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• We observe bands at the surface of 
the gas giants that we know, from 
cloud tracking, to be zonal flows. 

• Both planets radiate more energy 
than what they receive from the Sun, 
which is either due to an internal heat 
source or residual heat from their 
formation. 
– An internal source suggests strong 

convection in the interior. 

– Is an internal source the main responsible 
for these surface patterns? (In the Earth, 
the weather is driven by heat coming 
from the Sun.) 

   1. Introduction – giant planets’ atmospheres 
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   1. Introduction – interior structure 
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Heimpel et al. (2005) Glatzmaier et al. (2006) 

Our model... 



   1. Introduction – our model 
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we assume constant electrical ← 
conductivity and an exponential 

decay in the outer layer 

 



   1. Introduction – our model’s set-up 
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 Input parameters: 
 

– Rayleigh number: 

– Ekman number: 

– rIC/rOC: 

– fixed temperature at both limits 

– no slip at the bottom and stress-
free at the top 

– Prandtl number:  

– magnetic Prandtl number at IC:  

– density scale heights Nρ:  

– transition radius χm: 

 

  
 

3 – 46 Racr 

3x10-4 – 10-5 

0.2 

 

 

 

1 

2 
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   2. Effects of density stratification – z-vorticity 
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Nρ 

radial magnetic field at 
the outer boundary 



   2. Effects of density stratification – regime diagrams 
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   3. Variable conductivity – critical Rossby number 
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  3. Variable conductivity – different dynamo mechanisms 
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dashed line: poloidal 
dash-dotted line: toroidal 



   3. Variable conductivity – zonal flow 
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black– lower Ekman number 
grey – higher Ekman number 
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   3. Variable conductivity – zonal flow 
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   4. Scaling Laws – convective flow 
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Jupiter: 
convective flow velocity 
1 – 5 cm/s 



   4. Scaling Laws – magnetic field 
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• Our anelastic model is still a simple model for Jupiter, but it is 
a step in the right direction. 

• From our variable electrical conductivity simulations, we find 
that a stable dipole doesn’t coexist with strong zonal flow. 

• Our simulations point to the fact that we cannot have a stable 
dipole if Ω-effect is present inside the main conducting region. 

•  A model with density stratification appears to only be 
successful in generating a dipolar dynamo when: 
–  we are able to confine the steeper part of the density gradient 

outside of the metallic hydrogen envelope; 

– the magnetic field generated deeper is strong enough to push the jets 
outside (for example, lower Ekman number). 

 

   5. Conclusions 
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Thank you. 


