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@ Turbulence needed to account for angular momentum transfer
outwards and excess in infra red radiation.
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Accretion Disks

Central Object

Angular momentum

@ Turbulence needed to account for angular momentum transfer
outwards and excess in infra red radiation.

@ What is the source of turbulence in accretion disks ? g



Introduction

The Magnetorotational Instability (MRI)

MRI Wave Pattern

e Balbus & Hawley, 1991.

o Keplerian rotation.

olQ

@ Infinite cylinder.

@ Axisymmetric perturbations.

kv, i0
__ Alfvén-Coriolis waves — .......... Alfvén waves (no rotation)

MRI Coriolis (epicyclic) oscillations
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Dissipative Saturation

e Magnetorotational Instability (MRI) [Velikhov (1959),
Chandrasekhar (1960)]. Reintroduced by Balbus and Hawley

(1991) as a major source of turbulence in thin astrophysical
disks.

@ Knobloch and Julien (2005) demonstrated saturation of the
MRI far from threshold in infinite axially uniform cylindrical
plasmas with rigid walls.

e Umurhan et al. (2007) employed the shearing box description
in order to show that near threshold the MRI saturation level
decreases with the magnetic Prandtl number.
As =Py, Ppy —0: L —1/Re, Re =

@ We consider a new dynamical process: non-dissipative 2
saturation in axially stratified thin disks.
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o Axial stretching: ¢ % €= % , a% = %a%-
@ Supersonic rotation: Rotation Mach Number = %
e Radial force balance: vg = rQ)(7).



The Reduced MHD Equations

Thin Disk Geometry

The Thin Disk Approximation
T'he Reduced Equations

@ Axial stretching:

@ Supersonic rotation:

o Radial force balance:

@ Axial force balance:

jan)

1
i

Rotation Mach Number =

vg = rQ)(7).

p(r,) = po(r)e ¢/2HOP, 0



The Reduced MHD Equations

The Thin Disk Approximation
T'he Reduced Equations

Thin Disk Geometry
Z
H

R
o Axial stretching: (= % €= % , a% = %a%-
@ Supersonic rotation: Rotation Mach Number = =.
e Radial force balance: vg = rQ)(7).
o Axial force balance: o(r,0) = po(r)e & /2H)?, 2
e Free functions: B.(r), po(r), T(r).
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@ Plasma beta :
B(r) = Po5iy "

@ Disk semi-thickness:
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The Thin Disk Approximation
T'he Reduced Equations

Thin Disk Geometry
Important Parameters Axial Density Stratification
@ Plasma beta : 1
Pl n=¢/H(r)
T
B(r) = Po”.
. . . G0 1 2 3 n 4
@ Disk semi-thickness: )
— plpp=eT?
T(r)
H(r) = "o

—— p/po = sech? (1)
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The Reduced Equations

The Reduced Thin-Disk MHD Equations
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The Reduced Equations

The Reduced Thin-Disk MHD Equations

9 [ Xac } _ [ Lac(17) 0 ] [ Xac ] n [ Nac(Xac, Xms) ]

of | Xms 0 Ems(ﬂ) Xms Nms (xuc/ xms)
0y
(4%
Xge = be
)
be
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The Reduced Equations

The Reduced Thin-Disk MHD Equations

9 [ Xac } _ [ Lac(17) 0 ] [ Xac ] n [ Nac(Xac, Xms) ]

ot Ximns 0 Ems(ﬂ) Xms Nms(xuc/ xms)
0y
| v Alfven-Coriolis in plane
Yac = b, perturbations
be
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The Reduced Equations

The Reduced Thin-Disk MHD Equations

EIR RPN B B P ied]

0y
| v Alfven-Coriolis in plane
Yac = b, perturbations
by |
v, |
Xms =
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The Reduced Equations

The Reduced Thin-Disk MHD Equations

EIR RPN B B P ied]

o
| v Alfven-Coriolis in plane
Yoo =\ g perturbations
by |
v, | Magneto-Sonic vertical
Xms =

o perturbations g
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The Linear Problem - S
T'he Magnetosonic System

The Alfvén-Coriolis Spectrum

o Analytical solution for the p/pg = sech?(17) vertical profile.

9/26



The Alfvén-Coriolis System

The Linear Problem S
T'he Magnetosonic System

The Alfvén-Coriolis Spectrum

o Analytical solution for the p/pg = sech?(17) vertical profile.

@ Assuming that the perturbations evolve in time as ¢“t:
(Lo + KT)(Lae + K™ )Vp, =0

Lo = i[(l — (,‘2)1], ¢ = tanh(n), Legendre operator

K* = B0 (3 1 202 + /9 + 16w?)




The Alfvén-Coriolis System

The Linear Problem - S
T'he Magnetosonic System

The Alfvén-Coriolis Spectrum

o Analytical solution for the p/pg = sech?(17) vertical profile.
@ Assuming that the perturbations evolve in time as ¢“t:
<Lac + K+>(Lac + K7>V9,r =0

Loy = di[(l — CZ)di] ¢ = tanh(n), Legendre operator

— ) (3 4+ 202 + /9 + 16w?)

@ Solutions diverge at most polynomial at 7 — o0 if:

T=k(k+1), k=12,... and vp, = Pi[tanh(i)] Jg

9/26




The Alfvén-Coriolis System

The Linear Problem S
T'he Magnetosonic System

The Alfvén-Coriolis Eigenfunctions
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The Linear Problem >
T'he Magnetosonic System

The Alfvén-Coriolis Dispersion Relation - MRI

K =k(k+1)
Y
(3B — wW?B)[BBL — (3+ w?)B] — 4w’B* =0
_ k(k+1)
Bl ==



The Alfvén-Coriolis System

The Linear Problem - S
T'he Magnetosonic System

The Alfvén-Coriolis Dispersion Relation - MRI

K =k(k+1)
4
(3Ber — w?B)[3BE; — 3+ w?)p] — 4w’p? =0
_ k(k+1)
pr, = K
k unstable MRI modes for B(r) > pk.. J
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The Alfvén-Coriolis System
T'he Magnetosonic System

The Linear Problem

MRI Stability Bifurcation Plot

v = Imw

% 1 2 3 4 5 Bo

Zero eigenvalue of multiplicity two at each bifurcation point Jg
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The Alfvén-Coriolis System

The Linear Problem The Magnetosonic System

The Stable Magnetosonic Spectrum

o Analytical solution for the p/pg = sech?(17) vertical profile.

o Assuming that the perturbations evolve in time as ¢/ “:
d*o w?
(1- Cz)d(,:z [ — 2 +2] c=0, ¢=tanh(n)

Boundary conditions: o(1) — 0 at # — oo (¢ — +1)

o Usefull substitution:

o(¢) = v1-=2%(9) g
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The Alfvén-Coriolis System

The Linear Problem The Magnetosonic System

The Stable Magnetosonic Spectrum

@ The associated Legendre equations

a2 d 2
(- —2%+ [2- 5] =0

E=tanh(y), u=+v1—w?



The Alfvén-Coriolis System

The Linear Problem The Magnetosonic System

The Stable Magnetosonic Spectrum

@ The associated Legendre equations

2 2
-5k —28d + [2— 45| =0

@ Solution

o(n) = /1= [arfr (&) +af(2)]

(n£¢) 2
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The Alfvén-Coriolis System
The Magnetosonic System

The Linear Problem

-15
24

Solutions exist for w? > 0 hence the magnetosonic modes are
stable and have a continuous spectrum
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Weakly Nonlinear Analysis

o Consider B values slightly above the threshold of the first
unstable mode (k = 1): B=pBL+¢
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The Amplitude Equation
Results

Weakly Nonlinear Analysis

Consider B values slightly above the threshold of the first
unstable mode (k = 1): B=pBL+¢

¢ is a control parameter that is related to the growth rate as:
V2 =276/14

e Express any perturbation f as: f(r,n,t) = ¢1(n)a(t)

For small perturbations the amplitude is: a(t) = age?®)t,

o Goal of weakly nonlinear analysis: to find differential equation
in time for a(t).

'
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The Amplitude Equation

e Transition to instability (6 = 0) through double zero
eigenvalue.

e Crossing the first instability threshold:

o The single stable fixed point at the center turns into a
(unstable) saddle.
e Two extra stable fixed points emerge.
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The Amplitude Equation

Weakly Nonlinear Analysis Rezle

The Amplitude Equation

e Transition to instability (6 = 0) through double zero
eigenvalue.

e Crossing the first instability threshold:

o The single stable fixed point at the center turns into a
(unstable) saddle.
e Two extra stable fixed points emerge.

0<0 0>0

dardt

o003
dald

%R "
o -

B4 o3 <0z 01

&

o1 0z 03 L04

07 0z _ 03
a

'
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The Amplitude Equation

Weakly Nonlinear Analysis Rezle

The Amplitude Equation

e Transition to instability (6 = 0) through double zero
eigenvalue.

e Crossing the first instability threshold:
o The single stable fixed point at the center turns into a
(unstable) saddle.
e Two extra stable fixed points emerge.

6<0 6>0
ey 1 &4

2 03
a

@

o7 8z 03 go4

7

Duffing equation: % = v%a — aa® Jg
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How to Calculate « ?

© Find the new stable steady-state of the reduced MHD
equations:

e v, =v,=by =0, % (vg,br,0) =0

o be(n) = Vouri(n) + (V6)usps () + ...



The Amplitude Equation

Weakly Nonlinear Analysis Rezle

How to Calculate « ?

© Find the new stable steady-state of the reduced MHD
equations:

e v, =v,=by =0, % (vg,br,0) =0
o by(n) = Vou1(n) + (Vo) uspa(n) + ...

@ The equation for ¢ is obtained from lowest order and is:

L(¢1)=0

where L is the linear Alfvén-Coriolis operator.

'
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The Amplitude Equation

Weakly Nonlinear Analysis Rezle

How to Calculate « ?

@ Solution of lowest order linear equation:

¢1(17) = Po(¢) — ¢P1(S)
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Weakly Nonlinear Analysis Rezle

How to Calculate « ?

@ Solution of lowest order linear equation:

¢1(17) = Po(¢) — ¢P1(S)

@ Next order equation:

L(¢3) = N (1¢1)

@ Solvability condition for ¢s:

< PN (1) >=0

m=+5/2 g

19 /26
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@ Back to Duffing’s equation (i = y%a — aa®)
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How to Calculate « ?

@ Back to Duffing’s equation (i = y%a — aa®)
@ The fixed point is given by:
72

ap — —
0
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Weakly Nonlinear Analysis Rezle

How to Calculate « ?

@ Back to Duffing’s equation (i = y%a — aa®)
@ The fixed point is given by:

2
L
0

©Q The fixed point is now identified with the amplitude of the
new steady-state of the reduced MHD equations:
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Weakly Nonlinear Analysis Rezle

How to Calculate « ?

@ Back to Duffing’s equation (i = y%a — aa®)
@ The fixed point is given by:

2
L
0

©Q The fixed point is now identified with the amplitude of the
new steady-state of the reduced MHD equations:

o
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Weakly Nonlinear Analysis Relis

Numerical Calculations
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Weakly Nonlinear Analysis

The Physical Mechanism
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Weakly Nonlinear Analysis

The Physical Mechanism

@ The growing perturbed magnetic pressure
pushes the plasma away and reduces
mid-plane density.

@ The Alfvén velocity increases.

s % % % =+ @ |he beta value decreases below threshold.
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Propertirs of the Weakly Nonlinear Solution

@ One conservation law for the amplitude:

2
(%) + Joaat — 2?2 =h

a(t) is expressed in terms of the Jacobi Elliptic Functions.
= a(t) is bounded.
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Weakly Nonlinear Analysis Relis

Propertirs of the Weakly Nonlinear Solution

@ One conservation law for the amplitude:

2
(%) + Joaat — 2?2 =h

a(t) is expressed in terms of the Jacobi Elliptic Functions.
= a(t) is bounded.

@ Sensitivity of the period of the nonlinear oscillations to Initial
Conditions:

P%%ln(‘o’izz) as h— 0
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Summary

Summary

@ A new non-dissipative saturation mechanism of the MRI has
been demonstrated.

@ The MRI excites Magneto-Sonic waves that modify the plasma
density.

@ The MRI saturates in form of bursty oscillations that drive the
system in and out of the stable regime.

@ The period of the bursty nonlinear oscillations is sensitive to
the initial conditions.

'
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Appendix For Further Reading

For Further Reading I

[ E. Liverts and M. Mond
MNRAS, 2(1):50-100,

Y. Shtemler, M. Mond, and E. Liverts
MNRAS, 2(1):50-100,

B
[ E. Knobloch and K. Julien
MNRAS, 2(1):50-100,

B
B

O.M. Umurhan, K. Menou, and O.Regev
MNRAS, 2(1):50-100,

E. Liverts, Y. Shtemler, M. Mond, O.M. Umurhan, and D.

Bisikalo
Phys. Rev. Lett., 2(1):50-100, g

)
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For Further Reading II

¥ O0.M. Umurhan and O.Regev.
Fluid Dynamics.
Coming soon to a library near you, 2013.
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