The XMM Cluster Survey: Future constraints

Martin Sahlén The Oskar Klein Centre for Cosmoparticle Physics Stockholm University

msa@fysik.su.se

Clusters of Galaxies as Cosmic Laboratories Stockholm, 13 September 2011

- Complete XMM-Newton archive (serendipitous) >6000 observations, ~600 sq. deg.
- Science goals
 - Find galaxy clusters
 - Constrain cosmology using galaxy clusters
 - Study redshift evolution of cluster gas (scaling relations)
 - Study galaxy evolution in clusters
 - Study properties of unusual X-ray sources, e.g. high-redshift quasars and isolated neutron stars
- www.xcs-home.org

Cluster Finding

- X-ray temperature, flux, redshift, spatial parameters
 - Flux limit: ~5 x 10⁻¹⁴ erg s⁻¹ cm⁻²
 - $z_{max} = 1.46$ (so far)
 - Final area: ~500 sq. deg.
- Several thousand clusters expected (3675 extended-source candidates so far)
- Targeted pointings excluded for cosmology (but useful for mass calibration)

Current X-Ray Cluster Surveys

Current X-Ray Cluster Surveys

First comparison: SDSS_DR7—XCS-DR1 overlap

First comparison: SDSS_DR7—XCS-DR1 overlap

FORECASTS – WORK IN PROGRESS

Predicted Detected Distributions

This includes our simulated selection function, consistent treatment of scatter, etc.

Forecast Constraints Self-Calibrated L-T Relation w/ Scatter

NB: Number counts only (serendipitous)

No L-T evolution Self-similar L-T evolution

 $\sigma(\Omega_{\rm m}) < 0.03$

 $\sigma(\sigma_8) < 0.05$

Note: not using flux measurements Fixed M-T (HIFLUGCS), 0.1 < z < 1 4 L-T parameters marginalized over

Forecast: ACDM

 $\frac{\text{Fiducial model}}{\Omega_{M}} = 0.266$ $\Omega_{b} = 0.0449$ h = 0.71 $\sigma_{8} = 0.801$ $n_{S} = 0.963$ $\sigma(\alpha_{M-T}) = 15\%$ $\frac{\text{Varying}}{\sigma_{8} \Omega_{M} \alpha_{M-T}}$

$\sigma_8 = 0.80 \pm 0.01, \pm 0.02$ $\Omega_M = 0.266 \pm 0.005, \pm 0.010$

α_{M-T} is the normalization of the mass temperature (M—T) relation, here used to illustrate many possible mass-calibration uncertainties

M.S. et al., in prep.

Comparison to Current Results

• Works of 400d (Vikhlinin et al. 2009) and Allen group (Mantz et al. 2010) best current results

 In a like-for-like comparison, we expect an improvement in constraints by a factor ~2 (based on numbers) or more (redshift coverage)

• Mantz et al. find $\sigma(\Omega_M) = 0.04$, $\sigma(\sigma_8) = 0.05$, which matches this expectation quite well

M.S. et al., in prep.

Fiducial model Forecast: $\Omega_{M} = 0.266$ $\Omega_{\rm b} = 0.0449$ $\Sigma m_{v} = 0.0 \, eV$ Neutrino masses h = 0.71 $\sigma_{8} = 0.801$ Σm_v/eV < 0.86 (0.95), 95% CL $n_{s} = 0.963$ $\sigma(\alpha_{M-T}) = 15\%$ $\sigma_8 = 0.80 \pm 0.01, \pm 0.02$ 0.76 0.8 0.84 $\Omega_{\rm M} = 0.27 \pm 0.01, \pm 0.02$ Fitting $\sigma_8 \Omega_M \Sigma m_v \alpha_{M-T}$

Work in progress, ultimately expect x2 improvement on CMB+clusters constraint

M.S. et al., in prep.

Forecast: Neutrino masses $\sum_{0.76\ 0.8\ 0.84} \sum_{0.76\ 0.8\ 0.84} \sum_{0.76\ 0.27\ \pm\ 0.02,\ \pm\ 0.03} \sum_{0.76\ 0.27\ \pm\ 0.27\ \pm\ 0.03} \sum_{0.76\ 0.27\ \pm\ 0$

 $\frac{\text{Fiducial model}}{\Omega_{M} = 0.266}$ $\Omega_{b} = 0.0449$ $\Sigma m_{v} = 1.0 \text{ eV}$ h = 0.71 $\sigma_{8} = 0.801$ $n_{S} = 0.963$ $\sigma(\alpha_{M-T}) = 15\%$ $\frac{\text{Fitting}}{\sigma_{8} \Omega_{M} \Sigma m_{v} \alpha_{M-T}}$

Work in progress, ultimately expect x2 improvement on CMB+clusters constraint

Complementarity depth-area: e.g. Oguri 2009, arXiv:0905.0920

Important consideration for e.g. survey mass calibration

Conclusions

• The XMM Cluster Survey has released XCS-DR1, publicly available at www.xcs-home.org

 It is the largest homogeneous X-ray cluster sample to date, with 503 clusters, extending to high redshifts

 We find (in SDSS DR7 overlap) a distribution of clusters that agrees with a WMAP7 ACDM cosmology

Conclusions

• First cosmological constraints this year; next year considerable improvement [σ_8 , Ω_m , w, m_v , f_{NL} , γ , ...]

• With WMAP7+BAO+H0:

Parameter	Worst-case(?) σ (w/ XCS syst.)
Ω _m	~ 0.005
σ ₈	~ 0.01
Σm _v *	< 0.5 eV

* but using e.g. full CMB covariance considerably better

Conclusions

• With strong priors on Ω_b , h, $\Omega_M \& \sigma_8$, n_s:

Parameter	Best-case σ	Worst-case(?) σ	
f _{NL}	~ 15	~ 50	
argument for e.g. XCS-XXL			

• Detailed constraints and forecasts in prep.

 Claims of "too massive" clusters often based on biased mass estimates; in my opinion most likely no tension with ΛCDM

Other avenues

• Similar work on e.g. XXL, eROSITA

• Modified-gravity models

• Quintessence models

• Public CosmoMC cluster module