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Making a quasi-2D Fermi gas

� Strong harmonic confinement in one direction: ωz � ωx = ωy

� Stacks of pancakes created using 1D optical lattice

� Tune between 2D and 3D via optical lattice depth

� Dimensionality depends on εF

~ωz
, εB

~ωz
, kB T

~ωz

� s-wave interactions controlled via 3D Feshbach resonance: BCS-BEC

K. Martiyanov, V. Makhalov, A. Turlapov, PRL, 2010
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Motivation

La2CuO4

Martin Long, Andy Schofield

� 2 is critical number of dimensions
for long range order
(Mermin-Wagner theorem)

� High Tc superconductors: big
mystery of condensed matter
physics

� How relevant is coupling between
planes to superconducting
mechanism?

� Use quasi-2D Fermi gas to model
complicated system: quantum
simulation
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Talk Outline

� Overview of previous work

� Explanation of method:
Non-interacting system, interactions, inclusion of multiple (infinite!)
bands

� Analytic approach for two band case

� Relationship between ∆, µ, εB , εF : departure from 2D behaviour,
hints of 3D dimers confined to 2D in extreme BEC limit

� Comparing with experiment:
Momentum distribution function, quasiparticle dispersions,
radio-frequency spectroscopy
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Summary of previous work

Experiment

� Massimo Inguscio, PRA 2003

� Andrey Turlapov, PRL 2010

� Martin Zwierlein, PRL 2012

� Chris Vale, PRL 2011

� Michael Köhl, PRL 2011, Nature 2012

� John Thomas, PRL 2012

Theory

� Sascha Zöllner, Georg Bruun, Chris Pethick PRA 2011

� Meera Parish, Jesper Levinsen, Stefan Baur, Wave Ngampruetikorn

� Jani-Petri Martikainen, Päivi Törmä, PRL 2005

� Dmitry Petrov, Gora Shlyapnikov, PRA 2001, 2003

And many more ...
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Theoretical system

� T = 0

� Model single pancake by
oscillator potential, 1

2mω2
z z

2

� Population balanced
two-component gas

� Attractive contact interaction
controlled by broad Feshbach
resonance

Quantum numbers

2D momentum k
harmonic oscillator number n

hyperfine state σ =↑, ↓

� Single particle energies are

εkn = ~2k2

2m + n~ωz

Single particle energies
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Single particle density of states
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Introducing interactions

� Interaction matrix elements calculated by switching to relative and
centre of mass oscillator quantum numbers, ν, N:

〈n1n2|ĝ |n3n4〉 = g
X

N

fν〈n1n2|Nν〉fν′ 〈Nν′|n3n4〉 ≡ g
X

N

V n1n2
N V n3n4

N ,

where fν is the sum over the Fourier transform of the oscillator wave
function, fν =

P
kz
φ̃ν(kz ), so f2ν+1 = 0.

� Coupling constant expressed in terms of binding energy, εB

−
1

g
=
X

k,n1,n2

f 2
n1+n2

|〈0 n1 + n2|n1n2〉|2

εkn1
+ εkn2

+ εB

Also have g in terms of 3D scattering
length as and UV cut-off Λ:

1

g
=

m

4π

„
1

as
−

2Λ

π

«
.

D.S. Petrov and G. Shlyapnikov, PRA 2001 and I. Bloch, J.
Dalibard and W. Zweger, RMP 2008
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Mean field approach

� Many body Hamiltonian is

Ĥ =
X

k,n,σ

(εkn − µ)c†knσcknσ +
X

k,n1,n2
k′,n3,n4

q

〈n1n2|ĝ |n3n4〉c†kn1↑c
†
q−kn2↓cq−k′n3↓ck′n4↑

� Define superfluid order parameter as

∆qN = g
∑

k,n1,n2
V n1n2

N 〈cq−kn2↓ckn1↑〉

� Assume fluctuations are small, so we can use mean field Hamiltonian

ĤMF =
X

k,n,σ

(εkn − µ)c†knσcknσ

+
X
q,N

„
∆qN

X
k,n1,n2

V n1n2
N c†kn1↑c

†
q−kn2↓

+∆∗qN

X
k′,n3,n4

V n3n4
N cq−k′n3↓ck′n4↑ −

|∆qN |2

g

«
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Quasiparticles

� Assume for ground state ∆qN = δq0δN0∆0

� Require ĤMF =
∑

k,n,σ Eknγ
†
knσγknσ + Eg , where γ†knσ(γknσ) are

quasiparticle creation (annihilation) operators:

γ†kn↑ =
X

n′
(ukn′nc†

kn′↑ + vkn′nc−kn′↓), γ−kn↓ =
X

n′
(ukn′nc−kn′↓ − vkn′nc†

kn′↑)

� Can show Eg =
P

k,n(εkn − µ− Ekn)− ∆0
2

g
and derive BdG equations

„
ε− µ ∆
−∆∗ − (ε− µ)

«„
U
V

«
=

„
U
V

«
E

� For a fixed µ, find ∆0 by minimising Eg . µ is chosen to fix the particle
density, ρ = 2

∑
k,n′,n |vkn′n|2, at the value for an ideal gas.

� Much faster than diagonalising BdG equations. Can do calculations for
up to 100 bands and then extrapolate to infinitely many bands,
since ∆0, µ scale linearly with the inverse number of bands.
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Analytic results

� For the pure 2D system, Mohit Randeria et al. (PRL 1989 and PRB
1990), solved the mean field equations analytically

∆ ≡ ∆V 00
0 =

√
2εBεF , µ = εF − εB

2

� For two band case, relevant for very small εB/ωz , εF/ωz , there is
no inter-band pairing, so equations simplified:

Ekn =
q

(εkn − µ)2 + (V nn
0 ∆0)2, − 1

g =
∑

k,n
(V nn

0 )2

2
√

(εkn−µ)2+(V nn
0 ∆0)2

� Can thus derive simultaneous equations in µ, ∆(
εB

−µ+
√

∆2+µ2

)4(
εB +2ωz

ωz−µ+
√

∆2/4+(ωz−µ)2

)
= 1

2εF =
√

∆2 + µ2 +
√

∆2/4 + (ωz − µ)2 + 2µ− ωz
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Numerical results

0 1 2 3 4
B/ F

0

0.4

0.8

1.2

1.6

2

[µ
 +

 
B/2

]/
F

2D
3D BEC

F/ z = 0.1

F/ z = 0.5

F/ z = 1.0

1 100.1

1

0 1 2 3 4
B / F

0

0.5

1

1.5

2

2.5

3

/
F

� As εB/ωz , εF/ωz increase, departure from 2D curves also generally
increases

� Can obtain first order correction to 2D results in BCS regime
(εB/εF � 1) from 2 band equations:
µ
εF
' 1− εB

2εF

(
1 + εF

4ωz

)
∆
εF
'
√

2εB

εF

(
1 + εF

8ωz

)
,
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Momentum distribution function
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� Momentum distribution function can be observed in time of flight
experiments

� Calculated (per spin) according to η(k) =
∑

n,n′ |vknn′ |2

� In BCS regime get a kink at low momentum: presence of higher
bands felt because of interactions
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Radio frequency spectra

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1
I R
F(

)

quasi-2D
2D

0 0.5 1 1.5 2 2.5

F/ z = 0.5

F/ z = 1.5

εB/εF = 0.2

� RF pulse takes atoms from initial occupied state to final unoccupied
state (Groups of Michael Köhl, John Thomas, Martin Zwierlein)

� IRF (ω) ∝
∑

k,n′,n |vkn′n|2δ(εkn′ − µ+ Ekn − ω)

� For perfect 2D, IRF (ω) ∝ ∆2

ω2 Θ(ω − εB )

� Get more complicated structure in the BCS regime for higher εF/ωz

values, ill-defined pairing threshold, possible relevance to John
Thomas experiment
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Excitation gap

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4
B/ F

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(E
k=

0 
n=

0-µ
)/

B

2D
F/ z = 0.1

F/ z = 0.5

F/ z = 1.0

F/ z = 1.5

0 0.4 0.8 1.2 1.6
k/kF

0

0.5

1

1.5

2

E kn
/

z

n = 0
n = 1

n = 2

the bound-to-bound peak position directly yields the bind-
ing energy in the final state E0

b. For example, the spectrum
in Fig. 4(a), taken at the 3D j1i! j3i resonance at
690.7(1) G and V0=ER ¼ 9:59ð7Þ, gives E0

b=ER ¼ 18:0ð1Þ
at a final-state interaction of d=a0 ¼ 8:41ð2Þ. Likewise, the
spectrum in Fig. 4(b) at V0=ER ¼ 26:1ð4Þ and a magnetic
field of 751.1(1) G, where d=a0 ¼ 2:55ð1Þ, gives E0

b=ER ¼
5:3ð1Þ. An independent measurement for d=a ¼ 2:55ð2Þ
using the bound-to-free spectrum at 653.55 G yields
Eb=ER ¼ 5:25ð2Þ, showing that bound-to-bound transi-
tions correctly indicate binding energies.

The BCS side of the 2D BEC-BCS crossover is reached
in Fig. 4(c) by increasing the number of atoms to increase
EF and increasing the magnetic field to reach a lower
binding energy. In Fig. 4(c), the central Fermi energy is
h% 43ð6Þ kHz and T=TF ¼ 0:5ð2Þ. The magnetic field is
set to 834.4(1) G, where d=a ¼ !3:06ð1Þ, and the final-
state interactions between j1i and j2i are resonant, with
d=a0 ¼ !0:01ð3Þ. The lattice depth is V0=ER ¼ 26:4ð3Þ.
Thus, we know that E0

b ¼ 0:232ð16Þ@!z ¼ 2:4ð2ÞER at
this lattice depth. From the bound-to-bound transition in
Fig. 4(c), we can then directly determine the binding
energy of j1i! j3i fermion pairs to be Eb=ER ¼ 0:9ð2Þ.
The theoretical prediction [11] for two-body binding gives
Eb=ER ¼ 0:82ð1Þ. The measured binding energy gives a
many-body interaction parameter of lnðkFa2DÞ ¼ 0:6ð1Þ,
on the BCS side but within the strongly interacting regime,
where one expects many-body effects beyond mean-field

BEC-BCS theory [26,29]. It is therefore interesting that the
measured binding energy is close to the expected two-body
binding energy to much better than the Fermi energy, as
predicted by mean-field theory [20].
In conclusion, we have measured the binding energy of

fermion pairs along the crossover from 3D to 2D in a one-
dimensional optical lattice. Measurements were performed
at several lattice depths and scattering lengths, allowing
quantitative comparison with theoretical predictions.
Considering the fact that the gas is a strongly interacting
many-body system, the close agreement with two-body
theory is surprising, especially in the strong-coupling re-
gime. While mean-field BEC-BCS theory in 2D predicts
this behavior [20], it misses other important features of the
many-body system, most strikingly the interaction between
fermion pairs [13]. Superfluidity in a one-dimensional
lattice will be an exciting topic for future studies. Stacks
of weakly coupled, superfluid 2D layers would constitute a
basic model of the geometry found in high-temperature
superconductors.
The authors would like to thank G. Orso for providing

his code to calculate binding energies and M. Köhl and W.
Zwerger for stimulating discussions. This work was sup-
ported by the NSF, AFOSR-MURI, ARO-MURI, ONR,
DARPAYFA, a grant from the Army Research Office with
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FIG. 4 (color online). Spectra including the bound-to-bound
transition, a narrow peak at negative rf offset. Shown are spectra
at magnetic fields of (a) 690.7(1) G, (b) 751.1(1) G, and
(c) 834.4(1). The interaction parameters d=a are (a) !0:01ð4Þ,
(b) !1:91ð1Þ, and (c) !3:06ð1Þ. Lattice depths in units of ER are
(a) 9.59(7), (b) 26.1(4), and (c) 26.4(3). The bound-to-free
transition is not visible in (c). The transfer is from j1i to j2i
in (a) and (b) and from j3i to j2i in (c).

FIG. 3 (color online). (a) Binding energy of fermion pairs
versus interaction strength lz=a for deep lattices (V0 > 17ER).
Solid curve: theoretical prediction in the 2D harmonic limit
[22,23]. (b) Ratio of the measured binding energy to the two-
body result [11] versus lnðkFa2DÞ for V0 > 17ER. Black dia-
monds: binding energy determined from the bound-to-bound
transition with resonant final-state interactions. Other data sym-
bols: see Fig. 2. Horizontal line: zero-temperature mean-field
theory [20].
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A.T. Sommer et al., PRL 2012

� Lowest measurable energy gap corresponds to Ek=0 n=0 − µ

� This is exactly equal to εB in 2D

� For smaller εF/ωz see an enhancement in (Ek=0 n=0 − µ)/εB , but
for larger values there is a reduction due to level repulsion
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Conclusions and Outlook

� Have studied pairing of quasi-2D Fermi gas throughout BCS-BEC
crossover

� All harmonic bands of confining potential taken into account

� Proper renormalisation of contact interaction

� Radio frequency spectroscopy drastically deviating from 2D case for
high enough εF/ωz - possible explanation for John Thomas
experiment?

� Next: include finite temperature

Thank you for listening!

arXiv 1301.5236
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