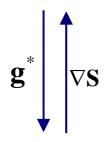
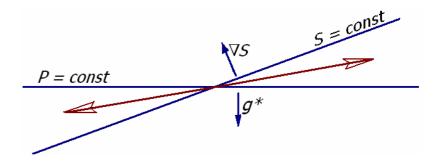
BAROCLINIC INSTABILITY IN DIFFERENTIALLY ROTATING STARS

Leonid Kitchatinov kit@iszf.irk.ru


Origin of the baroclinic instability Eigenvalue equations Excitation of *r*- and *g* - modes The effect of composition gradient Helicity and possibility of dynamos Is it observable?

Hydrodynamical equilibrium in rotating star


 $V = e_{\phi} r \sin \theta \Omega$ Equilibrium condition: $\frac{1}{\rho} \nabla P = g^*$, $g^* = g + r \sin \theta \Omega e_{\phi} \times \Omega$

$$\sin\theta \frac{\partial\Omega^2}{\partial z} = -\frac{1}{\rho^2} (\boldsymbol{\nabla}\rho \times \boldsymbol{\nabla}P)_{\phi} = \frac{1}{c_{\rm p}} (\boldsymbol{\nabla}s \times \boldsymbol{g}^*)_{\phi}$$

Barotropic stratification

Sufficiently large differential rotation, $\Delta \Omega \sim 0.1 \Omega$, can be unstable (Watson 1981; Dziembowski & Kosovichev 1987; Charbonneau et al. 1999;....) **Baroclinic stratification**

The "stable" stratification - if baroclinic - can provoke an instability (Shibahashi 1980; Tassoul & Tassoul 1983; ...)

Basic assumptions/approximations

Shellular rotation

 $\Omega(r), \quad q = -\frac{r}{\Omega} \frac{\mathrm{d}\Omega}{\mathrm{d}r}$

 Disturbances are global in horizontal dimentions but short-scaled in radius

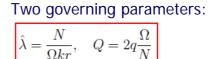
$$\boldsymbol{u}, S \sim \exp\left(-\mathrm{i}\omega t + \mathrm{i}m\phi + \mathrm{i}kr\right)$$
$$\mu = \cos\theta$$

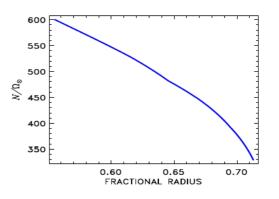
- Non-compressive disturbances but entropy perturbations due to radial displacements are allowed (Boussinesq approximation)
- Scalar potentials are used to specify toroidal (W) and poloidal (V) parts of the flow:

$$\begin{aligned} \boldsymbol{u} &= \frac{\boldsymbol{e}_{\phi}}{r^{2}} \left(\hat{L}V \right) - \frac{\boldsymbol{e}_{\theta}}{r} \left(\frac{1}{\sin\theta} \frac{\partial W}{\partial\phi} + \frac{\partial^{2}V}{\partial r\partial\phi} \right) \\ &+ \frac{\boldsymbol{e}_{\phi}}{r} \left(\frac{\partial W}{\partial\theta} - \frac{1}{\sin\theta} \frac{\partial^{2}V}{\partial r\partial\phi} \right) \\ \hat{L} &= \frac{\partial}{\partial\mu} \left(1 - \mu^{2} \right) \frac{\partial}{\partial\mu} + \frac{1}{1 - \mu^{2}} \frac{\partial^{2}}{\partial\phi^{2}} \end{aligned}$$

Equations of linear stability (eigenvalue) problem

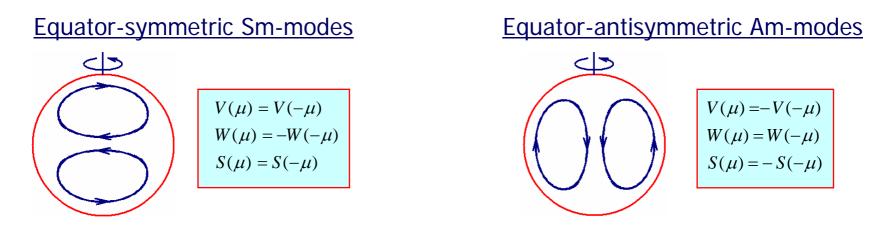
Toroidal flow


$$\hat{\omega}(\hat{L}W) = -\mathrm{i}\frac{\epsilon_{\nu}}{\hat{\lambda}^2}(\hat{L}W) + 2mW - 2\mu(\hat{L}V) - 2(1-\mu^2)\frac{\partial V}{\partial\mu}$$


Poloidal flow

$$\hat{\omega}(\hat{L}V) = -\mathbf{i}\frac{\epsilon_{\nu}}{\hat{\lambda}^2}(\hat{L}V) - \hat{\lambda}^2(\hat{L}S) + 2mV - 2\mu(\hat{L}W) - 2(1-\mu^2)\frac{\partial W}{\partial\mu}$$

Entropy


$$\hat{\omega}S = -\mathrm{i}\frac{\epsilon_{\chi}}{\hat{\lambda}^2}S + \hat{L}V + \mathrm{i}\frac{Q}{\hat{\lambda}}\mu\left(mW - (1-\mu^2)\frac{\partial V}{\partial\mu}\right)$$

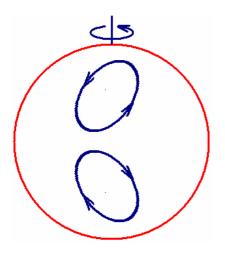
Normalized diffusivities: $\epsilon_{\chi} = 10^{-4}, \ \epsilon_{\nu} = 2 \times 10^{-10}$

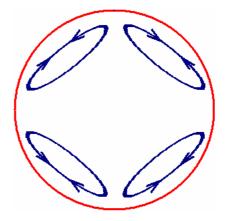
Symmetry properties

Eigenvalue equations are symmetric under the transformation:

$$(q, m, \omega, W, V, S) \rightarrow (-q, -m, -\omega^*, -W^*, V^*, -S^*)$$

Unstable modes are expected to possess kinetic helicity

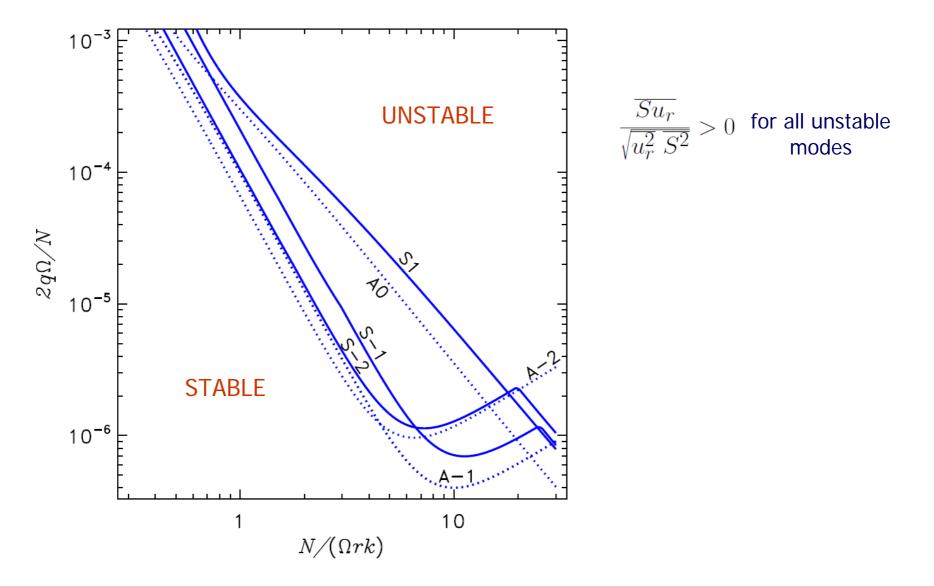

$$H_{\rm rel} = \langle \boldsymbol{u} \cdot (\boldsymbol{\nabla} \times \boldsymbol{u}) \rangle / (k \overline{u^2})$$


$$\langle X \rangle = \frac{1}{2\pi} \int_{0}^{2\pi} X \mathrm{d}\phi , \quad \overline{u^2} = \frac{1}{2} \int_{-1}^{1} \langle u^2 \rangle \mathrm{d}\mu$$

Two modes of stable oscillations (uniform rotation, zero diffusion, $N >> \Omega$)

Toroidal *r* -modes

Poloidal g -modes

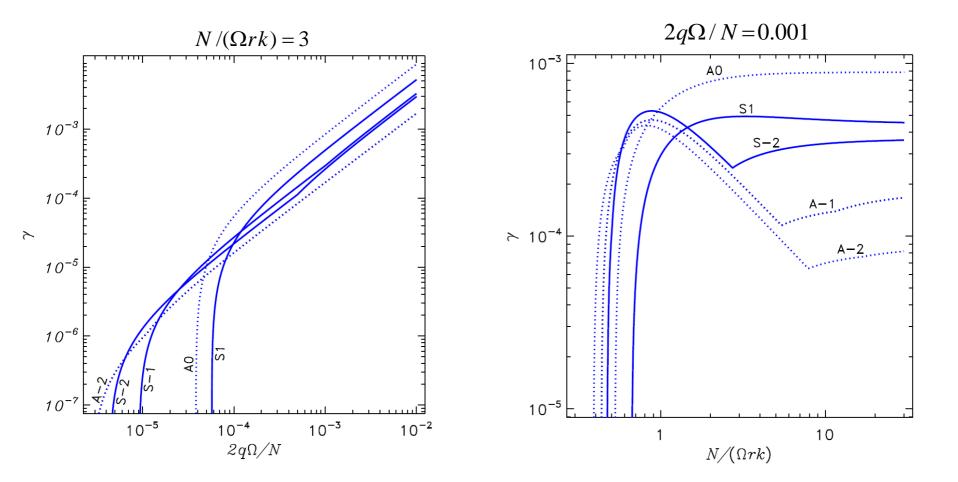


$$\omega_{lm}^r = -\frac{2m\Omega}{l(l+1)}$$

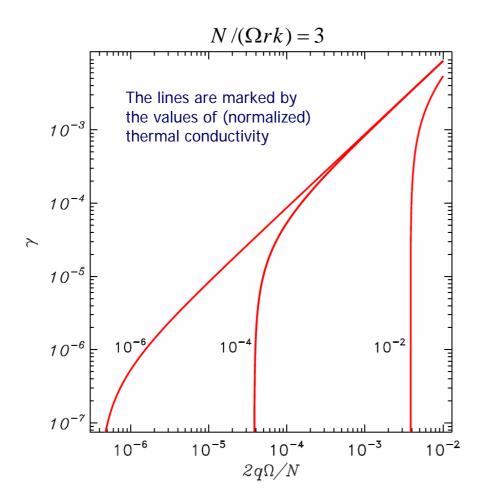
$$\omega_{lm}^{g} = \pm \frac{N}{kr} \sqrt{l(l+1)}$$

Stability map

Baroclinic instability as a stability loss to excitation of *r*- and *g* -modes


Parameters of unstable disturbances for $\lambda = 3$ and $Q = 10^{\circ}$.						
Mode	$\hat{\gamma}, 10^{-4}$	$\Re(\hat{\omega})$	$\hat{\omega}^r$	$\hat{\omega}^{g}$	$\overline{u_{ m p}^2}/\overline{u_{ m t}^2}$	$\overline{Su_r}/\sqrt{u_r^2 \ S^2}$
A0	8.41	4.34		4.24	24.0	$3.35 imes 10^{-5}$
A1	2.91	7.27		7.35	43.0	$6.38 imes 10^{-6}$
A3	1.14	-13.6		-13.4	171	$1.38 imes 10^{-6}$
A10	0.709	-34.6		-34.5	2487	$3.32 imes 10^{-7}$
A-1	2.04	0.989	1		$1.99 imes 10^{-4}$	2.99×10^{-3}
A-3	1.46	0.199	0.2^{*}		$9.62 imes 10^{-7}$	$2.17 imes 10^{-2}$
A-10	0.507	0.0952	0.0952^{*}		2.79×10^{-9}	0.155
S0	3.29	7.46		7.35	32.7	$7.46 imes 10^{-6}$
S1	4.93	-4.85		-4.24	34.6	$2.17 imes 10^{-5}$
S3	3.10	-10.7		-10.4	260	$4.90 imes 10^{-6}$
S10	1.03	-31.5		-31.5	5727	$5.24 imes 10^{-7}$
S-1	2.94	0.320	0.333		1.93×10^{-4}	$3.67 imes 10^{-3}$
S-3	2.22	-10.2		-10.4	265	$3.35 imes 10^{-6}$
S-10	0.874	-31.4		-31.5	5772	4.44×10^{-7}

Parameters of unstable disturbances for $\hat{\lambda} = 3$ and $Q = 10^{-3}$.

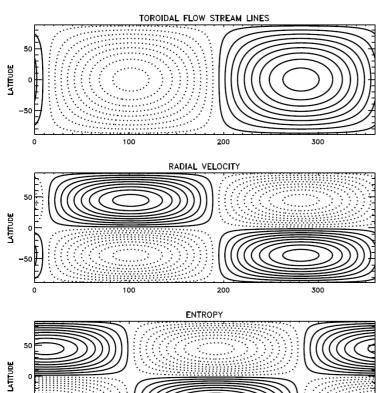

Kinetic energy of disturbances is the sum of energies of their toroidal and poloidal parts:

$$\overline{u^2} = \overline{u_p^2} + \overline{u_t^2} = \frac{1}{4} \sum_{l} l(l+1) \left(|V_l|^2 + |W_l|^2 \right)$$

Growth rates

Dependence on the thermal diffusivity

Composition stratification changes the effective buoyancy frequency:


$$N^2 \longrightarrow N_{\text{eff}}^2 = N^2 + N_{\mu}^2$$
,

$$N_{\mu}^2 = -\frac{g}{\mu} \frac{\mathrm{d}\mu}{\mathrm{d}r}$$

Eigenmodes $(\hat{\lambda} = 3, Q = 0.001)$

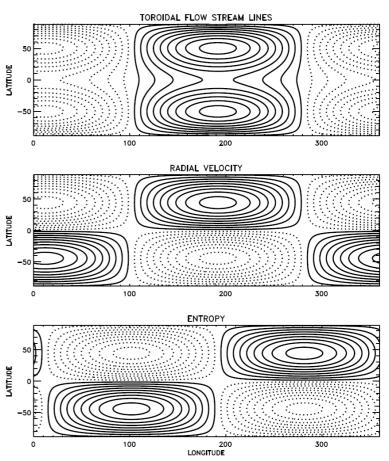
Toroidal r-mode A-1

$\overline{u_{\rm p}^2}/\overline{u_{\rm t}^2} = 2 \times 10^{-4}, \ \overline{Su_r}/\sqrt{\overline{u_r^2 S^2}} = 3 \times 10^{-3}$

200

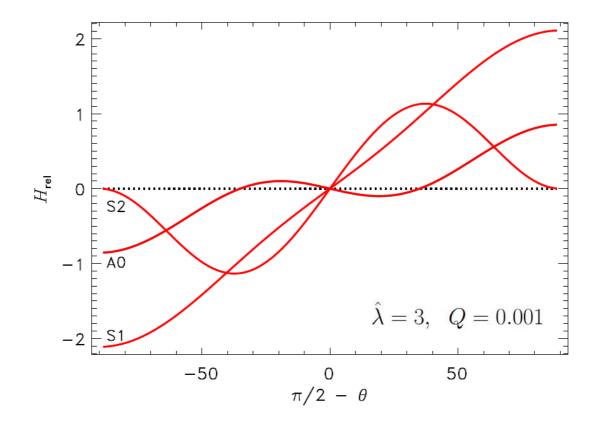
LONGITUDE

300


-5

0

100


Poloidal *g*-mode A1

$$\overline{u_{\rm p}^2}/\overline{u_{\rm t}^2} = 43, \ \overline{Su_r}/\sqrt{\overline{u_r^2 S^2}} = 6.4 \times 10^{-6}$$

Possibility of dynamos

Alecian et al. (2013) observed rapid (~10 yrs) changes in global magnetic field of Herbig star HD 190073

Conclusions

Even a very small radial differential rotation can provoke baroclinic instability in stellar radiation zones.

The instability can be understood as stability loss to excitation of r – and g-modes of global oscillations.

The unstable disturbances are helical. Turbulence resulting from the instability can be prone to dynamos.