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INTRODUCTION

How natural selection
can lead to
cooperative behavior?

m This question has fascinated
evolutionary biologists for
several decades



INTRODUCTION

* Evolution is based on a fierce competition
between individuals.

* Evolution reward only selfish behavior.

* Every gene, every cell, and every organism
should be designed to promote its own
evolutionary success at the expense of its
competitors.

* Why we still observe cooperation on many
levels of biological organization?



INTRODUCTION

(Genes cooperate 1 genomes.
Chromosomes cooperate 1 eukaryotic cells.
Cells cooperate m multicellular organisms. There
are many examples of cooperation among ani-
mals




INTRODUCTION

Humans are the champions of cooperation:
From hunter-gatherer societies to nation-states,
cooperation 1S the decisive organizing principle
of human society. No other life form on Earth 1s
engaged 1n the same complex games of cooper-
ation and defection.




Emergence of cooperation and

evolutionary stability ?

m Hence, to explain the evolution of
cooperation by natural selection has
been a major goal of biologists since
Darwin.

m Here we shall study evolutionary game
dynamics in finite populations with
network structure.



INTRODUCTION

Game theory and physics

m Evolutionary game theory may capture the
essentials of the characteristic interactions
among individuals.

m \What is the effects of population structures on
the performance of behavioral strategies ?



Prisoner’s
Dilemma Game
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Prisoner’s Dilemma Game (PDG)

Confesses leniently, resistance severely
(BmaAR, RIEBAE)

Confes Resistance
Confes both condemn Sets free
5 Year with a verdict of
Imprisonment not guilty
Resistance condemn both condemn
10 year 1 Year
Imprisonment | imprisonment




Snowdrift Game (SG)

Cooperate Defect
Cooperate Both pass Pass after 2
after 1 hour hours

Detfect Attains without| Both could not
effort pass

SG Is more favorable to cooperation than PDG



Payoif Matrix

C D
C R S
D T P

mPDG: T>R>P>S
BSG : T>R>S>P
m restriction: 2R>P+S



Prisoner’s Dilemma Snowdrift Game

payoff payoff payoff payoff

1+r

1<b<?2 O<r<l



Simplified Payoff Matrix

PDG

C D
10
b (0

D

SG
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LETTERS TO NATURE

Evulutmnary games and Bac klgs:‘zo und

spatial chaos
Martin A. Nowak & Robert M. May

Department of Zoclogy, University of Oxford, South Parks Road,
Oxford OX1 3PS, LK

In this paper, we consider only two kinds of players: those
who always cooperate, C, and those who always defect, D. No
explicit attention 1s given to past or likely future encounters, so
no memory is required and no complicated strategies arise.
Interesting results emerge when we place these “players’—who
may be individuals or organized groups—on a two-dimensional,
n X n square lattice of ‘patches’: each lattice-site is thus occupied
either by a C or a D. In each round of our game (or at each



"
The evolution Game
on the complex network



The rule

In each round of our game (or at each
time step, or each generation), each patch-owner plays the game
with its immediate neighbours. The score for each player is the
sum of the pay-offs in these encounters with neighbours. At the
start of the next generation, each lattice-site is occupied by the
player with the highest score among the previous owner and
the immediate neighbours.



The spatial PDG can generate
a large variety of qualitatively different patterns,

depending on b (the advantage for defectors)

m Simulation: on 200x200 square lattice with fixed boundary
condition

m Start from random initial configuration with 10% defectors
(and 90% cooperators)

m Show: asymptotic pattern after 200 generations

m Color coding:

Blue: C (following a C), Green: C (following a D).
Red: D (following a D). Yellow: D (following a C)
m A), 1.75<b<1.8, an irregular, but static pattern

m B), 1.8<b<2, spatial chaos



FIG. 1 The spatial Prisoners’ Dilemma can generate a large variety of
qualitatively different patterns, depending on the magnitude of the para-
meter, b, which represents the advantage for defectors, This figure shows
two examples. Both simutations are performed on a 200 = 200 square lattice
with fixed boundary conditions, and start with the same random Initial
configuration with 109 defectors (and 90% cooperators), The asymptotic
pattern after 200 generations 15 showrn. The colour coding is as follows:
blue represents a cooperator (C) that was already a C in the preceding
generatiom red is a defector (D) following a D; yellow a D following a C;
grean aC following a 0, a Anirregular, but static pattern {mainly of interlaced

networks) emergesif 1.75 < b < 1.8 The equilibnum frequency of C depends
on the initial conditions, but |s usually between Q.7 and 0.95. For lower b
values (provided b= 1), D persists as line fragmenls less connected than
shown here, or as scattered small oscillators { D-blinkers'). b Spatial chaos
characterizes the reglon 1.8< h<2 The large proportion of yellow and
green indicates many changes from one generation to the next, Here, as
outlined in the text, 2 x 2 or bigger C clusters can invade D regions, and
vice versa. C and D coexist indefinitely in a chaotically shifting balance, with
the freguency of C being (almost) completely independent of the initial
conditions at ~0.318.
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letters to nature

Spatial structure often inhibits
the evolution of cooperation
in the snowdrift game
Nature428(2004)643

Christoph Hauwert & Michael Doeheli

Departmeniis 4]_I'-.'=_'."'4:l-|:||'4:|_n__11.' ard Mathemuatics, Lintversity 4:!I'- British Columilria,
6270 Untversity Bowlevard, Vancowver, British Columinag VeT 1754, Carnada
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In the present evolutionary procedure the randomly cho-
sen plaver (x) can adopt one of the (randomly chosen) co-
plaver’s () strategy with a probability depending on the dif-
ference of normalized payoff (m,—m,) as

1

1 +expl{m, —m, ) T]
where I indicates the noise

ET'E"I g, :I' =
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Figure 1. Four lattice configurations (top row) and the corresponding schemes used for the pair approximation with focal sites A

and B (bottom row). These schemes are used to determine changes in the pair configuration probabilities p4 s—, g g. @ Square
lattice with N' = 4 neighbours, b friangular lattice (N = 3), ¢ hexagonal lattice (N = 6) and d square latfice (N = 8). Note that on
hexagonal and square (N = 8) lattices, the edges from A and B to their common neighbours are considered to be independent,

L.e., all corrections arising from loops are neglected.



Frequency of cooperators as a function of
the cost-to-benefit ratio I

Figure 1 Frequency of cooperators as a function of the cost-to-benefit ratio r=

¢/(2b — ¢) in the snowdrift game for different lattice geometries. a, Triangular lattice,
neighbourhood size N = 3; b, square lattice, N = 4; ¢, hexagonal lattice, N = 6;

d, square lattice, V = 8. For small r, spatial structure promotes cooperation; however, for
intermediate and high r, the fraction of cooperators is lower than in well-mixed
populations (dotted line). This result is largely independent of whether updating is
synchronous (filled squares) or asynchronous (open squares). The tendency is correctly
predicted by pair approximations (unbroken line), but pair approximation underestimates
the effects of local configurations at high and low r. In individual-based simulations, the
range of coexistence of cooperators and defectors is delimited by two threshold values:
below r defectors vanish, whereas above r, cooperators are doomed. Both thresholds
correlate with the fate of local configurations: near r 4 defector pairs tend to annihilate and
vanish, whereas near r, single cooperators and cooperator pairs cannot survive in a sea
of defectors. See Methods for simulation details.
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m dotted line: well-mixed populations

m filled squares: updating Is synchronous
m Open squares: asynchronous

m unbroken line: pair approximations



Why spatial structure often inhibits
the evolution of cooperation in SG?

Figure 2 Snapshots of equilibrium configurations of cooperators (black) and defectors
(white) in the spatial Prisoner’s Dilemma and spatial snowdrift game on a square lattice
with N = 4 neighbours near the extinction threshold of cooperators. a, In the Prisoner’s
Dilemma, cooperators survive by forming compact clusters (R=1, T = 1.07,

S= —0.07, P=0). b, In the corresponding snowdrift game, cooperators are spread
out, forming many small and isolated patches (r = 0.62; thatis, R=1, T = 1.62,
S=0.38, P=0). This result also holds for other lattice structures (not shown).

¢, Microscopic pattern formation in the spatial snowdrift game. Anisolated cooperator can
grow into a row of cooperators and then form cross-like structures; however, cooperators
cannot expand to compact clusters because the payoff structure protects the defectors in
the corners. Eventually, cooperators form a dendritic skeleton. Occasionally, dendrites
break off to form new seeds.






What 1s the Pattern

of Evolutionary
Games on Networks?




Memory-based

snowdrift game
(MBSG) on networks

Wang, Ren, Chen, Wang:
Memory based snowdrift game on networks,
Phys. Rev. E 74, 056113(2006).



The rules of the evolutionary MBSG

m Consider that N players are placed on the
nodes of a certain network.

m In every round, all pairs of connected players
play the game simultaneously.

m The total payoff of each player is the sum
over all its encounters.

m After around is over, each player will have
the strategy information (C or D) of its
neighbors.



m Subsequently, each player knows Iits best strategy
In that round by means of self-questioning, I1.e.,
each player adopts its antistrategy to play a virtual
game with all its neighbors, and calculates the
virtual total payoff.

m Comparing the virtual payoff with the actual
payoff, each player can get its optimal strategy
corresponding to the highest payoff and then
record It Into Its memory.



Assume: the bounded
rationality of players 1
Players are quite limited
in their analyzing power [ 1|

Can only retain

the last M bits of the past
strategy information.




Memory-based snowdrift game on networks

h?o\ry -

D|D|C|cCc|C|?

M bits /

(1) Probability strategy (2) Determined strategy
C . 4/6

] L
D : 2/6 D




m At the start of the next generation, the
probability of making a decision (choosing C or
D) for each player depends on the ratio of the
numbers of C and D stored In its memory:

p-_Ne _Ne p_4 p
N.+N, M

m All players update their memories
simultaneously.

m Repeat the above process and the system
evolves.



I MBSG on
Lattices



B _EEE

FIG. 1. (Color online). The frequency of cooperation f- as a
function of the payoff parameter r for two-dimensional (a) four-
neighbor and (b) eight-neighbor lattices, respectively. (A), (O), and
(0J) are for M=2, 7, and 30, respectively. Each data point is ob-
tained by averaging over 40 different initial states and f- for each
simulation is obtained by averaging from MC time step t=5000 to
f=10000, where the system has reached a steady state. The top
inset of (a) is f as a function of memory length M for two different
cooperation levels. The bottom inset of (a) is a time series of f for
r=0.4 in the case of M=1. Since for M=1, f- as a function of ¢
displays a big oscillation, we do not compute the f- over a period of
MC time steps. The inset of (b) is f- depending on M for four

cooperation levels in the range of 0<<r<<0.5. The network size is
N=10 000.



On lattices with 4 and 8 neighbors
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Stable local patterns cor s

r [0,0.25) % r [0. 25,0.5)

4 .:::g:.:.

375:375  3:0) 4:5 3.5:45 2:0
(c) (d)



Typical patterns for one time step




Random Effect on
Cooperation In

Memory-Based
Snowdrift Game




" A
MBSG on small-world

networks

Based on two-dimensional lattices, We
define rewiring probability p with which we
randomly rewire each edge of lattice. Then

we get a Watts-Strogatz model.

What is the typical spatial pattern
on SWNBRL4 and SWNBRL-8 ?



M=2, N=10000, averaging time step t=9000—10000
(a) SWNBRL4: (b) SWNBRL-8
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Spatial pattern in SWNBRL4 (M=6)
(a) p=0, and (b) p=0.001 for r=0.1




Spatial pattern in SWNBRL4 (M=6)
(c) p=0.05, and (d) p=0.1 for r=0.4
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Spatial pattern in SWNBRLS8 (M=6)




Spatial pattern in SWNBRLS8 (M=6)
(c) p=0.05, and (d) p=0.1 for r=0.4




Typical spatial pattern
on SWNBRL4
For the time step
t=8001 and t=8002
In the case of M=1, r=0.4



" S
t=8001 and t=8002 for p=0.05




t=8001 and t=8002 for p=0.1




Summary

m Randomicity on small world network turns the
original monotonous behavior into non-
monotonous and breaks the intrinsic continuity
of regular lattice, with the increasing rewiring
probability

m The dependence of fc on memory length M is
different with that on regular lattice.



MBSG on

Scale-Free
Networks




MBSG on Scale-free networks

FIG. 5. (Color online) f as a function of » in BA networks with
(al) average degree (ky=4 and (a2) (k)=8 for different M. A time
series of f~for M=1 1s shown in the inset of (a2). (b1) and (b2) are
fc as a function of M in the case of (k)=4 and (k)=8 for a special
range of r. (c1) and (c2) are average degrees (k,) of C and D players
depending on r in the case of M=7 for (k)=4 and (k)=8, respec-
tively. The network size 1s 10 000. Each data point 1s obtained by
averaging over 30 different network realizations with 20 difterent
initial state of each realization. f for each stmulation 1s obtained by
averaging from MC time step r=5000 to =10 000, where the sys-
tem has reached a steady state.
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Distribution of strategies in BA networks

(a) r=0.1, <k>=4, (b) r=0.49, <k>=4
(c ) r=0.05 <k>=8, (d), r=0.1 <k>=8

RN
o

I D
. C

O
o

.0
(a) 10 20 30 40 560 60 (b)10 20 30 40 50 60
1.0

strategy distribution per degree

O
o

(c) 20 40 60 80 (d) 20 40 60 80



Conclusion

m \We have studied the memory-based snowdrift
game on networks, including lattices and
scale-free networks.

m Transitions of spatial patterns are observed on
lattices, together with the step structure of the
frequency of cooperation versus the payoff
parameter.



m The memory length of individuals plays
different roles at each cooperation level.

m In particular, nonmonotonous behavior
are found on SF networks, which can be
explained by the study of the occupation
of nodes with given degree.



m Interestingly, In contrast to previously
reported results, in the memory-based
snowdrift game, the fact of high degree nodes
taken over by defectors leads to a high
cooperation level on SF networks.

m Furthermore, similar to the cases on lattices,
the average degrees of SF networks is still a
significant structural property for determining
cooperative behavior.



m\\What role Is played by memory
In the evolution process of
cooperative behavior?

mSomething can be revealed by
study of evolutionary games
(MBSG).



Self-questioning

games
in BA network




"
Self-questioning games
and ping-pong effect in the
BA network

Kun Gao, Wen-Xu Wang and
Bing-Hong Wang

Physica A 380 (2007) 528-538



" A
Abstract

m PDG and SG with a self-questioning
updating mechanism in BA network
studied.

m What can this mechanism produce?
Interesting non-monotonic phenomena .



" A
m A shortcoming of the existing models (the

learning mechanisms): Being enmeshed in a
globally defective trap.

m This new model can avoid this globally
defective trap.

m “Cooperative Pingpong Effect” can occur in
both PDG and SG and plays an important role
In the behaviors of the whole system.

m This new model shows nontrivial characters
comparing to the existing models.



" S
The probability of strategy updating
for Szebo and Toke model

1

Wi =
77 T ¥ exp|(M; — M,)/K]

m M I, M j. the total payoffs of player i and j.

m K: the parameter characterizes the noise effects to
permit irrational choices.

o K —0 deterministic updating
K — 4o¢

stochastic updating



m Most of current models for the evolutionary games
adopts ST learning mechanism: Players update their
strategies by learning from their neighbors.

m \We have proposed a memory-based SG on networks
[PRE74(2006)] which abandons the learning mechanism.
Instead, a self-questioning mechanism and a memory-
based updating rule are presented .

m As a extension of this work, we study on the
evolutionary PDG and SG with self-questioning
mechanism and stochastic evolutionary rule, mainly on
the scale-free network.



Our model: the self-questioning mechanism and

the stochastic evolutionary rule

m In each time step, players get payoffs through the game on
the basis of the payoff matrix.

m Then each player calculates a virtual payoff by self-
guestioning, I.e., to adopt its anti-strategy and play a
virtual game with its neighbors who keep their strategies
unchanged, then getting a virtual payoff.

m By comparing the real payoff and the virtual payoff,
players will find out whether their current strategies are
advantageous.



" JEE
m In the next round, player 1 will change Iits

current strategy to Its anti-strategy with
probability:

1
Wi

T 1+ exp|(M; — M) /K]
_ Whel’e A{z A’f,

the real and virtual payoff of player.



Simulation results
and statistical analysis
on BA network
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Statistical analysis

m If a player has
cooperative neighbors
and defective neighbors,
m |ts total payoff

1S PC

nCR ndS

for choosing C

Pp=n1+n,P

for choosing D.




Statistical analysis

Po—Pp = n(R—T)4+nqa(S — P)

ne(1 —b), For the PDG
nqg(l —r) —ner, For the SG

_ | Ef(1—0), For the PDG
Fo = Fp = { k(1 — f —r), For the SG

1 1

pe = p(l = 1 +exp[(Pc — Pp)/K] )+ - /0)1 +exp|(Pp — Fo) /K]

1
[+ exp|—(Pc — Pp)/K]




Statistical analysis

for the PDG
1

e = T expl—kf(1 — b)/K]

for the SG
1

e = T exp[—k(1— f — r)/K]



Cooperative Ping-pong Effect

1

e = I exp—kf(1 —b)/K]

when f(t) =0 rlt+1) =

then f(¢t+1)~0.5 po(t+2) =

[
[

with  large k

1
1 +exp|[—kf(l1—0)/K]

1

1 +exp[—kf(l—0)/K]
1
1 +explk(b—1)/2K]

pe(t+2) — 0



Time series for the frequency of cooperation
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Time series for the frequency of cooperation

m=2, K=0.2, b=1.2 for PDG
(no ping-pong effect occurs)
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Time series for the frequency of cooperation

m=10, K=0.2, b=1.5 for PDG
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Time series for the frequency of cooperation

m=2, K=0.2, r=0.5 for SG
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Time series for the frequency of cooperation

m=2, K=0.2, r =0 for SG
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Time series for the frequency of cooperation

m=6, K=2.0, r =0.2 for SG
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The frequency of cooperation as a function of

the noise parameter in BA network
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The frequency of cooperation as a function of
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Further discussion on PDG
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The normalized payoffs and the probability of

strategy updating
|

). = . -
e T T explkle — f(1+2 - 0)/K)



Cooperative frequency of PDG for T=b, R=1, P=0.02, S=0
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Conclusion

m \We have studied the evolutionary games
on the scale-free network with a self-
guestioning updating mechanism.

m Compared with the previous work In this
field, this model shows interesting
phenomena of non-monotony and
discontinuous transition etc.



Conclusion

m These phenomena are related to the so-called
“Cooperative Ping-pong Effect”

m In the evolutionary games, the ping-pong effect is
driven by the player’s tendency of drifting with
the tide.

m It happens under certain conditions in the PDG
and almost everywhere in the SG.



Conclusion

m Note that In our games, although each player only
pays attention to his own information of payoffs,
the whole system exhibits highly self-organized
characters and the players' actions are highly
synchronized.

m That means the payoffs of each player have
contained plenty of information about the
circumstances.

m In the evolutionary games, deciding according to
yourself Is as effective as learning from others.



Conclusion

m Furthermore, the self-questioning
mechanism has avoided the system from
neing enmeshed In a trap of the globally
defective state, which Is a shortcoming for
the previous models.

m Usually the ping-pong effect emerges
when the situation Is not so propitious to
cooperation, thus It can improve the
cooperative behavior in the system.



Conclusion

m However, large vibration, as well as
defection, will also waste the resources
seriously.

m SO these problems are worthy of further
studies, In order to find out more effective
mechanisms to sustain the cooperative
behavior better and to make use of the
resources most efficiently.



Naming Game on
Network for Evolution

of Language




m The naming game has been considered as an
Important approach for understanding and
characterizing the evolution of a language and
more generally of a communication system
without global supervision or a prior common
knowledge.

m It has been demonstrated that in these games,
agents can achieve the consensus of naming an
object through local pair-wise interactions in a
self-organized way, which can well explain the
origin and evolution of languages.



"

m Besides, such models were inspired by
global coordination problems in artificial
Intelligence and peer-to-peer
communication systems.

m A prototypical example is the so-called
talking heads experiment, in which robots
assign names to objects observed through
cameras and negotiate these names with
other agents.



"
m The naming game was also found
meaningful for the new developed web
tools, such as

del.iclo.us
www.flickr.com

which enable web users to share
classification of information in the web
through tags invented by each user.



" A
A minimal version of the
naming game proposed by

A. Baronchelli, M. Felici, et al:
J. Stat. Mech.: Theory Exp. (2006), P0O6014.

A. Baronchelli, L. Dall'Asta, A. Barrat, et al:
Phys. Rev. E 73, 015102R (2006).



"
m Game model: one Is speaker , another Is

hearer.
Failure
Speaker Hearer Speaker Hearer
ATSALLAD TARRAE P | aTsaLLan Tiﬁﬁ“
AKNORAB ANLA AKNORAE OTEROL
AVLA OTEROL AVLA AT AL LA
sSuccess
Speaker Hearerxr Speakter Hearer
ATSALLAD TARRAE [ »
AKNORAE AVLA AVLA AVLA
AVLA OTEROCL

——



" S
m Three rules: (Different ways to select
speaker and hearer)

» 1. direct naming game:

A randomly chosen speaker selects again
randomly a hearer among its neighbors.

» 2.reverse naming game:

Choose the hearer at random and one of its
neighbors as speaker.

» 3. A neutral strategy to pick up pairs of
nodes Is that of considering the extremities of an
edge taken uniformly at random.



Main guantities to characterize
the game

m total memory (N_w)

m number of different words (N _d)
m average success rate S

m convergencetimet c
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scaling behavior
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Role of connectivity-
Induced welghted words

INn language games




Evolution of the average memory per agent




Evolution of average success rate
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Convergence time vs a
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Evolution of the number of different words in the system
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Conclusion 1

m \We present a modified naming game by
Introducing weights of words in the
evolution process.

weight &,

m \We assign the weight of a word spoken by
an agent according to its connectivity,
which is a natural reflection of the agent’s
Influence In population.



Conclusion 2

m A tunable parameter is introduced,
governing the word weight based on the
connectivity of agents.

m \We consider the scale-free topology and
concentrate on the efficiency of reaching
the final consensus, which is of high
Importance In the self-organized system.



Conclusion 3

m Interestingly, it is found that there exists an
optimal parameter value, leading to the
fastest convergence.

m This indicates appropriate hub’s effects favor
the achievement of consensus.

m The evolution of distinct words helps to give a
gualitative explanation of this phenomena.



Conclusion 4

m Similar nontrivial phenomena are observed In
the total memory of agents with a peak in the
middle range of parameter values.

m Other relevant characters are provided as well,
Including the time evolution of total memory
and success rate for different parameter values
as well as the average degree of the network,
which are helpful for understanding the
dynamics of the modified naming game in
detalil.



Asymmetric negotiation

In structured language
games




Asymmetric negotiation

m Each time step, a pair of connected
nodes are randomly selected .The
probability p 1 of choosing one of them |
as speaker Is proportional to | 's weight:

[,
Py .

T
. i

pi =
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Evolution of the number of different names
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Normalized maximum total memory used by agents
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Maximum memory used by agents




Convergence time and maximum total memory




Conclusion 1

m We have investigated a modified naming game
with asymmetric negotiation strategy on both
scale-free and small-world networks.

m The most Interesting result is that there exists
an optimal value of the parameter a that
leads to the fastest convergence.

m This result demonstrates that a proper
Influence of high-degree agents in negotiation
best benefits the achievement of final
consensus, and high-degree agents can play
both positive and negative roles in the
agreement dynamics of the naming game.



Conclusion 2

m \We have qualitatively explained the
results for the convergence time in terms
of the evolution of the total number of

different names.

m \We have also investigated the
dependence of the total maximum
memory used by agents on the parameter
and found a peak in the middle range of
the parameter space.



Conclusion 3

m T he relationship between the maximum
memory used by an agent and its degree
shows different behavior compared to
previously reported results in the naming
game, while the convergence time and
the total maximum memory show similar
scaling behavior.

m [t may be interesting to explore
asymmetric negotiation on networks
with degree correlation In future work.
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