cummings models,

@ Breached superconductivity (Sarma state).

@ Pairs with finite center of mass momentum, FFLO superconductivity.

Review: J.Dukelsky, S. Pittel and G. Sierra, Rev. Mod. Phys. 76, 643 (2004).




What is a Cooper pair in the superfluid is medium?
G. Ortiz and J. Dukelsky, Phys. Rev. A 72, 043611 (2005)

Y= A(%(rl)%(rZ)mgpN/Z (r'\”z)_‘

1 |
“Cooper” pair wavefunction ry=— el
o(r) Vv Zk:%
. CS V
@ From MF BCS: %B = Chpcs uk

K
@From pair correlations: ¢ =(BCS|c_,,c.|BCS)=C,u,V,

. C
@From Exact wavefuction: P ( ): -
' 2¢, — E

* E real and <0, bound eigenstate of a zero range
e—r\/—Elz interaction parametrized by a.

D (I’) — CE « E complex and R (E) < 0, tightly bound molecule.

* E complex and R (E) > 0, weakly bound Cooper pair.

* E Real and >0 free two particle state.




BCS-BEC Crossover diagram

f=1 Re(E)<0

f pairs with Re(E) >0

1-f unpaired, E real >0

Im(E)
é‘-IUI-L-'m-ﬁ,-l.h m-_.‘-m-m-#-m-m

. f=0.35 (BCS)
. f=0.87 (BCS)
37, f=1 (BCS-P)
55, f = 1 (P-BEC)

-1
0
0
0
1,2, f=1 (BEC)

S S5 38 3 3
nun n o !

f=1 some Re(E)>0
others Re(E) <0




“Cooper” pair wave function

6+ x 107

Weak coupling BCS

Strong coupling BCS

BEC




Sizes and fraction of the condensate

&= [lolr|o} & =1/Im(JE)
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The Hyperbolic Richardson-Gaudin Model

A particular RG realization of the hyperbolic family is the separable pairing

Hamiltonian:
H :ZﬂiRi =Zf7i iZ_GZ 77i77jSi+Sj_
| | 1]

With eigenstates:

Richardson equations:

Q 1 1
0= Zm 3 Ea+a-<2¢;>Ea—Ean’ 2Q = L+M =2

The physics of the model is encoded in the exact solution. It does not
depend on any particular representation of the Lie algebra




(P +ip,) exactly solvable model

In 2D one can find a representation of the SU(2) algebra in terms of
spinless fermions.

K, +ik

K|

Choosing 7, = k2 we arrive to the p,+ip, Hamiltonian

S; = %(czck +che, -1), S Lojcl, = (8¢ )T

H= > k—;(c;ckmikc_k)—e > (k +ik, )(k, —ik, )eiel c C,
k(ky>0) k'
(ke ky>0)

M. I. Ibafiez, J. Links, G. Sierra and S. Y. Zhao, Phys. Rev. B 79, 180501 (2009).
C. Dunning, M. I. Ibafiez, J. Links, G. Sierra and S. Y. Zhao,, J. Stat. Mech. P080025 (2010).
S. Rombouts, J. Dukelsky and G. Ortiz, Phys. Rev. B. 82, 224510 (2010).




Why p-wave pairing?

@ p,+ip, paired phase has been proposed to describe the Al superfluid
phase of SHe.

@ N. Read and D. Green (Phys. Rev. B 61, 10267 (2000)), studied the
p,*+ip, model. They showed that p-wave pairing has a QPT (2° order?)
separating two gapped phases: a) a non-trivial topological phase. Weak
pairing; b) a phase characterized by tightly bound pairs. Strong pairing.

@ Moreover, there is a particular state in the phase diagram (the Moore-
Read Pfaffian) isomorphic to the v=5/2 fractional quantum Hall state.

@ In polarized (single hyperfine state) cold atoms p-wave pairing is the most
important scattering channel (s-wave is suppressed by Pauli). p-wave
Feshbach resonances have been identified and studied. However, a p-wave
atomic superfluid is unstable due to atom-molecule and molecule-molecule
relaxation processes.

@ Current efforts to overcome these difficulties. The great advantage is that
the complete BCS-BEC transition could be explored.




| From the exact solution |

1) The Cooper pair wavefunction

E_ real positive — uncorrelated pair
I =) ——=<.’ E_ complex — Correlated Cooper pair
E_, real negative — Bound state

2) All pair energies converge to zero (Moore-Read line)

1 1 _
= , g == E - O y
L-M +1 1-p Density p=M/L
1 M Coupling g=GL
|CDM>Exact :|: Z k _Ik ZCTK:| |O>:|®M>PBCS
k,k,>0 ™y y
3) All pair energies real and negative (Phase transition)
G> 1 , Q2>
L-2M +1 1-2p

for g=1/(1-2p)=E =0




Quantum phase diagram of the hyperbolic model

The phase diagram can be parametrized in terms of the density © = M/L
and the rescaled coupling g =GL
In the thermodynamic limit the Richardson equations ——— BCS equations

.1

|| || || ||
Moore-Read

u=0 [
08} 1
.. 7 E=0=p=1-1/¢
weak pairing
06} 1
P third-order quantum phase transition
04 ’

1=0=p=1/2-1/2g

o=r strong pairing




| | | | — Exact solution in a 2D
ooz |1 JO° S lattice with disk geometry
of R=18 with total number
R R of levels L=504 and
002 |- s M=126. (quarter filling)
0.00 0.05 0.10 0.15 020 0.25 D ~ 10122
- | g=0.5 weak pairing
E 0.000
0005 |- g=1.33 Moore-Read
o {T'a > g=1.5 weak pairing
0,000 |« g=2.0 QPT
! . . . i g=2.5 strong pairing
_ | o _ )




weak coupling
g=0.250000, M/L=0.250, [f(y)|=0.00000000457727
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Higher order derivatives of the GS energy in the thermodynamic limit

3° order QPT
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Characterization of the QPT

In the thermodynamic limit the pair wavefunction in k-space is:

¢(k) =<W|CEka |W> = U Vy

Moore-Read QPT, u= 0

Size of the pair wavefunction

10 . Z

T  [Ive(x)[ dk

sk rrms: . 2
Jl# (k[ dk

Accessible experimentally by quantum noise interferometry and time of flight analysis???




A similar analysis can be applied to the pairs in the exact solution

K, +1K
5" (E.) =Y. (k)cich 4, (K)o 2

2 : L
The root mean square ims.exact Of the pair wavefunction is finite for E complex
or real and negative.

2
However, e eae = @ for  Ereal and >0
In strong pairing all pairs are bound and have finite radius.

At the QPT one pair energy becomes real an positive corresponding to a
single deconfined Cooper pair on top of an ensemble of bound molecules.




| Exactly Solvable Pairing Hamiltonians |

1) SU(2), Rank 1 algebra

2) SO(5), Rank 2 algebra
. . +
= Zgini g Z P, P
i ijz
J. Dukelsky, V. G. Gueorguiev, P. Van Isacker, S. Dimitrova, B. Erreay S. Lerma H. PRL 96 (2006) 072503.

3) SO(6), Rank 3 algebra

H—Ze Z o P

B. Errea, J. Dukelsky and G. Ortiz, PRA 79 05160 (2009)
4) SO(8), Rank 4 algebra

H, zzgi Z ir p_gZDit;D

ijT ijo

H3/2:Zgini_gZ(F)|SOPJOO Z i2m 12 m]

i ]
S. Lerma H., B. Errea, J. Dukelsky and W. Satula. PRL 99, 032501 (2007)




Summary

@ For finite systems, the exact solution incorporates mesoscopic fluctuations
absent in BCS and PBCS.

& From the analysis of the exact Richardson wavefunction we proposed a new
view to the nature of the Cooper pairs in the BCS-BEC transition for s-wave and
p-wave pairing.

& The hyperbolic RG offers a unique tool to study a rare 3° order QPT in the
p,+ip, paired superfluid.

& We found that the root mean square size of the pair wave function diverges at
the critical point. It could be a clear experimental signature of the QPT.

& Extensions to larger rank algebras open new horizons for the RG models.




