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Motivation

Ï First successful model for solar cycle was proposed by Parker in
1955
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Motivation

Ï In αΩ dynamo,regeneration of poloidal magnetic �eld can be
due to parameter α=−τc < u.(∇×u)>.

Ï Poloidal magnetic �ux through α-e�ect is measured by a
non-dimensional parameter Dα =αR/η

Ï Toroidal magnetic �ux through di�erential rotation is
measured by a magnetic Reynolds number DΩ =Ω′R3/η

Ï Dynamo e�eciency is governed by a non dimensional dynamo
number D and

D =DαDΩ = αR

η
.
Ω′R3

η
,

D∝Ω2
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Motivation

Observations:

In linear dynamo theory, for stars with same internal structure,
cycle period Pcyc

Ï Pcyc ∝D− 1
2 ∝Ω−1

Ï Frequency of magnetic �elds ω∝D
1
2 ∝Ω

Ï Does this linear relation still hold in non linear dynamo theory?
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Motivation

In non linear dynamo theory, the growth of magnetic �eld is
limited by saturation mechanism.

Ï There are at least three saturation mechanisms that have been
proposed for stellar dynamo theory:

Ï α quenching

Ï Shear quenching

Ï Magnetic �ux loss
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Motivation

Ï Observationally, cycle period depends upon the stellar rotation
period Prot as Pcyc ∝Pn

rot , n= 1.25±0.5[Noyes et. al(1984)].

Ï Exponent n = 0.80 for active star and 1.15 for inactive star
[Saar and Brandenburg ; 1999, Charbonneau and Saar ; 2001,
Saar ; 2002]
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Motivation

Ï Can we develop a minimal dynamo model explain these
observations?
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Model Construction

Model
Ï Cattaneo,Jones & Weiss (1983) constructed a simple
parameterized model by taking B = (0,B(t)e ikx , ikA(t)e ikx)
and Lorentz force that generates the di�erential rotation
∂W
∂z =w0+w(t)exp(2ikx) then dimensionless seventh order
system is given as:

∂tA= 2DB −A, (1)

∂tB = i(1+w0)A− 1

2
iA∗w −B , (2)

∂tw0 = 1

2
i(A∗B −AB∗)−ν0w0, (3)

∂tw =−iAB −νw (4)

Ï A is poloidal �eld, B is toroidal �eld, w0 is mean di�erential
rotation and w is �uctuating di�erential rotation.

Ï A,B, w are complex in nature whereas w0 is real.
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Model Construction

Extended Model(Sood and Kim,2013)
Ï System is extended by adding α quenching and �ux loss.

∂tA= 2DB

1+κ1(|B |2)
− [1+λ1(|B |2)]A, (5)

∂tB = i(1+w0)A− 1

2
iA∗w − [1+λ2(|B |2)]B , (6)

∂tw0 = 1

2
i(A∗B −AB∗)−ν0w0, (7)

∂tw =−iAB −νw (8)

Ï The system is solved for three cases by taking ν= 1.0 and
ν0 = 35.0 and D varies from 1 to 400.:

Ï Case 1: α-quenching and no �ux loss i.e. λ1 = λ2 = 0, κ1 6= 0
Ï Case 2: no α-quenching and �ux loss i.e. λ1 = λ2 , κ1 = 0
Ï Case 3: α-quenching and �ux loss i.e. λ1 = λ2 = κ1 and
further studied the relationship between di�erential rotation
and rotation rate.
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Model Construction

Case 1:

Ï α-quenching and no �ux loss i.e. κ1 = 2.5,λ1 =λ2 = 0.0

Magnetic �eld strength starts
decreasing with increasing rotation
rate.

Frequency increases with rotation
rate.

ω∝Ωβ, where β= 0.67 for Ω≤ 7
and β= 1.24 for Ω> 7

Ï which are inconsistent with observations.
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Case: 2

Ï no α-quenching and �ux loss i.e. λ1 = λ2 =2.5, κ1 = 0

Magnetic �eld strength decreases
with increasing rotation rate
(inconsistent) .

Frequency increases with rotation
rate.

Ï scaling exponent varies with increasing rotation rate but this
variation is with in the observed range.
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Case 3:

Ï α-quenching and �ux loss i.e. λ1 = λ2 = κ1 = 2.5

Magnetic �eld strength increases
with increasing rotation rate.

Frequency increases with rotation
rate.

ω∝Ω0.80

Ï which are in agreement for active star.[Saar and Brandenburg,
1999; Charbonneau and Saar, 2001; Saar, 2002]
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Frequency vs rotation rate in log-log scale.

ω∝Ω0.80
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Model Construction

Ï Among the three cases considered in this 7th order system,
Case-1 and Case-2 with only alpha-quenching or �ux-loss show
the behavior of frequency and strength of magnetic �elds in
disagreement with observation.

Ï Agreement with observations is obtained only in Case-3 with
equal amount of alpha quenching and poloidal and toroidal
magnetic �ux losses.

Ï These results thus suggest that there must be an e�ective
balance between generation and dissipation of magnetic �elds
to obtain the saturation of magnetic �elds at high rotation.
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Model Construction

Ï Is the right balance necessary between the various non linear
terms as well as various transport coe�cients for a dynamo to
work near marginal stability?
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Reduced Fifth Order System

Reduced Fifth Order System

Here we consider the extreme limit where �uctuating di�erential
rotation w is much weaker than w0 by taking the limits of ν→∞
and w → 0 in equations (5) to (8) and reduced system is:

∂tA= 2DB

1+κ1(|B |2)
− [1+λ1(|B |2)]A, (9)

∂tB = i(1+w0)A− [1+λ2(|B |2)]B , (10)

∂tw0 = 1

2
i(A∗B −AB∗)−ν0w0. (11)
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Reduced Fifth Order System

(1) Magnetic �eld strength and frequency as function of rotation rate for α-quenching and no

�ux loss i.e. λ1 = λ2 = 0 , κ1 =2.5.

(2) Magnetic �eld strength and frequency as function of rotation rate for α-quenching and no

�ux loss i.e. λ1 = λ2 = 2.5 , κ1 =0.0.



Dynamic Model of Dynamo (Magnetic Activity) and Rotation

Reduced Fifth Order System

(3) Magnetic �eld strength and frequency as function of rotation rate for α-quenching and �ux loss i.e.

κ1 = λ1 = λ2 = 2.5.

Ï None of the case is compatible with observations.

Ï Quenching in mean di�erential rotation tends to become too
severe, possibly shutting down of dynamo for large rotation
rate.

Ï We need �uctuating di�erential rotation to prevent this shear
quenching.
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Reduced Sixth Order System

The e�ect of �uctuating di�erential rotation w is studied by taking
ν0 →∞ and w0 → 0 in system (5)-(8). Reduced sixth order
dynamical system in the presence of nonlinearities such as α-
quenching, shear quenching and magnetic �ux loss is given as
follows:

∂tA= 2DB

1+κ1(|B |2)
− [1+λ1(|B |2)]A, (12)

∂tB = iA

1+κ2(|B |2)
− 1

2
iA∗w − [1+λ2(|B |2)]B , (13)

∂tw =−iAB −νw . (14)
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Reduced Sixth Order System

Ï The system is studied for di�erent combinations of
κ1,κ2,λ1,λ2

Ï We �nd that the frequency of magnetic �eld is within/close to
the observations.

Ï Magnetic �eld strength increases monotonically with rotation
rate.

Ï Various saturation mechanisms are able to slow down the
growth of magnetic �eld with rotation rate to some extent but
are not su�ciently e�cient to �atten the magnetic �eld which
are inconsistent with observations.

Ï These results suggest that incorporation of mean di�erential
rotation as well as �uctuating di�erential rotation is necessary
for onset of dynamo near marginal stability.
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Minimal Dynamical Model: Parameter Dependencies
Ï To show that seventh order system is minimal model, we
investigate system (5)-(8) for nonlinear power-law dependence
of α quenching and �ux loss on B as follows:

∂tA= 2DB

1+κ1(|B |m)
− [1+λ1(|B |n)]A, (15)

∂tB = i(1+w0)A− 1

2
iA∗w − [1+λ2(|B |n)]B , (16)

∂tw0 = 1

2
i(A∗B −AB∗)−ν0w0, (17)

∂tw =−iAB −νw , (18)

Ï The investigation of di�erent cases by varying values of m, n,
κ1,λ1 and λ2 systematically, we note that α-quenching power
law and magnetic dissipation should increase at least
quadratically
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Minimal Dynamical Model

Ï Dynamic balance among the dissipation and generation of
magnetic �elds for n=m= 2, κ1 =λ1 =λ2 = 2.5 for dynamo
number D = 2.

Dynamical balance between
2DB

1+κ1(|B |2) and [1+λ1(|B |2)]A.

Dynamical balance between
i(1+w0)A,[1+λ2(|B |2)]B.
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Results

Results

Ï Detailed investigations show that seventh order system is more robust in
the presence of equal combination of α quenching and magnetic �ux loss.

Ï The linear increase in frequency and �attening of magnetic energy for
higher rotation rate in this case are in agreement with observations.

Ï Study of reduced �fth order system and reduced sixth order system
indicates that we need a right balance between mean and �uctuating
di�erential rotation to obtain the results consistent with observations.

Ï We need a right balance not only in generation and destruction of
magnetic �elds but also in various �ux transport coe�cients.

Ï Furthermore, the linear increase in observed frequency and rotation rate
could be signature of self organization.(work in progress, Sood and Kim,
2013b)

Ï Our model is valid for fast rotating stars.
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