Thoughts on Neutralino Dark Matter

Pearl Sandick University of Utah

Old Results in Dark Matter

Observations

- Galactic Rotation Curves
- Cluster Dynamics (incl. collisions)
- Velocity dispersions of galaxies dark matter extends beyond the visible matter
- Weak Gravitational Lensing (distribution of dark matter)
- CMB (+ Type IA SNe, plus BAO) all agree on LambdaCDM
- Structure Formation

Summary

- Some explanation is necessary for observed gravitational phenomena.
- It's largely non-relativistic (cold).
- Its abundance is $\Omega_{DM} \approx 0.26$.
- It's stable or very long-lived.
- It's non-baryonic (BBN+CMB, structure).
- It's neutral (heavy isotope abundances).

Current Situation

- Abundance of experimental data!
 - We're exploring dark matter with unprecedented and growing precision - both experimentally and theoretically.
- Theoretical approaches:

```
Totally Data-Driven

Totally Theory-Driven
```

Current Situation

- Abundance of experimental data!
 - We're exploring dark matter with unprecedented and growing precision - both experimentally and theoretically.
- Theoretical approaches:

Effective Theories

(McCabe talk on Monday)

$$\mathcal{L} = \mathcal{L}_{SM} + i\bar{X}\gamma^{\mu}\partial_{\mu}X - M_{X}\bar{X}X + \sum_{q}\sum_{i,j}\frac{G_{qij}}{\sqrt{2}} \left[\bar{X}\Gamma_{i}^{X}X\right] \left[\bar{q}\Gamma_{q}^{j}q\right]$$

- Idea: Reduce DM-SM interaction to a contact interaction.
- Universe of possible interactions is small (can enumerate)
- Utility in evaluating complementarity of detection techniques (good)
- Range of validity (careful)

SUSY Dark Matter

- I. What is predicted within the SUSY framework?
 - specific realization or more general possibilities
- 2. What are the data really telling us?
 - Priors on model \rightarrow different interpretations
- 3. When will we know for sure?
 - Direct Dark Matter Searches

$$\tilde{\chi_i} = N_{i1}\tilde{B} + N_{i,2}\tilde{W} + N_{i3}\tilde{H_d} + N_{i,4}\tilde{H_u}$$

Dimensionality

Universality Scale

- Input universality scale, M_{in} , assumed to be M_{GUT}
- Could be larger: "superGUT"

 SUSY breaking and mediation characterized by Planck or string scale

> Polonsky & Pomarol (1994) For recent analyses, see Ellis, Mustafayev, & Olive (2010,2011)

Could be smaller: "subGUT/GUTless", "Mirage", or "TGM"

Ellis, Olive, & Sandick (2006, 2007, 2008); Ellis, Luo, Olive, & Sandick (2013)

Choi et al. (2004, 2005), Monaco et al. Kachru et al. (2003), (2011) and others

 Lowest dynamical scale in the Polonyi/hidden sector where SUSY is broken, or scale of interactions that transmit breaking to observable sector

Dark Matter Abundance

sub-GUT mSUGRA

To Higher Dimensions...

- There are still viable, few-parameter models motivated by high-scale physics.
 - Strength: one of these models might actually describe our Universe!
 - Strength: understand how observables change in the parameter space!
 - Weakness: may be missing important model classes
- Higher dimensional models more fully explore the possible combinations of observables (if sampling of the model space is adequate!).

Cahill-Rowley et al. (2013)

3. When will we know for sure?

Future Prospects

• Timeline for discovery/exclusion?

Could answer within a low-dimensional model (not general), or within the MSSM (not conclusive).

Simplified models can help you construct a definite, model-independent answer.

Resonance Models

- Neutralino: $\tilde{\chi}_1^0 = \alpha \tilde{B} + \beta \tilde{W}^0 + \gamma \tilde{H}_d^0 + \delta \tilde{H}_u^0$ M_1 μ
- s-channel resonance annihilations occur when $2m_{\tilde{\chi}^0_1} \approx m_{A,H,h,Z}$
- As $(\sigma_{ann.}v)$ increases, $\Omega_{\tilde{\chi}_1^0}$ decreases
 - If $\Omega_{ ilde{\chi}_1^0}$ too large, increase Higgsino content: μ
- Scattering with quarks is governed by $M_1, \ \mu, \ m_A, \ \tan eta$
- Relevant parameters: $\{M_1, \mu, m_A, \tan \beta, M_0, A_0\}$

If DM abundance is achieved through a resonance, how small could σ_{sl} possibly be?

Hooper, Kelso, Sandick, & Xue, PRD 2013

- Relic Abundance: μ
- Higgs mass: A₀
- Free parameters: (m₀, M₁, m_A, tanβ)

00/00 ^{2.0[⁺]} 2.0 A₀/m₀ 1.5 0.01 0.1 0.3 22 1.0 0.5 0.5 $\Omega_{\chi}h^2$ mh 0.0 0.0 10 μ (TeV)

If DM abundance is achieved through a resonance, how small could σ_{sl} possibly be?

Hooper, Kelso, Sandick, & Xue, PRD 2013

- Relic Abundance: μ
- Higgs mass: A₀
- Free parameters: (m₀, M₁, m_A, tanβ)

If Nature is MSSM-like, and neutralino dark matter at a resonance makes up all the dark matter in the Universe, then direct detection experiments are pushing the resonance to be more and more exact.

Data-Driven SUSY

- 2. What are the data telling us?
 - Investigate parameter space near current constraints.
 - Dramatically different answers, depending on assumptions!
- What we really know about sparticles: sleptons, charginos, and 3rd gen. squarks heavier than ~100 GeV, 1st/2nd gen. squarks heavier than ~1.1 TeV, gluino heavier than ~1 TeV
- Other constraints: Higgs ~126 GeV, dark matter, rare B decays, electric dipole moments, anomalous magnetic moments
- Simple model: bino-like LSP and light sleptons (everything else heavy)

$$m_{\tilde{\chi}_1}, \, m_{\tilde{l}_1}, \, m_{\tilde{l}_2}, \, \alpha, \, \varphi$$

Fukushima, Kelso, Kumar, Sandick, & Yamamoto (in prep.)

Light Sleptons

• Dipole Moments:

$$\begin{split} \Delta a &= \frac{m_{\ell} m_{\tilde{\chi}}}{4\pi^2 m_{\tilde{\ell}_1}^2} g^2 Y_L Y_R \cos \varphi \cos \alpha \sin \alpha \left[\frac{1}{2(1 - r_{\tilde{\ell}_i})^2} \left(1 + r_{\tilde{\ell}_i} + \frac{2r_{\tilde{\ell}_i} \ln r_{\tilde{\ell}_i}}{1 - r_{\tilde{\ell}_i}} \right) \right] - (\tilde{\ell}_1 \to \tilde{\ell}_2) \\ \frac{d}{|e|} &= \frac{m_{\tilde{\chi}}}{8\pi^2 m_{\tilde{\ell}_1}^2} g^2 Y_L Y_R \sin \varphi \cos \alpha \sin \alpha \left[\frac{1}{2(1 - r_{\tilde{\ell}_i})^2} \left(1 + r_{\tilde{\ell}_i} + \frac{2r_{\tilde{\ell}_i} \ln r_{\tilde{\ell}_i}}{1 - r_{\tilde{\ell}_i}} \right) \right] \\ - (\tilde{\ell}_1 \to \tilde{\ell}_2) \end{split}$$

l

Light Smuons Scenario $(M_1 \neq M_2)$

Fukushima, Kelso, Kumar, Sandick, & Yamamoto (in prep.)

Light Sleptons

Light Smuons Scenario $(M_1 \neq M_2)$

Fukushima, Kelso, Kumar, Sandick, & Yamamoto (in prep.)

Light Smuons Scenario $(M_1 \neq M_2)$

Light Smuons Scenario

Light Sleptons $(M_1 \neq M_2)$

• If $M_1=M_2$, dipole moments vanish, but too much dark matter.

- Light \tilde{e} : Angles must be tuned to $\alpha \leq 10^{-3}$ and $\phi \leq 10^{-6}$, but relic abundance is too large
- Light $\tilde{\mu}$: Possible to obey dipole moment constraints (or explain Δa), and have thermal dark matter (for small range of ϕ)
- Light $\tilde{\tau}$: Relic abundance is the only constraint (see also Pierce, et al.; Hagiwara et al., 2013)

Fukushima, Kelso, Kumar, Sandick, & Yamamoto (in prep.)

Other Signatures

- Indirect Detection:
 - Best Case Scenario is annihilation to taus. Possibly within reach of Fermi (dSphs).
 - Annihilation to neutrinos: Unconstrained by dipole moments, but annihilation rate is small (relic abundance too large). Probably not detectable at IceCube or SK.
- CMB: not currently constrained for annihilations to muons or taus, and will remain just out of reach, even for CVL experiment

Light Sleptons $(M_1 \neq M_2)$

Summary

• Finite distinct ways to observe dark matter:

- Abundance, Annihilation Today, Decay Today, Production at Colliders, Direct Detection
- A spectrum of theoretical approaches to particle dark matter pole of 90ld

Extra Slides

Looking Forward

- Direct dark matter searches towards the neutrino background! and directional searches!
- Indirect dark matter searches
 - Fermi, HAWK, VERITAS, AMS-02, GAPS, CTA GAMMA-400...
- LHC SUSY/DM discovery potential at 14 TeV
- 100 TeV Hadron Collider
- Linear Collider ILC at 500 GeV, CLIC at 3TeV

sub-GUT mSUGRA

Ellis, Luo, Olive, Sandick (2013)

sub-GUT mSUGRA

