APEX-SZ observations of galaxy clusters

Cathy Horellou, Onsala Space Observatory / Chalmers

- Mapping the SZ decrement at 2 mm (150 GHz)
- Angular resolution of 1'; FOV = 24'
- Observations between 2005 and 2010
- 48 clusters + 2 deep fields.

Inverse Compton scattering of CMB photons by hot electrons

Charateristic distortions of the CMB spectrum:

1. Thermal SZ effect

Decrement in the radio/mm, increment in the submm

 $\Delta T_{SZ,th}/T_{CMB}(v) \propto \int_{cluster} n_e T_e dl = gas pressure$

2. Kinetic SZ effect: 10 times weaker

 $\Delta T_{SZ,kin}/T_{CMB}(v) \propto -v_{pec}/c$

Depends on the *mass* of the intracluster gas.

Current observations are sensitive to clusters with masses M > a few 10¹⁴ M_{sun}.

Important: independent of redshift!

Example of APEX-SZ 150 GHz maps (M. Nord, PhD thesis)

300 200 100 0 -100-200-300 RA OFFSET [ARCSEC]

100 0 -100 -200 z=0.31 $kT_x=10.6 \text{ keV}$

300 200 100 0 -100-200-300

300 200 100 0 -100-200-300 RA OFFSET [ARCSEC]

300 200 100 0 -100-200-300 RA OFFSET [ARCSEC]

The Atacama Pathfinder EXperiment, APEX

- A 12 m telescope at 5100 m elevation near the ALMA site
- Partners: ESO (24%), Germany (45%), Sweden (21%), Chile (10%)
- Versatile instrument:
 - •Nasmyth A cabin:
 - 4 spectral-line receivers, 211-1390 GHz (facility instruments)
 - FLASH (spectral-line receiver, 280-510 GHz; MPIfR PI instrument)
 - •Nasmyth B cabin:
 - Champ+ (spectral-line receiver, 602-950 GHz, German PI instrument)
 - •Cassegrain cabin: 3 bolometer cameras
 - SABOCA 350 micron (facility instrument)
 - LABOCA 870 micron (facility instrument)
 - APEX-SZ (ASZCA) at 2 mm (German PI instrument, built at U of California)
 - 2-4 weeks per year since 2007 (920 hours on source, German+Swedish time)

The APEX-SZ collaboration

UC Berkeley / LBNL

Hsiao-Mei Cho John Clarke **Daniel Ferrusca** Bill Holzapfel Zigmund Kermish Adrian Lee Martin Lueker Jared Mehl Tom Plagge Christian Reichardt Paul Richards Dan Schwan Helmuth Spieler Ben Westbrook Martin White Oliver Zahn

NASA Goddard

Brad Johnson

Boulder Colorado

Amy Bender Nils Halverson

Mc Gill University, Canada

Matt Dobbs James Kennedy Trevor Lanting

Max-Planck Institute for Radio Astronomy, Bonn

Kaustuv Basu Rolf Guesten Ernst Kreysa Karl Menten Dirk Muders Felipe Navarrette

Max-Planck Institute for Extraterrestrial Physics, Munich Hans Boehringer Gayong Chon Rene Fassbender

Onsala/Chalmers

Bonn University

Frank Bertoldi Matthias Klein

Florian Pacaud

Martin Sommer

Reinhold Schaaf

Cathy Horellou Daniel Johansson

ESO Santiago

Ruediger Kneissl

Outline

The APEX-SZ camera, observing strategy and data analysis

• Instrument paper (Schwan et al. 2011, Rev. of Sci. Instr., in press)

The dataset

Published results

- The Bullet Cluster (Halverson et al. 2009, ApJ)
- Abell 2163, dual-frequency 150 + 345 GHz SZ observations (Nord et al. 2009, A&A)
- Abell 2204, joint X-ray-SZ analysis, de-projection, non-parametric modeling (Basu et al. 2010, A&A)

• Power spectrum of the central 0.8 square degrees of the XMM-LSS field (Reichardt et al. 2009, ApJ);

Work in progress

- SZ-mass scaling relations (Bender et al., Klein et al.)
- The merging cluster Abell 2744 (Horellou et al.)
- Contaminating point sources
- [Stacking analysis to probe the outskirts of relaxed clusters (Basu et al.)
- Substructures (Kennedy et al.)]

• ...

• Future work

• [ALMA+ACA, CCAT,] LOFAR

Schwan et al. 2011, in press

New technologies pioneered in APEX-SZ:

- Transition edge sensors (TES)
- Frequency-domain multiplexed readout
- Use of a pulse-tube cooler

330 bolometers in total,280 bolometers wired

Drawing of the cryostat

6 wedges of 55 bolometers each

From time streams to a 2D image of the SZ brightness

Fit of elliptical Gaussian beams to 177 optically live bolometers

Circular drift scan pattern with a diameter of 6 to 12 arcmin Duration of a circle: 4-10 s

Total time spent on science targets by APEX-SZ

The dataset

The list is sorted by right ascension.

OBJECT	R.A.	Dec	mar07	apr07	aug07	dec07	may08	nov08	apr09	dec09	nov10	TOTAL
A2744	00:14:18.8	-30:23:00	-	-	-	-	7.8	-	-	-	14.5	22.2
RXCJ0019.0-2026	00:19:07.8	-20:27:21	-	-	-	-	-	-	-	-	8.5	8.5
CL0024+17	00:26:35.6	+17:09:44	-	-	-	-	-	-	-	1.4	-	1.4
A2813	00:43:24.4	-20:37:17	-	-	-	-	-	0.5	-	-	8.1	8.7
A209	01:31:52.6	-13:36:37	-	-	-	-	-	-	-	-	8.9	8.9
XMM-LSS-2	02:21:05.7	-03:37:48	-	-	-	31.2	-	-	-	-	-	31.2
XLSSC-006	02:21:45.1	-03:46:19	-	-	43.3	-	-	-	-	-	-	43.3
RXCJ0232.2-4420	02:32:18.7	-44:20:41	-	-	-	-	-	-	-	-	8.7	8.7
RXCJ0245.4-5302	02:45:27.7	-53:02:10	-	-	-	-	-	-	0.2	12.9	-	13.1
A383	02:48:03.6	-03:32:09	-	-	-	-	-	8.3	-	-	7.0	15.3
RXCJ0437.1+0043	04:37:09.8	+00:43:37	-		-	-	-		-	-	9.9	9.9
MS0451.6-0305	04:54:11.4	-03:00:52	-	-	-	-	-	-	-	8.3	-	8.3
A520	04:54:19.0	+02:56:49	-	-	-	-	-	11.2			10.6	21.8
RXCJ0516.6-5430	05:16:38.0	-54:30:51	-	-	-	-	-	-		16.1	9.9	26.0
RXCI0528.9-3927	05:28:52.5	-39:28:16	-	-	-		-	-		14.4	6.3	20.7
RXCJ0532.9-3701	05:32:55.9	-37:01:35	-		0.9	-	-		-	13.7	7.6	22.2
A3404	06:45:29.3	-54:13:08	-		4.7	-	4.0				5.3	14.1
Bullet	06:58:31.1	-55-56-49	13	25	7.6							11.5
BXC10956 4-1004	09:56:26.4	-10:04:12	-	-	-					10.7		10.7
A907	09:58:21.1	-11:03:22		-	-	-		4.5	74	7.4	77	27.0
XMMC10959	09.50.21.1	+02.31.11	-		-		-	4.5	7.4	7.4	8.1	81
COSMOS MAMBO	10:00:15.6	102:15:50	-	23.8	-	41.2	-	-	-	-	0.1	65.0
PXCI1023.6:0411	10:00:15:0	+02.15.50	-	25.0		41.2	-	- 8.4			- 7.1	15.4
MS1054 4 0221	10.56.59.0	02.27.27	-	-	-	-	- 1.2	0.4		-	7.1	13.4
MACS11115 8:0120	11.15.52.1	-03.37.37	-	-	-	-	1.2	0.5	-	4.0	-	17.5
MAC3J1113.8+0129	11.22.00.7	10.52.24	-	-	-	-	-	-	-	6.1	1.9	20.7
A1500	11:52:00.7	-19:55:54	0.0	-	-	-	-	-	10.0	0.1	4.0	20./
AMMCJ1152	11:52:52.2	-54:45:50	-	-	-	-	-	-	-	-	8.4	8.4
RXCJ1135.6-2019	11:35:36.8	-20:19:42	-	-	-	-	-	-	-	11.2	5.8	17.0
KACJ1206.2-0848	12:00:12.2	-08:48:22	-	-	-	-	-	-	-	0.7	8.1	14.0
XMMUJ1229	12:29:29.2	+01:51:26	-	-	-	-	-	-	3.4	-	-	3.4
XMMJ1230	12:30:16.9	+13:39:04	-	-	-	-	-	-	13.1	10.6	-	23.7
RDCS1252.9-2927	12:52:54.4	-29:27:17	-	-	16.3	17.0	-	-	-	-	-	33.4
MACSJ1311.0-0311	13:11:00.0	-03:11:00	-	-	-	-	-	-	10.1	10.0	5.6	25.6
A1689	13:11:29.5	-01:20:17	-	-	-	-	-	-	9.5	4.3	4.1	17.9
RXJ1347-1145	13:47:30.6	-11:45:12	1.2	5.8	2.1	-	1.0	-	-	-	-	10.2
MACSJ1359.2-1929	13:59:10.3	-19:29:24	-	-	-	-	-	-	9.6	-	-	9.6
DLS-F5	13:59:20.0	-11:03:00	-	12.4	-	-	-	-	-	-	-	12.4
A1835	14:01:02.0	+02:51:32	-	-	-	-	-	-	11.4	-	1.0	12.5
RXJ1504	15:04:07.7	-02:48:18	-	-	-	-	-	-	10.4	-	-	10.4
A2163	16:15:45.8	-06:08:55	-	12.0	0.7	-	-	-	-	-	-	12.7
A2204	16:32:45.7	+05:34:43	-	-	-	-	16.6	-	3.7	-	-	20.3
MACSJ1931.8-2635	19:31:48.0	-26:35:00	-	-	-	-	-	-	9.4	-	-	9.4
RXCJ2011.3-5725	20:11:23.1	-57:25:39	-	-	-	-	-	-	12.0	10.5	-	22.5
RXCJ2014.8-2430	20:14:49.7	-24:30:30	-	-	10.1	-	-	-	-	-	-	10.1
MACSJ2046.0-3430	20:46:00.5	-34:30:17	-	-	-	-	-	-	12.9	-	-	12.9
RXCJ2151.0-0736	21:51:01.2	-07:36:03	-	-	-	-	-	-	-	-	8.1	8.1
A2390	21:53:34.6	+17:40:11	-	-	-	-	-	4.9	0.1	-	-	5.0
RXCJ2214.9-1359	22:14:59.0	-13:59:41	-	-	-	-	-	-	-	-	7.6	7.6
XMMXCSJ2215.9-1738	22:15:58.5	-17:38:03	-	-	11.8	-	-	-	-	-	-	11.8
XMMUJ2235.3-2557	22:35:20.6	-25:57:42	-	-	-	-	-	8.0	21.5	7.6	-	37.1
RXCJ2243.3-0935	22:43:20.8	-09:35:18	-	-	-	-	-	-	-	-	7.1	7.1
RXCJ2248.7-4431	22:48:54.3	-44:31:07	-	6.8	-	-	-	-	-	-	-	6.8
AS1077	22:58:52.3	-34:46:55	-	-	-	-	-	-	16.6	-	-	16.6
A2537	23:08:23.2	-02:11:31	-	-	-	-	14.6	0.9	-	-	-	15.5
RCSJ2319.9+0038	23:19:53.2	+00:38:12	-	-	-	-	-	-	-	9.8	-	9.8
BCS2-XMM	23:30:00.0	-55:11:24	-	24.8	-	-	-	-	-	-	-	24.8
RXCJ2337.6+0016	23:37:39.7	+00:17:37	-	-	-	-	-	-	-	-	9.3	9.3
TOTAL HOURS			3.2	88.1	97.6	89.5	45.2	55.2	161.3	181.3	199.0	920.4

- 48 clusters over a wide range of redshifts (0.15 < z < 1.5) and temperatures (5 keV < kTe < 15 keV).
Selected to have X-ray data: 36 XMM-Newton;
8 of the remainder Chandra; 4 REFLEX DXL (0.26 < z < 0.31, LX> 1.e+45 erg/s for the 0.1-2.4 keV band

Zhang et al. 2006)

- 2 deep fields (XMM-LSS and COSMOS)

The Bullet Cluster at z=0.3, Halverson et al. 2009

Star: Bright submm galaxy (50 mJy at 870 micron) at z=2.7 near a critical line of the Bullet Cluster and magnified 100 times (Johansson et al. 2010); its flux at 2 mm is negligible compared to the SZ

Data points: from 2 different analyses Blue: best fit

Elliptical beta-model

X-ray-derived prior on beta=1.04+0.16-0.1,

Central SZ decrement: $-771 \pm 71 \mu \text{KCMB}$; rc = 142'' ± 18''; axial ratio=0.889 ± 0.072. Using ne from Chandra, Tmass weighted = 10.8 ± 0.9 keV

The Bullet Cluster at z=0.3, Halverson et al. 2009

X-ray (color) + APEX-SZ (white contours) + Weak Lensing (green contours, Clowe et al.)

See Haukur Sigurdarson's talk on Wed about APEX observations of the SZ increment at 870 micron

Another merging cluster at z=0.3, Abell 2163 Nord et al. 2009

APEXSZ + X-ray (white contours)

Profile of SZ temperature decrement

Abell 2163 at z=0.3, Nord et al. 2009

The SZ increment at 350 GHz

+ submm point sources

The SZ increment (color) + the APEX-SZ decrement (contours)

Abell 2163 at z=0.3, Nord et al. 2009

The SZE spectrum

Fixing temperature gives constraint on peculiar velocity-central Compton parameter

Abell 2163 at z=0.3, Nord et al. 2009

Joint X-ray/SZ analysis:

SZ: $\int_{los} n_e T_e dl$ X-ray: $\int_{los} n_e^2 Lambda(T_e) dl$

Assuming <u>spherical symmetry</u>, one can use the Abel transformation

$$T_{\rm e}(r) n_{\rm e}(r) = \frac{1}{\pi A_{\rm SZE}} \int_{\infty}^{r} \frac{d\Delta T(R)}{dR} \frac{dR}{\sqrt{R^2 - r^2}};$$

$$\Lambda_{\rm H}(T_{\rm e}(r)) n_{\rm e}^2(r) = 4(1+z)^4 \int_{\infty}^{r} \frac{dS_{\rm X}(R)}{dR} \frac{dR}{\sqrt{R^2 - r^2}};$$

A relaxed cluster at z=0.15: Abell 2204, Basu et al. 2010

APEX-SZ + X-ray (white contours)

Profile of SZ temperature decrement Blue: raw profile; Red: deconvolved from the transfer function Dashed lines: 5 randomly selected deconvolved profiles

Abell 2204 at z=0.15, Basu et al. 2010

Ang. distance (arcmin) 6 8 10 0 12 0.1000 🗄 n_e 0.0100 (س⁹ (cm) س⁹ 0.0010 0.0001 10 0 \approx \diamond 0 500 1000 1500 2000 r (kpc) Ang. distance (arcmin) 6 8 10 0 2 12 20 T_e 15 $T_{a}(r)$ (keV) 10 5 0 0 500 1000 1500 2000 r (kpc)

De-projected density & temperature

Profile of the enclosed gas mass and the total mass (assuming hydrostatic equilibrium)

The APEX-SZ power spectrum at 150 GHz, Reichardt et al. 2009

Derived from a 0.8 square degree map of the central part of the XMM-LSS field, with rms ~12 microK

- •The power is dominated by dusty submm galaxies
- sigma_8 < 1.15 at 95% confidence

Work in progress

Abell 2744 ("Pandora's cluster" (?!))

Collision of 4 subclusters? (Merten et al. 2011)

Offsets between the gas and the collisionless dark matter

Red: X-ray Blue: Mass (lensing) + Galaxies

(Credit: X-ray: NASA/CXC/ ITA/INAF/J.Merten et al, Lensing: NASA/STScI; NAOJ/ Subaru; ESO/VLT, Optical: NASA/STScI/R.Dupke)

Background: X-ray from Chandra

Lensing follow-up (PhD of Matthias Klein, Bonn)

BVR observations with the wide field imager (WFI) on the ESO/MPG 2.2 m telescope in La Silla, FOV = 33'x34'

Weak lensing follow-up of the **15 clusters** of our sample for which no WL data exist in archives.

7 clusters were observed so far.

Photo: <u>www.eso.org</u>

Ongoing PhD work of Matthias Klein (Bonn)

Scaling relations (PhD of Amy Bender, Colorado)

The integrated Compton parameter Ysz is a good proxy of the cluster's total mass; e.g. Arnaud et al. 2010; Motl et al. 2006:

Self-similarity: Y ~ T^5/2 Y ~ M^5/3 Y~ Mgas^5/3

APEX-SZ scaling relations - Measuring Y500

From Amy Bender's work

- 2 models of the intracluster gas:
 - Isothermal beta-model Generalized NFW
- The likelihood of Y500 is estimated from parameter fitting, using jackknife maps (half the dataset minus other half, randomly) to model the noise

	Isoth	ermal β -m	odel	GNFW Model			
Subset	Α	В	$\sigma_{ m Y,int}$	Α	В	$\sigma_{\rm Y,int}$	
All Clusters	$-6.31^{+0.60}_{-0.58}$	$3.08^{+0.56}_{-0.78}$	$0.19^{+0.07}_{-0.04}$	$-6.11^{+0.55}_{-0.49}$	$2.72^{+0.54}_{-0.61}$	$0.18^{+0.04}_{-0.05}$	
Relaxed Only	$-6.00^{+1.11}_{-1.24}$	$2.50^{+1.50}_{-1.11}$	$0.19\substack{+0.08 \\ -0.09}$	$-6.34\substack{+0.68\\-1.06}$	$3.10^{+1.07}_{-0.88}$	$0.12\substack{+0.08 \\ -0.04}$	
Disturbed Only	$-5.88^{+0.75}_{-1.04}$	$2.77\substack{+0.88\\-1.15}$	$0.27\substack{+0.08 \\ -0.10}$	$-5.79\substack{+0.99\\-0.71}$	$2.36\substack{+0.78 \\ -1.09}$	$0.25\substack{+0.09 \\ -0.07}$	
${\rm Disturbed}{+}{\rm Unknown}$	$-6.09\substack{+0.66\\-0.95}$	$2.84\substack{+0.89\\-0.96}$	$0.27\substack{+0.08\\-0.09}$	$-5.84^{+0.87}_{-0.72}$	$2.25\substack{+0.93 \\ -0.83}$	$0.22\substack{+0.10\\-0.05}$	
REFLEX-DXL	$-5.68^{+1.22}_{-0.98}$	$2.19\substack{+1.15 \\ -1.37}$	$0.26\substack{+0.11 \\ -0.08}$	$-5.93\substack{+0.88\\-0.77}$	$2.56\substack{+0.82\\-1.08}$	$0.19\substack{+0.09 \\ -0.06}$	
Point Source Cut	$-6.29\substack{+0.64\\-0.56}$	$2.96\substack{+0.60\\-0.74}$	$0.21\substack{+0.05 \\ -0.08}$	$-5.94\substack{+0.44\\-0.61}$	$2.57\substack{+0.62\\-0.53}$	$0.16\substack{+0.05 \\ -0.05}$	

Effect of dynamical state

Simulations indicate that Y is rather insensitive to dynamical state (e.g. Kravtsov et al. 2006, Poole et al. 2007)

APEX-SZ scaling relations

From Amy Bender's work

Contaminating point sources? (Ben Westbrook's PhD work)

Some of our upper limits on the SZ signal are not consistent with predictions from X-ray measurements.

=> Could a point source 'fill' the SZ decrement?

CARMA program to observe the 3mm and the 1mm of clusters

- marginally detected or undetected by APEX-SZ
- with a bright NVSS source near the cluster's X-ray position

In particular, we detected only 1 out of 4 high-z clusters:

* XMMU J2235.3-2557, z = 1.393 (Mullis et al. 2005; SZ from Culverhouse et al. 2010, SZA)

- XMMXCS J2215, z = 1.45 (Hilton et al. 2007)
- RDCS1252.9-2927, z = 1.23 (Rosati et al. 2003)
- XMMU J1230.3+1339, z = 0.975 (Fassbender et al. 2011)

Future work

SZ: ALMA/ ACA, CCAT

LOFAR observations of the radio continuum in galaxy clusters (radio halos and relics)

LOFAR: Low Frequency Array, lambda > 1.5 m (15-80 MHz, 120-200 MHz) Mostly Dutch (36 stations), and international participation (5 stations in Germany, 1 in UK, 1 in France, 1 in Sweden)

> A survey instrument: FOV: 1-10 deg. Goal: Survey the whole Northern sky (DEC > 0) at 15, 30, 60 and 120 MHz, and selected areas at 200 MHz. Later: Even the XXL DEC=-5 deg field.

- Galaxy clusters (radio halos and relics)
- Distance radio galaxies (ca 100 at z > 6) AGN, starburst galaxies

Onsala LOFAR station completed Will be inaugurated on Sep 26, 2011

GMRT 150 MHz observation of **giant double radio relic** in **Planck SZ-detected cluster** PLCKG287.0+32.9 at z=0.39 (Bagchi et al. 2011 April 29, arxiv)

z=0.0594

