Making a Cocktail:

Neutrino masses, $0\nu\beta\beta$ -decay, dark matter and flavor mixing

In collaboration with José Miguel No & Maximiliano Rivera Phys.Rev.Lett. 110, 211802 (2013) and arXiv:1402.0515

@Nordita, Stockholm, May 26th, 2014

Neutrinos

- What mechanism gives masses to neutrinos?
- Are neutrinos Dirac or Majorana particle?
- What is the origin of flavor mixing structures?

Dark Matter

- What is the dark matter (particle)?
 - Few properties known, and many candidates

Want to create a model that relates above questions and is within experimental reach

Dark Matter Evidences

New `Dark' particle → Physics beyond the SM required

Neutrino Oscillations → **Neutrino Masses**

$\boldsymbol{\nu}_L = \boldsymbol{U} \mathbf{n}_l$ $\boldsymbol{U} =$	PMNS mate $\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}$	rix (Pontecorvo $\begin{pmatrix} c_{13} & 0 \ s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix}$	-Maki-Nako $\begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$	awa-Sakata) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_2} & 0 \\ 0 & 0 & e^{i\lambda_3} \end{pmatrix}$
Mixing Angles: P _{vα→νβ} (L,E) = Osc. probability	Atmospheric $\sum_{k,j} U^*_{\alpha k} U_{\beta}$	reactor + CP phase δ_{13} $k U_{\alpha j} U_{\beta j}^* \exp\left(-i\frac{\Delta m_{\beta j}^2}{2E}\right)$	Solar Solar Propagal in vacu	(2 Majorna phases) tion

 $m_{\nu}=0$ in the SM \rightarrow Physics beyond the SM required

Absolute Mass Scales

Normal or Inverted mass ordering for the neutrinos?

□ Mainz experiment:

 $m_{\nu_e} < 2.3 \text{ eV}$

Kraus *et al*. Eur.Phys.J.C40:447-468,2005

Cosmological constraints:

$$\sum m_{\nu} \lesssim 1 \text{ eV}$$

Planck

Building a Predictive Model

Building a Predictive Model

Ingredients:

1. Neutrino mass?

Generating a Neutrino Mass

Mass hierarchy

• Neutrino masses tiny $m_v / vev \sim 10^{-13}$

See-saw mechanism with couplings of ~1 gives: m_D~M_{GUT}~10¹⁶ GeV

Electroweak scale (~vev)
 being loop suppressed?
 3-loops w/ gauge couplings:

 $(g^2/16\pi^2)^3 \sim 10^{-13}$

Suggestive: a 3-loop suppression to naturally explains the hierarchy

Building a Predictive Model

Ingredients:

Neutrino mass radiatively (at 3-loops) A large 0vββ-decay signal?

Majorana or Dirac?

 \Box Majorana neutrino \rightarrow neutrinoless double-beta decay $0\nu\beta\beta$

□ Neutrinoless double-beta decay → Majorana neutrino mass (contribution)

The exact connection depend on the underlying model

Effective operators for 0vββ

□<u>If</u> new physics does not couple directly to quarks → then we do not need to consider: D-F

□ Remarkably, for A-C there are only 3 possible lowest-order gauge invariant LNV operators: $O^{(5)} - (\tilde{\ell}_{\tau} \phi)(\tilde{\delta}^{\dagger} \ell_{\tau})$

$$\mathcal{O}^{(5)} = (\overline{\tilde{\ell}_L}\phi)(\tilde{\phi}^\dagger \ell_L),$$

$$\mathcal{O}^{(7)} = (\phi^{\dagger} D^{\mu} \tilde{\phi}) (\phi^{\dagger} \overline{e_R} \gamma_{\mu} \tilde{\ell}_L), \qquad \mathsf{RL}$$

$$\mathcal{O}^{(9)} = \overline{e_R} e_{-}^c (\phi^{\dagger} D^{\mu} \tilde{\phi}) (\phi^{\dagger} D, \tilde{\phi}) \qquad \mathsf{RL}$$

Steven Weinberg Phys.Rev.Lett 43 (1979) 1566

F. del Aguila, A. Aparici, S. Bhattacharya, A. Santamaria and J. Wudka, **JHEP 1205** (2012) 133 F. del Aguila, A. Aparici, S. Bhattacharya, A. Santamaria and J. Wudka, **JHEP 1206** (2012) 146

Building a Predictive Model

Ingredients:

 Neutrino mass radiatively at 3-loops
 A large 0vββ-decay signal
 Predictions for Flavor Mixing Structures and Neutrino Mass Hierarchy?

Mass Matrix Structure → Flavor Mixing Structure

$m_{ee} = m_{e\mu} = 0 \rightarrow \text{Flavor Mixing Structure}$

$m_{ee} = m_{e\mu} = 0 \rightarrow Flavor Mixing Structure$

$m_{ee} = m_{e\mu} = 0 \rightarrow Flavor Mixing Structure$

Building a Predictive Model

Ingredients:

- **1. Neutrino mass radiatively at 3-loops**
- 2. A large 0vββ-decay signal
- **3. Predictions for Flavor Mixing Structures and Neutrino Mass Hierarchy**
- 4. Dark Matter Candidate

Creating a Cocktail Model

 \Box Concrete realization of \bigotimes requires:

- lepton number violating interactions
- couplings to W-bosons and RH leptons
- New states at electroweak scale with O(1) couplings so that a 1-loop realization give correct m_v masses

DA possible realization:

- Add singlet ρ^{++} to couple to RH leptons
- Add singlet $S^+ \rightarrow m_{\nu}$ at 2-loop (Zee/Babu)
 - \rightarrow avoided by imposing a Z₂ parity on S⁺
- Add SU(2) scalar doublet ϕ_2 to mix with S⁺ (Z₂ odd) and couple to W boson

– Unbroken Z₂ → new stable and EW interacting states → WIMP candidate?

Ingredient no 4.

3-loop calculation

3-loop calculation

3-loop calculation

empirical scaling

Its Dark Matter Candidate

Inert Doublet Model $\Phi_2 = \begin{pmatrix} \Lambda^+ \\ \frac{H_0 + i A_0}{\sqrt{2}} \end{pmatrix}$

Thermal production at freeze-out

- 1. Higgs portal (resonance): ~60 GeV
- 2. Coannihilation with A° (gives too small m_{ν})

MG, Rydbeck, Honorez, Lundström Phys.Rev.D 86 (2012) 075019

Its Dark Matter Candidate

Inert Doublet Model $\Phi_2 = \begin{pmatrix} \Lambda^+ \\ \frac{H_0 + i A_0}{\sqrt{2}} \end{pmatrix}$

H° (or A°) is good DM candidate

MG, Rydbeck, Honorez, Lundström Phys.Rev.D 86 (2012) 075019

Its Dark Matter Candidate

Neutrinoless Double Beta Decay

Ονββ Decay Bounds

Lepton Flavor Violation

stringent bounds from rare flavor-violating processes

$\mu^- \rightarrow 3e:$	$ C_{e\mu} C_{ee} $	<	$2.3 \times 10^{-5} \ (m_{ ho}/{\rm TeV})^2$
$\tau^- \to 3e:$	$ C_{e au} C_{ee} $	<	$9.0 \times 10^{-3} \ (m_{ ho}/{ m TeV})^2$
$\tau^- \to 3\mu$:	$ C_{\mu\tau} C_{\mu\mu} $	<	$8.1 \times 10^{-3} \ (m_{ ho}/{\rm TeV})^2$
$\tau^- \rightarrow \mu^+ e^- e^-$:	$ C_{\mu\tau} C_{ee} $	<	$6.8 \times 10^{-3} \ (m_{ ho}/{\rm TeV})^2$
$\tau^- \rightarrow \mu^+ e^- \mu^-$:	$ C_{\mu au} C_{e\mu} $	<	$6.5 \times 10^{-3} \ (m_{ ho}/{ m TeV})^2$
$\tau^- \rightarrow e^+ e^- \mu^-$:	$ C_{e au} C_{e\mu} $	<	$5.2 \times 10^{-3} \ (m_{ ho}/{\rm TeV})^2$
$\tau^- \to e^+ \mu^- \mu^- :$	$ C_{e au} C_{\mu\mu} $	<	$7.1 \times 10^{-3} \ (m_{ ho}/{ m TeV})^2$
$\mu^+ \to e^+ \gamma : \qquad \sum$	$\sum_{l} C_{l\mu} C_{le}^*$	<	$3.2 \times 10^{-4} \ (m_{\rho}/\text{TeV})^2.$

Nebot, Oliver, Palao and Santamaria, Phys. Rev. D 77 (2008) 093013

Recall that the neutrino mass

matrix was of a similar form

K. Hatasaka et al. [Belle Collaboration], Phys.Lett.B 687 (2010)

J. Adam et al. [MEG Collaboration], arXiv:1303.0754.

Ve Vu Vu Vi Vi Vi

Constraints are of this form on the Yukawa Cab:

$$\frac{(C_{\rho}/\mathrm{TeV})^2}{(m_{
ho}/\mathrm{TeV})^2} = \frac{|C_{ab}C_{xy}|}{(m_{
ho}/\mathrm{TeV})^2} \lesssim 10^{-4}$$

 $m_{ab}^{\nu} \propto \frac{C_{ab}}{m_{
ho}/\mathrm{TeV}} \sim \sqrt{\frac{C_{ab}C_{xy}}{(m_{
ho}/\mathrm{TeV})^2}}$

 \rightarrow LFV limits impose strong upper bounds on m_{ab}^{ν} \rightarrow LFV process predicted close to current bounds

Electroweak Scale Physics Responsible for Neutrino Masses is Appealing: Very Rich Phenomenology (& testable)

Neutrino Mass Suppression can be Linked to DM Stability in Models of Radiative Neutrino Mass Generation

□Neutrino Mass Generation via the Operator $\bar{l}_R l_R^c (\phi^{\dagger} D_{\mu} \tilde{\phi})^2$ Leads to Signatures in Neutrino Mixings & $0\nu\beta\beta$ -decay

□ The "Cocktail model" is a Concrete BSM Realization that Contains these (and other) Testable Ingredients

