

Federico Spada

Leibniz Institut für Astrophysik (AIP), Potsdam, Germany

NORDITA - 11 April 2013

Federico Spada

1

- Motivation
- Modelling low mass stars
- The "radius discrepancy"
- Stellar models with magnetic fields
- Summary

Motivation

Federico Spada

- Stars with subsurface CZ: solar-like dynamo, magnetic activity, wind braking and rotational evolution...
- Promising candidates as
 exoplanets hosts
- Knowledge of fundamental parameters of these stars is very valuable
- "Radius discrepancy"

Schatzman (1960)

YREC: the Yale Rotational stellar Evolution Code

Standard input physics

- OPAL opacities
- Standard mixing length theory of convection
- OPAL 2005 EOS
- Element diffusion
- Grey atmosphere T(τ) relation (e.g. Eddington)

Structural effect of rotation

$$\frac{d \log P_{\psi}}{d \log M_{\psi}} = -f_{P} \frac{GM_{\psi}^{2}}{4\pi r_{\psi}^{4} P_{\psi}}$$
(1)

$$\frac{d \log T_{\Psi}}{d \log M_{\Psi}} = \nabla \frac{d \log P_{\Psi}}{d \log M_{\Psi}} \quad \text{where } \nabla = \frac{d \ln T}{d \ln P} = \min \left\{ \nabla_{\text{conv}}, \frac{f_{\text{T}}}{f_{\text{P}}} \nabla_{\text{rad}} \right\}$$
(2)

$$\frac{d \log r_{\psi}}{d \log M_{\psi}} = \frac{M_{\psi}}{4\pi r_{\psi}^3 \rho} , \text{ and}$$
(3)

$$\frac{d L_{\psi}}{d \log M_{\psi}} = \frac{M_{\psi}}{L_{o}} \ln 10 \left\{ \epsilon - T_{\psi} \frac{dS}{dt} \right\},$$
(4)

Rotational evolution

$$\begin{split} \frac{dJ}{dt} &= -K\omega^3 \left(\frac{R}{R_{\odot}}\right)^{0.5} \left(\frac{M}{M_{\odot}}\right)^{-0.5}, \quad \omega \leq \omega_{\rm crit}, \\ \frac{dJ}{dt} &= -K\omega_{\rm crit}^2 \omega \left(\frac{R}{R_{\odot}}\right)^{0.5} \left(\frac{M}{M_{\odot}}\right)^{-0.5}, \quad \omega > \omega_{\rm crit}. \end{split}$$

Modelling low mass stars $(M \le 0.6 M_{\odot})$: additional challenges

- Surface boundary conditions:
 - Formation of H₂ leads to atmospheric convection
 - Molecular contribution to opacity
- Equation of State:

NORDITA - 11 April 2013

 Low central temperature, high density: non-ideal effects

After Baraffe et al. (1998)

NORDITA - 11 April 2013

Improved YREC configuration

Surface BC

Non-grey atmospheres: **PHOENIX** "**BT-Settl**" models

SCVH EOS in the low T/high ρ regime (*Saumon et al. 1995*)

Double-lined eclipsing binaries

- Most recent compilation: *Feiden* & *Chaboyer (2012)*
- M, R known at least to better than 5%
- Some information on age, metallicity
- T_{eff} unknown or poorly constrained

Star	Porb	Mass	Radius	Prot	Source
Name	(day)	(<i>M</i> _☉)	(R_{\odot})	(day)	
UV Psc A	0.86	0.9829 ± 0.0077	1.110 ± 0.023		1
UV Psc B		0.76440 ± 0.00450	0.8350 ± 0.0180	0.80	
IM Vir A	1.309	0.981 ± 0.012	1.061 ± 0.016		2
IM Vir B		0.6644 ± 0.0048	0.6810 ± 0.013	1.31	
KID 6131659 A	17.528	0.924 ± 0.008	0.8807 ± 0.0017		3
KID 6131659 B		0.683 ± 0.005	0.6392 ± 0.0013		
RX J0239.1-1028 A	2.072	0.7300 ± 0.0090	0.7410 ± 0.0040		4
RX J0239.1-1028 B		0.6930 ± 0.0060	0.7030 ± 0.0020		
Kepler-16 A	41.08	0.6897 ± 0.0034	0.6489 ± 0.0013		5
Kepler-16 B		0.20255 ± 0.0007	0.22623 ± 0.0005		
GU Boo A	0.49	0.61010 ± 0.00640	0.6270 ± 0.0160	0.49	6
GU Boo B		0.59950 ± 0.00640	0.6240 ± 0.0160	0.54	
YY Gem A	0.81	0.59920 ± 0.00470	0.6194 ± 0.0057	0.87	7
YY Gem B		0.59920 ± 0.00470	0.6194 ± 0.0057	0.82	
MG1-506664 A	1.55	0.584 ± 0.002	0.560 ± 0.005		8
MG1-506664 B		0.544 ± 0.002	0.513 ± 0.009		
MG1-116309 A	0.827	0.567 ± 0.002	0.552 ± 0.004		8
MG1-116309 B		0.532 ± 0.002	0.532 ± 0.004		
MG1-1819499 A	0.630	0.557 ± 0.001	0.569 ± 0.002		8
MG1-1819499 B		0.535 ± 0.001	0.500 ± 0.003		
NSVS 01031772 A	0.368	0.5428 ± 0.0027	0.5260 ± 0.0028		9
NSVS 01031772 B		0.4982 ± 0.0025	0.5088 ± 0.0030		
MG1-78457 A	1.586	0.527 ± 0.002	0.505 ± 0.008		8
MG1-78457 B		0.491 ± 0.001	0.471 ± 0.009		
MG1-646680 A	1.64	0.499 ± 0.002	0.457 ± 0.010		8
MG1-646680 B		0.443 ± 0.002	0.427 ± 0.008		
MG1-2056316 A	1.72	0.469 ± 0.002	0.441 ± 0.004		8
MG1-2056316 B		0.382 ± 0.001	0.374 ± 0.004		
CU Cnc A	2.77	0.43490 ± 0.00120	0.4323 ± 0.0055		10
CU Cnc B		0.39922 ± 0.00089	0.3916 ± 0.0094		
SPM J1112+7626 A	41.03	0.3946 ± 0.0023	0.3860 ± 0.0052		11
LSPM J1112+7626 B		0.2745 ± 0.0012	0.2978 ± 0.0046		
KOI-126 B	1.77	0.2413 ± 0.0030	0.2543 ± 0.0014		12
KOI-126 C		0.2127 ± 0.0026	0.2318 ± 0.0013		
CM Dra A	1.27	0.23102 ± 0.00089	0.2534 ± 0.0019		13
CM Dra B		0.21409 ± 0.00083	0.2398 ± 0.0018		10

References. (1) Popper 1997; (2) Morales et al. 2009b; (3) G. Bass et al. (2012, in preparation); (4) López-Morales & Shaw 2007; (5) Doyle et al. 2011; (6) López-Morales & Ribas 2005; (7) Torres & Ribas 2002; (8) Kraus et al. 2011; (9) López-Morales et al. 2006; (10) Ribas 2003; (11) Irwin et al. 2011; (12) Carter et al. 2011; (13) Morales et al. 2009a.

Single stars interferometric measurements

- Boyajian et al. (2012)
- R, T_{eff}, L known better than a few %
- Literature estimates for Z
- Comparatively large (~10%) error on mass

Fundamental Parameters										
Star	Spectral	Metallicity	Metallicity	$R \pm \sigma$	Radius	$F_{\rm BOL} \pm \sigma$	$L \pm \sigma$	$T_{\rm EFF} \pm \sigma$	Mass	$L_{\rm X}/L_{\rm BOL}$
Name	Туре	[Fe/H]	Referencea	(<i>R</i> _☉)	Referenceb	$(10^{-8} \text{ erg cm s}^{-2})$	(L_{\odot})	(K)	(<i>M</i> _☉)	
GJ 15A [†]	M1.5 V	-0.36	1	0.3874 ± 0.0023	This work	5.420 ± 0.044	0.02173 ± 0.00021	3563 ± 11	0.423	2.32E-05
GJ 33	K2 V	-0.22	2	0.6954 ± 0.0041	This work	15.060 ± 0.100	0.26073 ± 0.00263	4950 ± 14	0.753	8.59E-07
GJ 105	K3 V	-0.08	2	0.7949 ± 0.0062	This work	16.680 ± 0.103	0.26790 ± 0.00239	4662 ± 17	0.767	1.70E-06
GJ 166A [†]	K1 Ve	-0.24	2	0.8061 ± 0.0036	This work	52.690 ± 0.394	0.40782 ± 0.00319	5143 ± 14	0.816	1.03E-05
GJ 205	M1.5 V	0.35	3	0.5735 ± 0.0044	This work	6.182 ± 0.032	0.06163 ± 0.00088	3801 ± 9	0.615	1.62E-05
GJ 338A	M0.0 V	-0.18	3	0.5773 ± 0.0131	This work	5.885 ± 0.051	0.06974 ± 0.00213	3907 ± 35	0.622	2.07E-05
GJ 338B	K7.0 V	-0.15	3	0.5673 ± 0.0137	This work	5.455 ± 0.037	0.06465 ± 0.00194	3867 ± 37	0.600	2.23E-05
GJ 380 [†]	K7.0 V	-0.16	2	0.6415 ± 0.0048	This work	13.860 ± 0.093	0.10253 ± 0.00088	4081 ± 15	0.660	6.92E-06
GJ 411 [†]	M2.0 V	-0.41	3	0.3921 ± 0.0037	This work	9.842 ± 0.060	0.01989 ± 0.00014	3465 ± 17	0.403	8.03E-06
GJ 412A	M1.0 V	-0.40	3	0.3982 ± 0.0091	This work	2.908 ± 0.022	0.02129 ± 0.00026	3497 ± 39	0.403	3.11E-05
GJ 526	M1.5 V	-0.30	3	0.4840 ± 0.0084	This work	3.979 ± 0.030	0.03603 ± 0.00051	3618 ± 31	0.520	5.33E-06
GJ 631	K0 V	0.04	2	0.7591 ± 0.0122	This work	14.160 ± 0.090	0.41945 ± 0.00422	5337 ± 41	0.821	8.92E-06
GJ 687	M3.0 V	-0.09	3	0.4183 ± 0.0070	This work	3.332 ± 0.022	0.02128 ± 0.00023	3413 ± 28	0.413	9.30E-06
GJ 699 [†]	M4.0 V	-0.39	3	0.1867 ± 0.0012	This work	3.262 ± 0.022	0.00338 ± 0.00003	3224 ± 10	0.146	3.99E-06
GJ 702A	K0 Ve	0.03	2	0.8310 ± 0.0044	This work		0.53 ± 0.02° °	5407 ± 52	0.846	1.67E-06
GJ 702B	K5 Ve	0.03	2	0.6697 ± 0.0089	This work		0.15 ± 0.02° °	4393 ± 149	0.698	5.90E-06
GJ 725A	M3.0 V	-0.49	3	0.3561 ± 0.0039	This work	3.937 ± 0.004	0.01531 ± 0.00018	3407 ± 15	0.318	5.05E-06
GJ 725B	M3.5 V	-0.36	3	0.3232 ± 0.0061	This work	2.238 ± 0.013	0.00871 ± 0.00012	3104 ± 28	0.235	8.88E-06
GJ 809	M0.5	-0.21	3	0.5472 ± 0.0067	This work	3.224 ± 0.027	0.04990 ± 0.00062	3692 ± 22	0.573	1.41E-05
GJ 880	M1.5 V	0.06	1	0.5477 ± 0.0048	This work	3.502 ± 0.017	0.05112 ± 0.00074	3713 ± 11	0.569	6.66E-06
GJ 892	K3 V	0.07	2	0.7784 ± 0.0053	This work	19.850 ± 0.086	0.26499 ± 0.00152	4699 ± 16	0.763	3.73E-07
GJ 15A [†]	M1.5V	-0.36	1	0.3790 ± 0.0060	1	5.420 ± 0.044	0.02173 ± 0.00017	3594 ± 30	0.423	2.32E-05
GJ 53A	G5Vp	-0.68	4	0.7910 ± 0.0080	3	25.790 ± 0.147	0.45845 ± 0.00260	5348 ± 26	0.808	3.73E-07
GJ 75	KOV	0.03	2	0.8190 ± 0.0240	3	16.460 ± 0.126	0.51971 ± 0.00396	5398 ± 75	0.837	1.12E-05
GJ 144	K2V	-0.06	2	0.7350 ± 0.0050	5	102.100 ± 0.457	0.32897 ± 0.00147	5077 ± 35	0.781	1.64E-05
GJ 166A [†]	K1V	-0.24	2	0.7700 ± 0.0210	6	52.690 ± 0.394	0.40782 ± 0.00304	5261 ± 72	0.818	1.03E-05
GJ 380 [†]	K7V	-0.16	2	0.6050 ± 0.0200	4	13.860 ± 0.093	0.10253 ± 0.00069	4203 ± 73	0.669	6.92E-06
GJ 380 [†]	K7V	-0.16	2	0.6490 ± 0.0280	2	13.860 ± 0.093	0.10253 ± 0.00069	4060 ± 87	0.669	6.92E-06
GJ 411 [†]	M2V	-0.41	3	0.3930 ± 0.0080	4	9.842 ± 0.060	0.01989 ± 0.00012	3460 ± 37	0.405	8.04E-06
GJ 411 [†]	M2V	-0.41	3	0.3950 ± 0.0130	2	9.842 ± 0.060	0.01989 ± 0.00012	3457 ± 58	0.405	8.04E-06
GJ 436	M3V	0.04	3	0.4546 ± 0.0182	10	0.788 ± 0.004	0.02525 ± 0.00012	3416 ± 53	0.472	6.84E-06
GJ 551	M5.5V	0.19	5	0.1410 ± 0.0070	6	2.961 ± 0.037	0.00155 ± 0.00002	3054 ± 79	0.118	2.83E-04
GJ 570A	K4V	0.02	2	0.7390 ± 0.0190	6	19.040 ± 0.154	0.20232 ± 0.00163	4507 ± 58	0.743	2.72E-06
GJ 581	M2.5V	-0.10	3	0.2990 ± 0.0100	9	0.930 ± 0.006	0.01130 ± 0.00008	3442 ± 54	0.297	8.28E-06
GJ 699 [†]	M4Ve	-0.39	3	0.1960 ± 0.0080	4	3.262 ± 0.022	0.00338 ± 0.00002	3140 ± 63	0.150	3.99E-06
GJ 764	KOV	-0.19	2	0.7780 ± 0.0080	3	39.670 ± 0.194	0.40926 ± 0.00199	5246 ± 26	0.806	2.61E-06
GJ 820A ^{††}	K5V	-0.19	2	0.6650 ± 0.0050	8	37.750 ± 0.188	0.14295 ± 0.00071	4355 ± 17	0.680	5.00E-06
GJ 820A ^{††}	K5V	-0.19	2	0.6100 ± 0.0180	2	37.750 ± 0.188	0.14295 ± 0.00071	4548 ± 64	0.680	5.00E-06
GJ 820B ^{††}	K7V	-0.29	2	0.5950 ± 0.0080	8	20.340 ± 0.107	0.07753 ± 0.00041	3954 ± 28	0.629	9.28E-06
GJ 820B ^{††}	K7V	-0.29	2	0.6280 ± 0.0170	2	20.340 ± 0.107	0.07753 ± 0.00041	3852 ± 53	0.629	9.28E-06
GJ 845	K5V	-0.07	2	0.7320 ± 0.0060	6	50.730 ± 0.505	0.20737 ± 0.00206	4555 ± 24	0.731	1.94E-06
GJ 887 ^{††}	M0.5V	-0.19	2	0.4910 ± 0.0140	7	10.920 ± 0.127	0.03651 ± 0.00042	3612 ± 53	0.522	5.28E-06
GJ 887 ^{††}	M0.5V	-0.19	2	0.4590 ± 0.0110	6	10.920 ± 0.127	0.03651 ± 0.00042	3727 ± 47	0.522	5.28E-06

NORDITA - 11 April 2013

Federico Spada

9

The "radius discrepancy"

- Long-standing issue: first reported by, e.g., Hoxie (1973), Lacy (1977)
- Models of solar-like stars (i.e., M ≤ M_{\odot}) overestimate T_{eff} by ~5% and underestimate R by ~10%
- Luminosity ~constant: surface phenomenon
- Binary vs. single stars
- Disentangle other effects (e.g., age, metallicity)

The "radius discrepancy"

12

NORDITA - 11 April 2013

T_{eff} , R in the single stars sample

- Literature: $\Delta T_{eff}/T_{eff} \sim 5\%$, $\Delta R/R \sim 10\%$
- Stars with T_{eff} < 4000 K, M < 0.6 M $_{\odot}$ more affected

Radius discrepancy in single vs. binary stars

- Larger discrepancy in the single stars sample
- Discrepancy significant compared to errors for both samples

NORDITA - 11 April 2013

Radius discrepancy and activity

Red: binary stars Blue: single stars

- > Binaries: $P_{rot} \sim P_{orb}$ (tidal synchronization)
- Single stars: P_{rot} obtained from the L_X/L_{bol} Ro relation (*Wright et al. 2011*)

NORDITA - 11 April 2013

Surface magnetic fields measurements in low mass stars

- Typical values for measured magnetic fields:
 - G to K stars: 0.01-1. kG
 - M stars: 1-5 kG

NORDITA - 11 April 2013

 B*f scaling with Ro: age + mass dependence!

From *Reiners et al. (2009)*

Magnetic activity and stellar models: phenomenological approaches

- Reduced ("effective") MLT parameter α
- Effect of starspots: $L = 4\pi R^2 (1-\beta) T_{eff}^4$

NORDITA - 11 April 2013

• Modified convection criterion: (Gough & Tayler, 1966)

Self-consistent approach

Current implementation in YREC

$$\frac{d \log P_{\Psi}}{d \log M_{\Psi}} = -f_{P} \frac{GM_{\Psi}^{2}}{4\pi r_{\Psi}^{4}P_{\Psi}}$$
$$\frac{d \log T_{\Psi}}{d \log M_{\Psi}} = \nabla \frac{d \log P_{\Psi}}{d \log M_{\Psi}}$$
$$\frac{d \log r_{\Psi}}{d \log M_{\Psi}} = \frac{M_{\Psi}}{4\pi r_{\Psi}^{3}\rho} , \text{and}$$
$$\frac{d L_{\Psi}}{d \log M_{\Psi}} = \frac{M_{\Psi}}{L_{0}} \ln 10 \left\{ \varepsilon - T_{\Psi} \frac{dS}{dt} \right\}$$
$$\nabla = \frac{d \ln T}{d \ln P} = \min \left\{ \nabla_{\text{conv}}, \frac{f_{T}}{f_{P}} \nabla_{\text{rad}} \right\}$$

- Magnetic pressure contribution (outer layer, surface B)
- Complete EOS (vs. simple analytical EOS)
- Not self-consistent (yet)!

NORDITA - 11 April 2013

Evolution of a 1 M_{\odot} model

Stellar models with magnetic fields

Evolution of a 0.6 M_{\odot} model

Preliminary results

- Effects of magnetic fields stronger for models of higher mass
- Analogy with sensitivity to the MLT parameter α (efficiency of convection)
- With B = 0.1÷1 kG, ΔR/R comparable to typical "radius discrepancy"

- The knowledge of fundamental parameters of low mass stars stars is very valuable for many astrophysical applications
- Our models (Spada et al., in preparation) improve the Yale-Yonsei isochrones in the M ≤ 0.6 M_☉ range and agree satisfactory with observations
- A disagreement between models and observations in R, T_{eff} emerges when using high accuracy measurements in the comparison
- Promising results from models taking into account magnetic fields
- Next step: implement self-consistent treatment of magnetic fields (e.g., Lydon & Sofia 1995); account for radial profile of B