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The Magnetorotational Instability (MRI)

MRI Wave Pattern

Alfvén-Coriolis waves

MRI

Balbus & Hawley, 1991.
Keplerian rotation.
Infinite cylinder.
Axisymmetric perturbations.

.......... Alfvén waves (no rotation)

.......... Coriolis (epicyclic) oscillations
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Dissipative Saturation

Magnetorotational Instability (MRI) [Velikhov (1959),
Chandrasekhar (1960)]. Reintroduced by Balbus and Hawley
(1991) as a major source of turbulence in thin astrophysical
disks.
Knobloch and Julien (2005) demonstrated saturation of the
MRI far from threshold in infinite axially uniform cylindrical
plasmas with rigid walls.
Umurhan et al. (2007) employed the shearing box description
in order to show that near threshold the MRI saturation level
decreases with the magnetic Prandtl number.
As →

√
Pm, Pm → 0 : L̇→ 1/Re, Re→ ∞

We consider a new dynamical process: non-dissipative
saturation in axially stratified thin disks.
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The Thin Disk Approximation
The Reduced Equations

Thin Disk Geometry

!

z!

R!
H!

Axial stretching: ζ = z
ε , ε = H

R , ∂
∂z = 1

ε
∂

∂ζ .

Supersonic rotation: Rotation Mach Number = 1
ε .

Radial force balance: vθ = rΩ(r).

Axial force balance: ρ(r, ζ) = ρ0(r)e−ζ2/2H(r)2
.

Free functions: Bz(r), ρ0(r), T(r).
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Thin Disk Geometry

Important Parameters

Plasma beta :

β(r) = β0
ρ0(r)T(r)

B2
z(r)

.

Disk semi-thickness:

H(r) =
√

T(r)
Ω(r)
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The Thin Disk Approximation
The Reduced Equations

The Reduced Thin-Disk MHD Equations

∂

∂t

[
xac
xms

]
=

[ Lac(η) 0
0 Lms(η)

] [
xac
xms

]
+

[
Nac(xac, xms)
Nms(xac, xms)

]

xac ≡


vr
vθ

br
bθ



xms =

[
vz
σ

]

Alfven-Coriolis in plane
perturbations

Magneto-Sonic vertical
perturbations
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The Alfvén-Coriolis System
The Magnetosonic System

The Alfvén-Coriolis Spectrum

Analytical solution for the ρ/ρ0 = sech2(η) vertical profile.

Assuming that the perturbations evolve in time as eiωΩt:

(Lac + K+)(Lac + K−)Vθ,r = 0

Lac =
d

dξ [(1− ξ2) d
dξ ], ξ = tanh(η), Legendre operator

K± = πβ(r)
4 (3 + 2ω2 ±

√
9 + 16ω2)

Solutions diverge at most polynomial at η → ±∞ if:

K± = k(k + 1) , k = 1, 2, . . . and vθ,r = Pk[tanh(η)]
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The Alfvén-Coriolis Eigenfunctions

!
k = 2 k = 3 k = 4
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The Alfvén-Coriolis Dispersion Relation - MRI

K± = k(k + 1)

⇓
(3βk

cr −ω2β)[3βk
cr − (3 + ω2)β]− 4ω2β2 = 0

βk
cr ≡

k(k + 1)
3

k unstable MRI modes for β(r) > βk
cr.
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MRI Stability Bifurcation Plot

0 1 2 3 4 5 6−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

`

a

k=1 2
3γ = Imω βk

cr =
k(k+1)

3

Zero eigenvalue of multiplicity two at each bifurcation point
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The Alfvén-Coriolis System
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The Stable Magnetosonic Spectrum

Analytical solution for the ρ/ρ0 = sech2(η) vertical profile.

Assuming that the perturbations evolve in time as eiωΩt:

(1− ξ2)
d2σ

dξ2 +

[
ω2

1− ξ2 + 2
]

σ = 0, ξ = tanh(η)

Boundary conditions: σ(η)→ 0 at η → ±∞ (ξ → ±1)

Usefull substitution:
σ(ξ) =

√
1− ξ2f (ξ)
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The Alfvén-Coriolis System
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The Stable Magnetosonic Spectrum

The associated Legendre equations

(1− ξ2) d2f
dξ2 − 2ξ

df
dξ +

[
2− µ2

1−ξ2

]
= 0

ξ = tanh(η), µ =
√

1−ω2

Solution

σ(η) =
√

1− ξ2 [a+f+(ξ) + a−f−(ξ)]

f± =
[

1−ξ
1+ξ

]±µ/2
(µ± ξ)
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The Alfvén-Coriolis System
The Magnetosonic System

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

2

η

ν
h=2f± ω = 2

Solutions exist for ω2 > 0 hence the magnetosonic modes are
stable and have a continuous spectrum
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The Amplitude Equation
Results

Goal

Consider β values slightly above the threshold of the first
unstable mode (k = 1): β = β1

cr + δ

δ is a control parameter that is related to the growth rate as:
γ2 = 27δ/14

Express any perturbation f as: f (r, η, t) = φ1(η)a(t)

For small perturbations the amplitude is: a(t) = a0eγ(δ)t.

Goal of weakly nonlinear analysis: to find differential equation
in time for a(t).
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The Amplitude Equation
Results

The Amplitude Equation

Transition to instability (δ = 0) through double zero
eigenvalue.

Crossing the first instability threshold:
The single stable fixed point at the center turns into a
(unstable) saddle.
Two extra stable fixed points emerge.
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How to Calculate α ?

1 Find the new stable steady-state of the reduced MHD
equations:

vr = vz = bθ = 0, ∂
∂t (vθ , br, σ) = 0

br(η) =
√

δµ1φ1(η) + (
√

δ)3µ3φ3(η) + . . .

2 The equation for φ1 is obtained from lowest order and is:

L(φ1) = 0

where L is the linear Alfvén-Coriolis operator.
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5 Solvability condition for φ3:
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6 Back to Duffing’s equation (ä = γ2a− αa3)
7 The fixed point is given by:

a0 =

√
γ2

α

8 The fixed point is now identified with the amplitude of the
new steady-state of the reduced MHD equations:

9

α =

√
5
2
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Numerical Calculations
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The Physical Mechanism
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mid-plane density.
The Alfvén velocity increases.
The beta value decreases below threshold.
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Propertirs of the Weakly Nonlinear Solution

One conservation law for the amplitude:(
da
dt

)2
+ 1

2 αa4 − γ2a2 = h

a(t) is expressed in terms of the Jacobi Elliptic Functions.
⇒ a(t) is bounded.

Sensitivity of the period of the nonlinear oscillations to Initial
Conditions:

P→ 1
2γ ln

(
32γ2

αh

)
as h→ 0
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A new non-dissipative saturation mechanism of the MRI has
been demonstrated.

The MRI excites Magneto-Sonic waves that modify the plasma
density.

The MRI saturates in form of bursty oscillations that drive the
system in and out of the stable regime.

The period of the bursty nonlinear oscillations is sensitive to
the initial conditions.

24 / 26



Introduction
The Reduced MHD Equations

The Linear Problem
Weakly Nonlinear Analysis

Summary

Summary

A new non-dissipative saturation mechanism of the MRI has
been demonstrated.

The MRI excites Magneto-Sonic waves that modify the plasma
density.

The MRI saturates in form of bursty oscillations that drive the
system in and out of the stable regime.

The period of the bursty nonlinear oscillations is sensitive to
the initial conditions.

24 / 26



Introduction
The Reduced MHD Equations

The Linear Problem
Weakly Nonlinear Analysis

Summary

Summary

A new non-dissipative saturation mechanism of the MRI has
been demonstrated.

The MRI excites Magneto-Sonic waves that modify the plasma
density.

The MRI saturates in form of bursty oscillations that drive the
system in and out of the stable regime.

The period of the bursty nonlinear oscillations is sensitive to
the initial conditions.

24 / 26



Introduction
The Reduced MHD Equations

The Linear Problem
Weakly Nonlinear Analysis

Summary

Summary

A new non-dissipative saturation mechanism of the MRI has
been demonstrated.

The MRI excites Magneto-Sonic waves that modify the plasma
density.

The MRI saturates in form of bursty oscillations that drive the
system in and out of the stable regime.

The period of the bursty nonlinear oscillations is sensitive to
the initial conditions.

24 / 26



Appendix For Further Reading

For Further Reading I

E. Liverts and M. Mond
MNRAS, 2(1):50–100,

Y. Shtemler, M. Mond, and E. Liverts
MNRAS, 2(1):50–100,

E. Knobloch and K. Julien
MNRAS, 2(1):50–100,

O.M. Umurhan, K. Menou, and O.Regev
MNRAS, 2(1):50–100,

E. Liverts, Y. Shtemler, M. Mond, O.M. Umurhan, and D.
Bisikalo
Phys. Rev. Lett., 2(1):50–100,

25 / 26



Appendix For Further Reading

For Further Reading II

O.M. Umurhan and O.Regev.
Fluid Dynamics.
Coming soon to a library near you, 2013.
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