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1. Introduction

Magnets have practically become everyday objects. Permanent ferromagnetism
is a property of only a few densely packed materials, such as iron, in which
the spin exchange interactions of individual atoms naturally line up in the same
direction and create a residual persistent magnetic field. In the early universe,
before iron and other magnetic materials had been created inside stars, such
permanent magnetism did not exist.

Scientists have long wondered where the observed cosmic magnetization came
from, given that the fully ionized gas of the early universe contained no ferro-
magnetic particles.

The detection of linearly polarized synchrotron emission at mm-UV frequencies
from high redshift FERMI/LAT gamma-ray blazars and FSRQs (special classes
of active galactic nuclei with powerful nonthermal relativistic jet emission) up to
z ≤ 1.5 (Böttcher and Reimer 2013) indicates the presence of partially ordered
magnetic fields at z = 1.5. Beck and Wielebinski (2013) argue that magnetic
fields existed already in quasars at epochs with z ' 5 and in starburst galaxies
at z ' 4, based on Faraday rotation measurements and synchrotron emission.
More systematic detections are expected from the future SKA-project and its
pathfinders such as LOFAR with the eventual detection of Zeeman splitting of
the redshifted 21-cm line emission.
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Many astrophysicists believe that galactic magnetic fields are generated and
maintained by dynamo action, whereby the energy associated with the differ-
ential rotation of spiral galaxies is converted into magnetic field energy.

However, the dynamo mechanism is only a means of amplification and dynamos
require seed magnetic fields. These seed field are needed for possible instabilities
from anisotropic plasma particle distribution functions, MHD instabilities (such
as the Magneto-Rotational Instability) and/or the MHD dynamo process, which
grow according to d(δB)2/dt = 2γ(δB)2, so that

(δB)2(t) = (δB)2(t = 0)e2γt (1)

Obviously, a nonvanishing initial (δB)2(t = 0) 6= 0 seed magnetic field energy
density is required. Neither the dynamo process nor plasma instabilities generate
magnetic fields without such seed fields.

Before the formation of the first stars, the luminous proto-interstellar matter
consisted only of a fully ionized gas of protons, electrons, helium nuclei and
lithium nuclei which were produced during the Big Bang.
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The physical parameters that describe the state of this gas are, however, not
constant. Density and pressure fluctuate around certain mean values, and con-
sequently electric and magnetic fields fluctuate around vanishing mean values,
due to the thermal motion of the plasma particles.

This small but finite dispersion in the form of random magnetic fields has
now been calculated, specifically for the proto-interstellar gas densities and
temperatures that occurred in the plasmas of the early universe at redshifts
z = 7− 20 of the reionization epoch, when something, probably the light from
the first stars, provided the energy needed to break up the previously neutral
gas that existed in the universe during the recombination era. The protons
and electrons inside the plasma would have moved around continuously, simply
by virtue of existing at a finite temperature. It is the finite variance of the
resulting magnetic fluctuations, that subsequently leads to the creation of a
stronger magnetism across the universe.

There have been alternative proposals for cosmic seed magnetic fields. Bier-
mann (1950) proposed that the centrifugal force generated in a rotating plasma
cloud will separate out heavier protons from lighter electrons, thereby creating
a separation of charge that leads to tiny electric and magnetic fields. However,
this scheme suffers from a lack of suitable rotating objects everywhere, meaning
that it could only ever generate the magnetic fields in a small portion of the
medium.
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2. Plasma fluctuations

All plasmas, including unmagnetized and those in thermal equilibrium, have
fluctuations. Because of the large sizes of astrophysical systems compared to
the plasma Debye length, the fluctuations are descibed by real wave vectors (~k)
and complex frequencies ω(~k) = ωR(~k) + ıγ(~k), implying for the space- and
time-dependence of e.g. magnetic fluctuations the superposition of

δ ~B(~x, t) ∝ exp[ı(~k · ~x− ωRt) + γt] (2)

One distinguishes between

• collective modes with a fixed dispersion relation ω = ω(~k), e.g. elec-
tromagnetic waves in vacuum ω2

R = c2k2 and γ = 0,

• non-collective modes with no dispersion relation ω = ω(~k),

and, regarding the real (ωR) and imaginary (γ) part of the frequency,

• weakly damped/amplified wave-like modes with |γ| � |ωR|, e.g.
collective Alfven and magnetosonic waves,

• weakly propagating modes with |ωR| � |γ|, e.g. collective mirror
und firehose fluctuations,

• aperiodic modes with ωR = 0 fluctuate only in space, do not propagate
as ωR = 0, but permanently grow or decrease in time depending on the
sign of γ, e.g. collective Weibel fluctuations. And |δB|2 � |δE|2 !
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Because of their comparably low gas densities, all cosmic fully and partially
ionized non-stellar plasmas are collision-poor, as indicated by the very small
values of the plasma parameter

g = νee/ωp,e = 7.3 · 10−4
(
ne/cm−3

)1/2
(Te/K)−3/2 ≤ O

(
10−10

)
, (3)

given by the ratio of the electron-electron Coulomb collision frequency νee to the
electron plasma frequency ωp,e, characterizing interactions with electromagnetic
fields, so that fully kinetic plasma descriptions are necessary.

Unlike for weakly amplified/damped modes (see Salpeter 1960, Sitenko 1967,
Ichimaru 1973, Kegel 1998), however, for aperiodic fluctuations the expected
fluctuation level has never been calculated quantitatively.

Only recently general expressions for the electromagnetic fluctuation spectra
(electric and magnetic field, charge and current densities) from uncorrelated
plasma particles in unmagnetized plasmas for arbitrary frequencies have been
derived (Schlickeiser and Yoon 2012) using the system of the Klimontovich and
Maxwell equations, which are appropriate for fluctuations wavelengths longer

than the mean distance between plasma particles, i.e. k ≤ kmax = 2πn
1/3
e .

These general expressions are covariantly correct within the theory of special
relativity, and hold for arbitrary momentum dependences of the plasma particle
distribution functions and for collective and non-collective fluctuations.
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2.1. Thermal aperiodic noise in the intergalactic medium

The most important unmagnetized cosmic plasma is the early intergalactic
medium, photoionized from the earliest generation of stars at redshift z ' 20,
which transformed the Universe from darkness after recombination to light.
Modeling the photoionization by the first forming stars (Hui and Gnedin 1997,
Hui and Haiman 2003) indicates IGM temperatures of about Te = Tp = T =
104T4K and ionized gas densities of ne = 10−7n−7 cm−3 at redshift z = 4.

The aperiodic transverse magnetic field fluctuation spectrum over the whole
complex frequency plane for nonrelativistic plasma temperatures ua � c, is
shown in Fig. 1 and given by (Felten et al. 2013)

< δB2
⊥ >k,γ=

∑
a

ω2
p,amaua

4π3k3c2

×
|π1/2[(1 + γ2

c2k2 )D(| γkua |)− σ(1 + γ2

c2u2
a,‖

)]|

|1 + γ2

c2k2 +
∑

a
ω2
p,a

k2c2
| γkua |π

1/2[(1 + γ2

c2k2 )D(| γkua |)− σ(1 + γ2

c2u2
a,‖

)]|2
, (4)

where ua = (2kBTa/ma)
1/2 denotes the thermal velocity, σ = 0, 1, 2 for γ > 0,

γ = 0, γ < 0, respectively (correct analytical continuation), and

D(x) = ex
2
erfc (x) = ex

2

[
1− 2

π1/2

∫ x

0
dt e−t

2

]
(5)
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Figure 1: Contour plot of the spontaneously emitted aperiodic magnetic
field fluctuation spectrum in a thermal nonrelativistic electron-
proton distribution in units of kBTe/(2π

3ωp,e). Equal electron
and proton temperatures (Ti = Te) and the value βe = 10−3 are
adopted. The colour scale is logarithmic in powers of e. From
Felten et al. (2013).
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Integrating over all values of γ and k provides the energy density of sponta-
neously emitted fully random magnetic fluctuations

(δB)2 = 4π

∫ kmax

0
dk k2 < δB2 >k (6)

with

< δB2
⊥ >k=

∫ ∞
−∞

dγ < δB2
⊥ >k,γ (7)

RS (2012) calculated a lower limit to this integral by setting σ = 0 in Eq. (4),
omitting the collective damped mode at γ < 0, yielding

< δB2 >k= 2

∫ ∞
0

dγ U(k, γ)

=
ω2
p,emeβ

2
e

2π5/2k2

∫ ∞
0

dx
F (x, µ)

[1 + β2
ex

2]
[
1 +

π1/2ω2
p,e

k2c2
xF (x, µ)

]2 , (8)

where F (x, µ) = D(x) + µ−1D(xµ), the mass ratio µ2 = mp/me = 1836 and

βe = ue/c = 1.84 · 10−3T
1/2
4 .

Because of the large value of µ = 43 we can neglect the proton contribution,
so that F (x, µ) ' D(x), implying in terms of the normalized wave vector
κ = kc/ωp,e that
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< δB2 >k=
mec

2β2
e

2π5/2κ2
J0(βe, κ) (9)

where we define the integrals

Jn(β, κ) =

∫ ∞
0

dx

1 + β2x2

xnD(x)[
1 + π1/2

κ2 xD(x)
]2 (10)

for n = 0, 1. The approximative analytical evaluation of the integral (10) makes
use of the rational approximation better than 2.5 · 10−5 given by D(x) ' a1t−
a2t

2 +a3t
3 with t = 1/(1+px), p = 0.47047, a1 = 0.3480242, a2 = 0.0958798

and a3 = 0.7478556. Given the smallness of a2 we use as lower and upper limits
DL(x) < D(x) < DU (x) with

DL(x) ' (a0 + a3t
2)t, DU (x) ' (a1 + a4t

2)t (11)

where a0 = a1 − a2 = 0.2521444 and a4 = a3 − a2 = 0.6519758. The integral
(10) then is well approximated by JLn (β, κ) < Jn(β, κ) < JUn (β, κ) with

JU,Ln (β, κ) =

∫ ∞
0

dx
xnDU,L(x)

[1 + β2x2]
[
1 + π1/2

κ2 xDL,U (x)
]2 (12)
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After straigtforward but tedious algebra we derive

JL,U0 ' a0,1

p

YL,U + ln(1 + YL,U ) + ln pe1/2

β

(1 + YL,U )2

' a0,1

p

ln(pe1/2/β) for YL,U � 1
YL,U+ln(pYL,U/β)

Y 2
L,U

for YL,U � 1
(13)

and

JL,U1 ' a0,1

p2(1 + YL,U )2

[
2p

β
+
YL,U − 1

YL,U + 1
ln
p(1 + YL,U )

β

]

' a0,1

p2


2p
β for YL,U � 1
(2p/β)+ln(pYL,U/β)

Y 2
L,U

for YL,U � 1
(14)

with YL,U (κ) = π1/2a1,0/[pκ
2]. The asymptotic expansions for small and large

values of YL,U correspond to large and small values of the normalized wavenum-
ber, respectively.
According to Eq. (9) the wavenumber power spectra k2 < δB2 >L,Uk ∝
JU,L0 (β, κ) to leading order increase ∝ κ2 at small normalized wavelength
κ ≤ (a1,0π

1/2/p)1/2 and approach constants at large κ. The constants at large
values of κ provide the dominating contribution to the remaining κ-integral in
Eq. (6). We find in this case
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|δB|L =
√
δB2

L = 3.5βeg
1/3W 1/2

e = 1.8 · 10−16T
1/2
4 n

2/3
−7 G, (15)

providing |δB| ' 2 · 10−16T
1/2
4 G in cosmic voids and |δB| ' 2 · 10−10T

1/2
4 G

in protogalaxies.

These guaranteed magnetic fields in the form of randomly distributed fluctu-
ations, produced by the spontaneous emission of the isotropic thermal IGM
plasma, may serve as seed fields for possible amplification by later possible
plasma instabilities from anisotropic plasma particle distribution functions, MHD
instabilities and/or the MHD dynamo process.

We note that the strength of the guaranteed spontaneously emitted magnetic
seed fields (15) is significantly larger than the seed fields from the Biermann
(1950) battery process (10−18 G) and cosmological phase transitions (Sigl et
al. 1997) (10−20 G). They also have a nearly 100 percent volume filling factor.

These spontaneously emitted fluctuations have typical plasma scale lengths

≤ 1010n
−1/2
−7 cm, but as argued below, the first hydrodynamical compression

generates considerably longer correlation lengths of the compressed magnetic
fields determined by the spatial scale of the compressor.
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2.2. Influence of viscous damping

While generated continuously by spontaneous emission, the turbulent magnetic
field also experiences strong dissipation at small scales by viscous damping from
collisional processes with the damping rate γv(k) = 0.18β2

ek
2c2/(ωp,egµ

2) Hz
(Braginskii 1965).

The equilibrium magnetic field fluctuation spectrum from continuous sponta-
neous emission and viscous damping is given by < δB2 >eq (k) = P (k)/γv(k),
where

P (k) = 2

∫ ∞
0

dγ γU(k, γ) =
ωp,emec

2β3
e

2π5/2κ
J1(βe, κ) (16)

is the magnetic field power radiated per unit volume at k due to spontaneous
emission, and J1 the integral (10) for n = 1. Consequently, the equilibrium
magnetic field fluctuation power spectrum is given by

< δB2 >eq (k) =
µ2mec

2gβeJ1(βe, κ)

0.36π5/2κ3
, (17)

so that in this case

(δB)2
eq = 2mpc

2βeg
(ωp,e

c

)3
∫ 2πcn

1/3
e

ωp,e

0
dκ

J1(βe, κ)

κ
(18)

With the asymptotics (14) we find for the maximum and minimum equilibrium
magnetic field strength |δBeq,U| = 1.18|δBeq,L| and
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|δBeq,L| = 1.46 · 10−10g1/2n3/4
e

[
15.1− lnne

6

]1/2

= 1.7 · 10−21n−7T
−3/4
4 G,

(19)

providing |δB| ' 2 · 10−21T
−3/4
4 G in cosmic voids and |δB| ' 2 · 10−12T

−3/4
4

G in protogalaxies. Accounting for the additional viscous damping reduces the
equilibrium magnetic field strength by about 5 and 2 orders of magnitude in
cosmic voids and protogalaxies, respectively, as compared to the estimate (15).

In cosmic voids and protogalaxies the spontaneously emitted seed magnetic
fields are too weak to affect the dynamics of the IGM plasma, as the small
values of the associated turbulent plasma beta βt ≥ 1013 in cosmic voids and
βt ≥ 1010 in protogalaxies indicate. Because of these ultrahigh turbulent plasma
beta values, the seed fields are tied passively to the highly conducting IGM
plasma as frozen-in magnetic fluxes.
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3. From disordered to ordered magnetic field
structures

As we demonstrated the unmagnetized, isotropic, thermal and steady IGM
plasma by spontaneous emission generates steady tangled fields, isotropically

distributed in direction, on small spatial scales ≤ 1010n
−1/2
7 cm (corresponding

to k ≥ ωp,e/c). Because of its ultrahigh turbulent plasma beta value, these
seed fields are too weak to affect the dynamics of the IGM plasma, but are tied
passively to the highly conducting IGM plasma as frozen-in magnetic fluxes.

Earlier analytical considerations and numerical simulations (Laing 1980, Hughes
et al. 1985, Matthews and Scheuer 1990) showed that any shear and/or com-
pression of the IGM medium enormously amplify these seed magnetic fields and
make them anisotropic. Depending on the specific exerted compression and/or
shear, even one-dimensional ordered magnetic field structures can be generated
out of the original isotropically tangled field configuration.

Hydrodynamical compression or shearing of the IGM medium arises from the
shock waves of the supernova explosions of the first stars at the end of their
lifetime, or from supersonic stellar and galactic winds. Fig. 2 sketches the basic
physical process.
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mic magnetic fields. On the left figure a turbulent random mag-
netic field pervades the medium between five protostars. The right
figure shows the ordering and stretching of the magnetic field as
one of the stars explodes as a supernova. The outgoing shock wave
compresses and orders the magnetic field in its vicinity.
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The IGM seed magnetic field upstream of these shocks is random in direc-
tion, and by solving the hydrodynamical shock structure equations for oblique
and conical shocks it has been demonstrated (Cawthorne and Comb 1990,
Cawthorne 2006) that the shock compression enhances the downstream mag-
netic field component parallel to the shock, but leaving the magnetic field
component normal to the shock unaltered. Consequently, a more ordered down-
stream magnetic field structure results from the randomly oriented upstream
field.

Obviously, this magnetic field stretching and ordering occurs only in gas regions
overrun frequently by shocks and winds. Each individual shock or wind (with
speed Vs) compression orders the field on spatial scales R on time scales given
by the short shock crossing time R/Vs, but signifant amplification requires
multiple compressions. The ordered magnetic field filling factor is determined
by the shock’s and wind’s filling factors which are large (80 percent) in the
coronal phase of interstellar media (McKee and Ostriker 1977) and near shock
waves in large-scale cosmic structures (Miniati et al. 2000). In cosmic regions
with high shock/wind activity, this passive hydrodynamical amplification and
stretching of magnetic fields continues until the magnetic restoring forces affect
the gas dynamics, i.e. at ordered plasma betas near unity. As a consequence,
magnetic fields with equipartition strength are not generated uniformly over the
whole universe by this process, but only in localized cosmic regions with high
shock/wind activity. It continues until the magnetic restoring forces affect the
gas dynamics, i.e. at ordered plasma betas near unity.
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In protogalaxies significant and rapid amplification of the spontaneously emitted
aperiodic turbulent magnetic fields results from the small-scale kinetic dynamo
process (Brandenburg and Subramanian 2005) generated by the gravitational
infall motions during the formation of the first stars (Schleicher et al. 2010).
Additional gaseous spiral motion may stretch and order the magnetic field on
large protogalactic spatial scales.

Our suggested mechanism of spontaneously emitted aperiodic turbulent mag-
netic fields should also operate during earlier cosmological epochs before re-
combination, and in fully-ionized stellar interiors (Do you need seed fields for
stellar dynamos, and if yes, where do they come from?).

Felten et al. (2013) also calculated the fluctuation spectra for ultrarelativistic
plasma temperatures shown in Fig. 3. With I = γ/kc and µa = mac

2/kBTa

< δB2
⊥ >k,I=

∑
a

ω2
p,ama

4π3k3c

×
|(1 + I2)[arctan

√
1−µ2

a

I − πσ
2 ]− I|

|1 + I2 +
∑

a
ω2
p,aµaI

2k2c2
((1 + I2)[arctan

√
1−µ2

a

I − πσ
2 ]− I)|2

, (20)
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Figure 3: Colour plot of the spontaneously emitted aperiodic magnetic field
fluctuation spectrum in a thermal ultrarelativistic electron-proton
distribution in units of kBTe/(2π

3ωp,e). Equal electron and proton
temperatures (Ti = Te) and βe = ue/c = 105 are adopted. The
colour scale is logarithmic in powers of e.
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4. Summary and conclusions

• An unmagnetized nonrelativistic thermal electron-proton plasma sponta-
neously emits aperiodic turbulent magnetic field fluctuations of strength

|δB| = 9βeg
1/3W

1/2
e G, where βe is the normalized thermal electron ve-

locity in units of c, We the thermal plasma energy density and g the
plasma parameter.

• For the unmagnetized intergalactic medium, immediately after the reion-
ization onset, the field strength from this mechanism is about 4.7 · 10−16

G, too weak to affect the dynamics of the plasma.

• The shear and/or compression of the intergalactic medium exerted by
the first supernova explosions amplify these seed fields and make them
anisotropic, until the magnetic restoring forces affect the gas dynamics
at ordered plasma betas near unity.

• The suggested mechanism of spontaneously emitted aperiodic turbu-
lent seed magnetic fields should also operate during earlier cosmological
epochs before recombination and in fully-ionized stellar interiors.

• I thank my collaborators Tim Felten, Marian Lazar and Peter Yoon. Fi-
nancial support by the Deutsche Forschungsgemeinschaft, Alexander-von-
Humboldt-Stiftung, Projektförderung Mercator Research Center Ruhr (MER-
CUR) and Verbundforschung Astroteilchenphysik is gratefully acknowl-
edged.



Introduction

Plasma fluctuations

From disordered to . . .

Summary and . . .

Fluctuation theory . . .

5. Fluctuation theory in magetized plasmas

5.1. Basic equations

The electromagnetic fields fulfill Maxwell equations

∇× ~B(~x, t)− 1

c

∂

∂t
~E(~x, t) =

4π

c

∑
a

qa

∫
d3p ~v fa(~x, ~p, t), (21)

∇ · ~B(~x, t) = 0, ∇× ~E(~x, t) +
1

c

∂

∂t
~B(~x, t) = 0. (22)

∇ · ~E(~x, t) = 4π
∑
a

qa

∫
d3p fa(~x, ~p, t), (23)

where the charged particle’s phase space distributions fa(~x, ~p, t) determine the
current and charge densities on the right-hand side of Eqs. (21) and (23).

Each phase space distribution fa(~x, ~p, t) of ionized particles fulfills

∂fa
∂t

+ ~v · ∂fa
∂~x

+ qa[ ~E +
~v × ~B

c
] · ∂fa

∂~p
= Qa(~x, ~p, t), (24)

where the source term Qa(~x, ~p, t) accounts for sources and sinks of particles and
other (than the Lorentz force) electromagnetic interactions. Via the Lorentz
force the electromagnetic fields determine the behaviour of the particle distri-
bution functions fa.
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5.2. Linear fluctuations

We linearize the system of Maxwell’s equations and the collisionless Boltzmann
equation by investigating small deviations

fa(~x, ~p, t) = fa0(~p) + δfa(~x, ~p, t), ~B(~x, t) = ~B0(~x, t) + δ ~B(~x, t),

~E(~x, t) = 0 + δ ~E(~x, t) (25)

around the adopted ”equilibrium” state of a spatially uniform and station-
ary magnetized plasma (fa0(~p), ~B0(~x, t)) with vanishing ordered electric field
~E0(~x, t) = 0. Small fluctuations mean that |δfa| � fa0 and |δ ~B| � B0.

Using that the equilibrium state fulfils Eqs. (21) - (24), and neglecting higher
order terms in fluctuating quantities in the collisionless Boltzmann equation,
results in the linearized equations e.g.

∇× δ ~B(~x, t)− 1

c

∂

∂t
δ ~E(~x, t) =

4π

c

∑
a

qa

∫
d3p ~v δfa(~x, ~p, t), (26)[

∂

∂t
+ ~v · ∂

∂~x
+ qa

~v × ~B0

c
· ∂
∂~p

] [
δfa(~x, ~p, t)− δN0

a (~x, ~p, t)
]

= −qa[δ ~E +
~v × δ ~B

c
] · ∂fa0(~p)

∂~p
, (27)

where the Klimontovich perturbation δN0
a (~x, ~p, t) accounts for the near inter-

actions of neighbouring uncorrelated charged particles in the plasma.
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We introduce the Fourier-Laplace transforms of the fluctuations and its inverse


fa(~k, ω, ~p)

Na(~k, ω, ~p)
~E(~k, ω)

δ ~B(~k, ω)

 =

∫
d3x

∫ ∞
0

dt


δfa(~x, ~p, t)
δN0

a (~x, ~p, t)

δ ~E(~x, t)

δ ~B(~x, t)

 exp
[
−ı(~k · ~x− ωt)

]
, (28)


δfa(~x, ~p, t)
δN0

a (~x, ~p, t)

δ ~E(~x, t)

δ ~B(~x, t)

 =
1

(2π)4

∫
d3k

∫
dω


fa(~k, ω, ~p)

Na(~k, ω, ~p)
~E(~k, ω)

δ ~B(~k, ω)

 exp
[
ı(~k · ~x− ωt)

]
(29)

with the restriction =ω = γ > 0 for convergence reasons.
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Applying the inverse Fourier-Laplace transforms (29) the transformed linearized
equations (26) - (27) provide the wave equation

Λij(~k, ω)Ej(~k, ω) = E0
i (~k, ω) = −4πı

ω

∑
a

qa

∫
d3pviNa(~k, ω, ~p) (30)

with the Maxwell operator in terms of the dielectric tensor ψij(~k, ω)

Λij(~k, ω) =
k2c2

ω2

[
kikj
k2
− δij

]
+ ψij(~k, ω) (31)

We adopt without loss of generality a coordinate system, where ~B0 = B0~z and

~k = (k⊥, 0, k‖) = k(sin Θ, 0, cos Θ) (32)

and introduce cylindrical momentum coordinates px = p⊥ cosφ, py = p⊥ sinφ, pz =
p‖. The dielectric tensor in gyrotropic equilibrium plasma distributions fa0(~p) =

naf
(0)
a (p‖, p⊥) then reads (RS 2010)
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ψij(ω,~k) = δij+δi3δj3
2π

ω2

∑
a

ω2
p,ama

∫ ∞
−∞

dp‖

∫ ∞
0

dp⊥v‖

(
p⊥
∂f

(0)
a

∂p‖
− p‖

∂f
(0)
a

∂p⊥

)

+
2π
∑

a ω
2
p,am

2
a

ω

∫ ∞
−∞

dp‖

∫ ∞
0

dp⊥γ

[
(1−

k‖v‖

ω
)
∂f

(0)
a

∂p⊥
+
k‖v⊥

ω

∂f
(0)
a

∂p‖

]
Tij(ω,~k)

(33)
where

Tij(ω,~k) =

∞∑
n=−∞

1

ω − k‖v‖ + nΩa

×


n2J2

n(z)
z2 v2

⊥ − ınJn(z)J ′
n(z)

z v2
⊥ −nJ2

n(z)
z v‖v⊥

ınJn(z)J ′
n(z)

z v2
⊥ (J ′n(z))2v2

⊥ −ıJn(z)J ′n(z)v‖v⊥

−nJ2
n(z)
z v‖v⊥ ıJn(z)J ′n(z)v‖v⊥ J2

n(z)v2
‖

 (34)

Here ωp,a = (4πnae
2
a/ma)

1/2 denotes the plasma frequency, z = k⊥v⊥/Ωa,
where Ωa = εa|Ωa| = sign(qa)Ω0a/γ is the relativistic gyrofrequency of par-
ticles of sort a, εa = ea/|ea| the charge sign, and Ω0a = |ea|B0/mac is the
absolute value of the nonrelativistic gyrofrequency of particles of sort a. Jn(z)

denotes the Bessel function of order n and J ′n(z) = ∂Jn(z)
∂z its first derivative.



Introduction

Plasma fluctuations

From disordered to . . .

Summary and . . .

Fluctuation theory . . .

We use the spatial two-time correlation function of uncorrelated particles in a
magnetized plasma

(2π)4 < NaN
∗
b > (~k, ω) =

δab<
(∫ ∞

0
dτeı

~k·(~xa(−τ)−~xb)+ıωτδ[~pa(τ)− ~pb]naf (0)
a (p‖, p⊥)

)
, (35)

with the unperturbed gyromotion in the uniform magnetic field

~pa(−τ) =

p⊥ cos(φ+ Ωaτ)
p⊥ sin(φ+ Ωaτ)

p‖

 , (36)

implying

~xa(−τ)− ~xb =

 v⊥
Ωa

(sin(φ+ Ωaτ)− sinφ)

− v⊥
Ωa

(cos(φ+ Ωaτ)− cosφ)

−v‖τ

 (37)

to calculate according to Eq. (30) with the wavevector orientation (32)
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< E0
i E

0∗
j > (~k, ω) =

16π2

|ω|2
∑
a

∑
b

qaqb

∫
d3pa

∫
d3pb < NaNb > (~k, ω)vaivjb

=

∑
a ω

2
p,ama

4π3|ω|2
|<
(∫

d3pf (0)
a (p‖, p⊥)vivj

∫ ∞
0

dτeı(ω−k‖v‖)τ+ı
k⊥v⊥

Ωa
[sin(φ+Ωaτ)−sinφ]

)
|

=

∑
a ω

2
p,ama

4π3|ω|2
|<
(∫

d3pf (0)
a (p‖, p⊥)

∞∑
n=−∞

∞∑
m=−∞

Jn(z)Jm(z)eı(n−m)φ

×
∫ ∞

0
dτvi(φ+ Ωaτ)vj(φ)eı(ω−k‖v‖+nΩa)τ

)
|, (38)

where we used the Bessel function identity

eız sin η =

∞∑
n=−∞

Jn(z)eınη (39)
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With the gyrotropic distribution function

f (0)
a (p‖, p⊥) =

1

2π
Fa(p‖, p⊥) (40)

we obtain

< E0
i E

0∗
j > (~k, ω) =

∑
a ω

2
p,ama

4π3|ω|2
|Kij(~k, ω)| (41)

with the form factors defined by

Kij(~k, ω) =
1

2π
<
(∫ ∞
−∞

dp‖

∫ ∞
0

dp⊥p⊥Fa(p‖, p⊥)

∞∑
n=−∞

∞∑
m=−∞

Jn(z)Jm(z)

×
∫ ∞

0
dτeı(ω−k‖v‖+nΩa)τ

∫ 2π

0
dφvi(φ+ Ωaτ)vj(φ)eı(n−m)φ

)
(42)

Performing the φ-integration in Eq. (42) provides

Kij(~k, ω) = <
(
ı

∫ ∞
−∞

dp‖

∫ ∞
0

dp⊥p⊥Fa(p‖, p⊥)Tij(~k, ω)

)
(43)

with the same tensor (34), which reflects the general dissipation-fluctuation
theorem.
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5.3. Unmagnetized plasma

In a vanishing magnetic field, it is not necessary to adopt two non-zero com-
ponents (k⊥ and k‖) of the wave vector. We rather set k⊥ = 0 and identify
the z-direction with the wave vector direction. We therefore consider the limit
k⊥ → 0, corresponding to z → 0 and R → 0, together with Ωa = 0. We find
for the form factors

K11 = K22 =
1

2
K⊥ = <

[
ı

∫ ∞
−∞

dp‖

∫ ∞
0

dp⊥
p⊥v

2
⊥Fa(p‖, p⊥)

ω − k‖v‖

]
, (44)

K33 = K‖ = <
[
ı

∫ ∞
−∞

dp‖

∫ ∞
0

dp⊥
p⊥v

2
‖Fa(p‖, p⊥)

ω − k‖v‖

]
(45)

Likewise the only non-vanishing components of the dielectric tensor are

ψij(ω,~k) = δij+χij = δij+δi3δj3

∑
a ω

2
p,a

ω2

∫ ∞
−∞

dp‖

∫ ∞
0

dp⊥
p‖

γ

(
p⊥
∂Fa
∂p‖
− p‖

∂Fa
∂p⊥

)

+

∑
a ω

2
p,a

2ω2

∫ ∞
−∞

dp‖

∫ ∞
0

dp⊥
p2
⊥
γ

[
∂Fa
∂p⊥

+
k‖v⊥

ω − k‖v‖
∂Fa
∂p‖

]1 0 0
0 1 0

0 0
2p2

‖
p2
⊥

 ,

(46)
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providing for the Maxwell operator (31) with k = k‖

Λij =

ΛT 0 0
0 ΛT 0
0 0 ΛL

 (47)

with the transverse

ΛT (k, ω) = 1− c2k2

ω2

+

∑
a ω

2
p,a

2ω2

∫ ∞
−∞

dp‖

∫ ∞
0

dp⊥
p2
⊥
γ

[
∂Fa
∂p⊥

+
kv⊥

ω − kv‖
∂Fa
∂p‖

]
(48)

and longitudinal dispersion functions

ΛL(k, ω) = 1 +

∑
a ω

2
p,a

ω

∫ ∞
−∞

dp‖p‖

∫ ∞
0

dp⊥
p⊥

γ(ω − kv‖)
∂Fa
∂p‖

(49)
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5.4. Spontaneously emitted fluctuations

The solution of the wave equation (30) together with Eq. (41) then provide for
the energy in electric and magnetic field fluctuations in unmagnetized plasmas
generated per unit volume at k and ω due to spontaneous emission

< δE2
‖ >k,ω

< δE2
⊥ >k,ω

< δB2 >k,ω

 =
∑
a

ω2
p,ama

4π3


|K‖(k,ω)|
|ωΛL(k,ω)|2
|K⊥(k,ω)|
|ωΛT (k,ω)|2
c2k2|K⊥(k,ω)|
|ω2ΛT (k,ω)|2

 , (50)

where we have introduced the total transverse electric field component

< δE2
⊥ >k,ω=< δE2

11,k,ω > + < δE2
22,k,ω > (51)

and used the induction law ~B(k, ω) = (c/ω)~k × ~E(k, ω).

The form factors (44) - (45) are the generalizations of the standard expressions
found in the literature (Salpeter 1960, Sitenko 1967, Ichimaru 1973, Kegel
1998) in which the weak amplification limit of =(ω) = γ → 0+ is taken at the
outset to approximate by the Dirac-formula

lim
γ→0+

1

ωR + ıγ − ~k · ~v
= π δ(ωR − ~k · ~v) (52)
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Coulomb’s law then provides for the charge density fluctuations

< δρ2 >k,ω=
k2 < δE2

‖ >k,ω

(4π)2
=
∑
a

ω2
p,amak

2

2(2π)5

|K‖(k, ω)|
|ωΛL(~k, ω)|2

, (53)

and the continuity equation ρ̇+ div~j = 0 yields for the parallel current density
fluctuations

< δJ2
‖ >k,ω=

|ω|2 < δρ2 >k,ω
k2

=
∑
a

ω2
p,ama

2(2π)5

|K‖(k, ω)|
|ΛL(~k, ω)|2

(54)

Ampere’s law gives the perpendicular current density fluctuations

< δJ2
⊥ >k,ω=

|ω|2

(4π)2

[
1 +

c4k4

|ω|4

]
< δE2

⊥ >k,ω

=
∑
a

ω2
p,ama

2(2π)5

[
1 +

c4k4

|ω|4

]
|K⊥(k, ω)|
|ΛT (~k, ω)|2

(55)

The form factors and dispersion functions determine all electromagnetic fluc-
tuation spectra. Most of the earlier work concentrated on weakly damped
fluctuations.
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Using the isotropic thermal Maxwell-Jüttner distribution functions

Fa(E) = e−µaE , µa =
mac

2

kBT
, E =

√
1 +

p2
‖ + p2

⊥

m2
ac

2
, (56)

with the normalization factor

Na =
µa

2(mac)3K2(µa)
, (57)

to calculate the form factors and the dispersion functions then provides in the
limits µa � 1 and µ � 1 the respective fluctuation spectra for all cases of
interest.
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