Pushing the boundaries with cold atoms, Nordita 2013

BCS-BEC crossover in a quasi-2D Fermi gas

arXiv 1301.5236

Andrea M. Fischer, Meera M. Parish

Cavendish Laboratory, University of Cambridge, UK London Centre for Nanotechnology, UK

Making a quasi-2D Fermi gas

- ▶ Strong harmonic confinement in one direction: $\omega_z \gg \omega_x = \omega_y$
- Stacks of pancakes created using 1D optical lattice
- Tune between 2D and 3D via optical lattice depth
- Dimensionality depends on $\frac{\varepsilon_F}{\hbar\omega_z}$, $\frac{\varepsilon_B}{\hbar\omega_z}$, $\frac{k_BT}{\hbar\omega_z}$
- s-wave interactions controlled via 3D Feshbach resonance: BCS-BEC

K. Martiyanov, V. Makhalov, A. Turlapov, PRL, 2010

BCS-BEC crossover in a quasi-2D Fermi gas

Motivation

La₂CuO₄ Martin Long, Andy Schofield

- 2 is critical number of dimensions for long range order (Mermin-Wagner theorem)
- High T_c superconductors: big mystery of condensed matter physics
- How relevant is coupling between planes to superconducting mechanism?
- Use quasi-2D Fermi gas to model complicated system: quantum simulation

Talk Outline

- Overview of previous work
- Explanation of method: Non-interacting system, interactions, inclusion of multiple (infinite!) bands
- Analytic approach for two band case
- Relationship between Δ, μ, ε_B, ε_F: departure from 2D behaviour, hints of 3D dimers confined to 2D in extreme BEC limit
- Comparing with experiment: Momentum distribution function, quasiparticle dispersions, radio-frequency spectroscopy

Summary of previous work

Experiment

- Massimo Inguscio, PRA 2003
- Andrey Turlapov, PRL 2010
- Martin Zwierlein, PRL 2012
- ▶ Chris Vale, *PRL 2011*
- Michael Köhl, PRL 2011, Nature 2012
- ▶ John Thomas, PRL 2012

Theory

- Sascha Zöllner, Georg Bruun, Chris Pethick PRA 2011
- Meera Parish, Jesper Levinsen, Stefan Baur, Wave Ngampruetikorn
- ▶ Jani-Petri Martikainen, Päivi Törmä, PRL 2005
- Dmitry Petrov, Gora Shlyapnikov, PRA 2001, 2003

And many more ...

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Nordita 2013

Theoretical system

- ► *T* = 0
- Model single pancake by oscillator potential, $\frac{1}{2}m\omega_z^2 z^2$
- Population balanced two-component gas
- Attractive contact interaction controlled by broad Feshbach resonance

Quantum numbers

2D momentum **k** harmonic oscillator number *n* hyperfine state $\sigma = \uparrow, \downarrow$

• Single particle energies are

$$\varepsilon_{\mathbf{k}n} = \frac{\hbar^2 k^2}{2m} + n\hbar\omega_z$$

Introducing interactions

Interaction matrix elements calculated by switching to relative and centre of mass oscillator quantum numbers, ν , N:

$$\langle n_1 n_2 | \hat{g} | n_3 n_4 \rangle = g \sum_N f_\nu \langle n_1 n_2 | N \nu \rangle f_{\nu'} \langle N \nu' | n_3 n_4 \rangle \equiv g \sum_N V_N^{n_1 n_2} V_N^{n_3 n_4},$$

where f_{ν} is the sum over the Fourier transform of the oscillator wave function, $f_{\nu} = \sum_{k_z} \tilde{\phi}_{\nu}(k_z)$, so $f_{2\nu+1} = 0$.

Coupling constant expressed in terms of binding energy, ε_B

$$-\frac{1}{g} = \sum_{\mathbf{k},n_1,n_2} \frac{f_{n_1+n_2}^2 |\langle \mathbf{0} \ n_1 + n_2 | n_1 n_2 \rangle |^2}{\varepsilon_{\mathbf{k}n_1} + \varepsilon_{\mathbf{k}n_2} + \varepsilon_B}$$
Also have g in terms of 3D scattering
length a_s and UV cut-off Λ :
$$\frac{1}{g} = \frac{m}{4\pi} \left(\frac{1}{a_s} - \frac{2\Lambda}{\pi}\right).$$
D.S. Petrov and G. Shlyapnikov, PRA 2001 and I. Bloch, J.
Dalibard and W. Zweger, RMP 2008

Dalibard and W. Zweger, RMP 2008

Nordita 2013

А

BCS-BEC crossover in a quasi-2D Fermi gas

Mean field approach

Many body Hamiltonian is

$$\hat{H} = \sum_{\mathbf{k},n,\sigma} (\varepsilon_{\mathbf{k}n} - \mu) c_{\mathbf{k}n\sigma}^{\dagger} c_{\mathbf{k}n\sigma} + \sum_{\substack{\mathbf{k},n_{1},n_{2} \\ \mathbf{k}',n_{3},n_{4}}} \langle n_{1}n_{2} | \hat{g} | n_{3}n_{4} \rangle c_{\mathbf{k}n_{1}\uparrow}^{\dagger} c_{\mathbf{q}-\mathbf{k}n_{2}\downarrow}^{\dagger} c_{\mathbf{q}-\mathbf{k}'n_{3}\downarrow} c_{\mathbf{k}'n_{4}\uparrow}$$

Define superfluid order parameter as

$$\Delta_{\mathbf{q}N} = g \sum_{\mathbf{k}, n_1, n_2} V_N^{n_1 n_2} \langle c_{\mathbf{q} - \mathbf{k} n_2 \downarrow} c_{\mathbf{k} n_1 \uparrow}
angle$$

Assume fluctuations are small, so we can use mean field Hamiltonian

$$\hat{H}_{\rm MF} = \sum_{\mathbf{k},n,\sigma} (\epsilon_{\mathbf{k}n} - \mu) c^{\dagger}_{\mathbf{k}n\sigma} c_{\mathbf{k}n\sigma} + \sum_{\mathbf{q},N} \left(\Delta_{\mathbf{q}N} \sum_{\mathbf{k},n_1,n_2} V_N^{n_1n_2} c^{\dagger}_{\mathbf{k}n_1\uparrow} c^{\dagger}_{\mathbf{q}-\mathbf{k}n_2\downarrow} \right. \\ \left. + \Delta^*_{\mathbf{q}N} \sum_{\mathbf{k}',n_3,n_4} V_N^{n_3n_4} c_{\mathbf{q}-\mathbf{k}'n_3\downarrow} c_{\mathbf{k}'n_4\uparrow} - \frac{|\Delta_{\mathbf{q}N}|^2}{g} \right)$$

<日</p>

BCS-BEC crossover in a quasi-2D Fermi gas

8/15

Quasiparticles

- Assume for ground state $\Delta_{qN} = \delta_{q0} \delta_{N0} \Delta_0$
- Require $\hat{H}_{MF} = \sum_{\mathbf{k},n,\sigma} E_{\mathbf{k}n} \gamma^{\dagger}_{\mathbf{k}n\sigma} \gamma_{\mathbf{k}n\sigma} + E_{g}$, where $\gamma^{\dagger}_{\mathbf{k}n\sigma}(\gamma_{\mathbf{k}n\sigma})$ are quasiparticle creation (annihilation) operators:

$$\gamma^{\dagger}_{\mathbf{k}n\uparrow} = \sum_{n'} (u_{\mathbf{k}n'n} c^{\dagger}_{\mathbf{k}n'\uparrow} + v_{\mathbf{k}n'n} c_{-\mathbf{k}n'\downarrow}), \quad \gamma_{-\mathbf{k}n\downarrow} = \sum_{n'} (u_{\mathbf{k}n'n} c_{-\mathbf{k}n'\downarrow} - v_{\mathbf{k}n'n} c^{\dagger}_{\mathbf{k}n'\uparrow})$$

• Can show $E_g = \sum_{\mathbf{k},n} (\epsilon_{\mathbf{k}n} - \mu - E_{\mathbf{k}n}) - \frac{\Delta_0^2}{g}$ and derive BdG equations

$$\left(\begin{array}{cc} \epsilon - \mu & \Delta \\ -\Delta^* & -(\epsilon - \mu) \end{array}\right) \left(\begin{array}{c} U \\ V \end{array}\right) = \left(\begin{array}{c} U \\ V \end{array}\right) E$$

- For a fixed μ , find Δ_0 by minimising E_g . μ is chosen to fix the particle density, $\rho = 2 \sum_{\mathbf{k},n',n} |v_{\mathbf{k}n'n}|^2$, at the value for an ideal gas.
- Much faster than diagonalising BdG equations. Can do calculations for up to 100 bands and then **extrapolate to infinitely many bands**, since Δ₀, μ scale linearly with the inverse number of bands.

Nordita 2013

Analytic results

► For the pure 2D system, Mohit Randeria *et al.* (PRL 1989 and PRB 1990), solved the mean field equations analytically

$$\Delta \equiv \Delta V_0^{00} = \sqrt{2\varepsilon_B \varepsilon_F}, \qquad \mu = \varepsilon_F - \frac{\varepsilon_B}{2}$$

For two band case, relevant for very small ε_B/ω_z, ε_F/ω_z, there is no inter-band pairing, so equations simplified:

$$E_{\mathbf{k}n} = \sqrt{(\varepsilon_{\mathbf{k}n} - \mu)^2 + (V_0^{nn} \Delta_0)^2}, \ -\frac{1}{g} = \sum_{\mathbf{k},n} \frac{(V_0^{nn})^2}{2\sqrt{(\varepsilon_{\mathbf{k}n} - \mu)^2 + (V_0^{nn} \Delta_0)^2}}$$

▶ Can thus derive simultaneous equations in μ , Δ

$$\left(\frac{\varepsilon_B}{-\mu + \sqrt{\Delta^2 + \mu^2}}\right)^4 \left(\frac{\varepsilon_B + 2\omega_z}{\omega_z - \mu + \sqrt{\Delta^2/4 + (\omega_z - \mu)^2}}\right) = 1$$

$$2\varepsilon_F = \sqrt{\Delta^2 + \mu^2} + \sqrt{\Delta^2/4 + (\omega_z - \mu)^2} + 2\mu - \omega_z$$

▲母 ▶ の Q (0)

10/15

Numerical results

As ε_B/ω_z, ε_F/ω_z increase, departure from 2D curves also generally increases

► Can obtain first order correction to 2D results in BCS regime $(\varepsilon_B / \varepsilon_F \ll 1)$ from 2 band equations: $\frac{\mu}{\varepsilon_F} \simeq 1 - \frac{\varepsilon_B}{2\varepsilon_F} \left(1 + \frac{\varepsilon_F}{4\omega_z}\right) \qquad \qquad \frac{\Delta}{\varepsilon_F} \simeq \sqrt{\frac{2\varepsilon_B}{\varepsilon_F}} \left(1 + \frac{\varepsilon_F}{8\omega_z}\right),$

▲ 母 ▶ め < (~

Momentum distribution function

- Momentum distribution function can be observed in time of flight experiments
- Calculated (per spin) according to $\eta(\mathbf{k}) = \sum_{n,n'} |v_{\mathbf{k}nn'}|^2$
- In BCS regime get a kink at low momentum: presence of higher bands felt because of interactions

Radio frequency spectra

 RF pulse takes atoms from initial occupied state to final unoccupied state (Groups of Michael Köhl, John Thomas, Martin Zwierlein)

$$I_{RF}(\omega) \propto \sum_{k,n',n} |v_{kn'n}|^2 \delta(\epsilon_{kn'} - \mu + E_{kn} - \omega)$$

• For perfect 2D,
$$I_{RF}(\omega) \propto \frac{\Delta^2}{\omega^2} \Theta(\omega - \varepsilon_B)$$

Get more complicated structure in the BCS regime for higher ε_F/ω_z values, ill-defined pairing threshold, possible relevance to John Thomas experiment

Nordita 2013

(□) > <) < (>

Excitation gap

- ► Lowest measurable energy gap corresponds to $E_{k=0} = -\mu$
- This is exactly equal to ε_B in 2D
- ► For smaller ε_F / ω_z see an enhancement in $(E_{k=0 \ n=0} \mu) / \varepsilon_B$, but for larger values there is a reduction due to level repulsion

Conclusions and Outlook

- Have studied pairing of quasi-2D Fermi gas throughout BCS-BEC crossover
- > All harmonic bands of confining potential taken into account
- Proper renormalisation of contact interaction
- Radio frequency spectroscopy drastically deviating from 2D case for high enough ε_F/ω_z - possible explanation for John Thomas experiment?
- Next: include finite temperature

Thank you for listening!

arXiv 1301.5236