Non-thermal emission from clusters

Greg Madejski

Stanford Linear Accelerator Center and Kavli Institute for Particle Astrophysics and Cosmology (KIPAC)

Outline:

- Clusters and cosmology
- Clusters as diffuse light sources: Thermal X-rays but not only
- Non-thermal emission in radio, X-rays
- The case of Bullet Cluster: Suzaku observations
- Gamma-rays with Fermi
- Future hard X-ray observations: NuSTAR

Astro-H's Hard X-ray Imager (HXI)

Clusters: why do we care?

Tight constraints on cosmological parameters require well-determined masses

Detailed properties: Chandra & XMM

Slide shamelessly stolen from C. Jones; plot from Vikhlinin et al. 2009

Radio emission in clusters

Clusters formed from galaxies – shocks expected Excellent site for acceleration of particles to high energies First confirmed in radio band, now at least 50 clusters known w/radio emission

FtG. 3.—Low-resolution radio images overlaid on gray scale PSPC hard-band (0.5-2.0 keV) image smoothed with a 50" Gaussian: (a) MOST contour image at 843 MHz smoothed to a beam size of 60°, the beam shown is the original beam before smoothing; (b-e) ATCA contour images with a 60° beam at 1.3, 2.4, 4.9, 5.9, and 8.8 GHz, respectively; only the shortest spacings (< 3600Å) are used. Contour levels are (-3, 3, 6, 12, 24, 48, 96, 192, 384) × σ , where rms noise are $\sigma \sim 1100$, 51, 110, 56, 65, 56 µJ beam $^{-1}$ for frequencies of 0.8, 1.3, 2.4, 4.9, 5.9, and 8.8 GHz, respectively:

Bullet cluster: ROSAT PSPC (gray scale) with low-freq. radio (contours) (Liang et al. 2000)

Abell 754 (Fusco-Femiano et al. 2003)

Radio emission is polarized -> synchrotron process

Fig. 1. Radio contours of the cluster A2255 overlaid on the Rosat X-ray image (colors). The radio image is at 1.4 GHz and has a *FWHM* of $15'' \times 15''$ (uniform weighting). The sensitivity (1σ) is 16μ Jy/beam and the dynamic range is ≈ 6300 . Contour levels are: 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, 25.6, 51.2 mJy/beam. No primary beam correction has been applied to the image.

One example: Abell 2255 (Taylor et al.)

- Radio emission is a convolution of *B* and $N(\gamma)$ of relativistic electrons
- Those provide pressure -> affect hydrostatic equilibrium
- Need another tool to break the degeneracy
- Inverse Compton emission against the CMB photons –

-> Emission expected in the X-ray band

* CMB energy density at z=0 is ~ the same as $B = 3 \mu G$

Where to look?

But clusters are strong *thermal* X-ray emitters – need to account for it in the search for non-thermal component Hard X-ray regime most promising Searches / detections controversial...

Abell 754 BeppoSAX (Fusco-Femiano)

Abell 2163 RXTE (Gruber, Rephaeli)

Coma has been particularly controversial...

- Hard X-ray instruments are collimated detectors background is large
- Beppo-SAX detection, non-detection...
- RXTE tentative detection
- Suzaku probably most sensitive, detection yes,

but systematics of the NXB subtraction (Wik, Sarazin, + 2009)

Figure 6. Suzaku HXD-PIN spectrum (E > 12 keV) and the combined XMM spectrum (E < 12 keV) corresponding to the spatial sensitivity of the PIN. Shown as solid lines are the best-fit models for a 2-T thermal component. The thermal model ("APEC+APEC," green) is nearly coincident with the data, though falling below it at higher energies. The other two components are

Figure 7. XMM-Newton temperature map across Coma with HXD-PIN contours of constant PIN effective area overlaid at 10% intervals. The XMM-Newton spectra were fit in square spatial regions 4/3 on a side. The temperatures, given in keV by the color bar, are accurate to either a few tenths of a keV (in the center) or 1–2 keV in lower surface brightness regions. Temperatures shown here were determined from fits to the 0.5–1.4 keV spectrum in each region.

Coded mask imaging helps a little: Swift BAT

Figure 13. BAT significance map of A3667 with superimposed X-ray contours from the ROSAT-PSPC (green) and radio 843 MHz SUMSS contours (white).

Figure 10. Contours of the surface brightness of the Norma cluster, as derived from ROSAT-PSPC observations, superimposed on the Swift/BAT significance map. (A color version of this figure is available in the online journal.)

Abell 3667 with BAT (colors), radio (white contours), and PSPC (green contours) – from Ajello et al.)

Same for Norma cluster

Bullet Cluster and non-thermal emission

Poster child for merging activity One sub-cluster traveling through another sub-cluster Angle of the cone gives a Mach number of the shock Non-thermal radio emission detected Beautiful S-Z data (shown in later talks?) Very massive - $\sim 10^{15}$ Solar masses? Gonzalez et al.

FIG. 3.—Low-resolution radio images overlaid on gray scale PSPC hard-band (0.5–2.0 keV) image smoothed with a 50° Gaussian: (a) MOST contour image at 843 MHz smoothed to a beam size of 60°, the beam shown is the original beam before smoothing; (*b-e*) ATCA contour images with a 60° beam at 1.3, 2.4, 4.9, 5.9, and 8.8 GHz, respectively; only the shortest spacings (< 3600) are used. Contour levels are (-3, 3, 6, 12, 24, 48, 96, 192, 384) × σ , where rms noise are $\sigma \sim 1100$, 51, 110, 56, 65, 56 µJy beam ⁻¹ for frequencies of 0.8, 1.3, 2.4, 4.9, 5.9, and 8.8 GHz, respectively.

Chandra image, with the green contours indicating mass distribution inferred from gravitational lensing (Markevitch+, Clowe+, Bradac+) Radio emission (contours) Overlaid on X-ray gray scale map (Liang et al)

Hard X-rays from the Bullet Cluster

 Spectrum of the bullet cluster obtained with RXTE (left, Petrosian et al.) and Swift BAT (right, Ajello et al.)

- Observed with Suzaku for 100 ks, XIS: beautiful detection, low background
- Suzaku XIS spectrum fits adequately with a single T ~ 12 keV, but multi-temperature structure slightly preferred (not new – seen in Chandra by Markevitch et al.; XMM-Newton by Andersson, Peterson, GM), T range 9 – 15+ keV
- Hard X-ray spectrum (HXD PIN data) not on the extrapolation of the XIS data
- But note that PIN subtends larger Ω (0.34 deg.sq) than the XIS image (cluster: ~0.02 deg sq)

Bullet Cluster: the nature of the hard X-ray component – work in progress

<- Swift BAT detection level

- What is the origin of the hard component seen in the Suzaku HXD/PIN data?
- Could be potentially a result of imprecise subtraction of the particle background
 - Inclusion of the systematic errors makes it only a $\sim 2\sigma$ detection, but systematics of NXB in the PIN observations 3% nominal are probably an overestimate
- Two possibilities: it could be a power-law-like component, but then:
 - (1) if all of it is at the flux level seen in the HXD, it has to cut off sharply between the XIS & PIN not too attractive...
 - (2) Swift BAT flux at 20-30 keV is much lower than seen in in the HXD PIN
- More likely possibility: a hybrid scenario: includes a PL component at the BAT flux level, modest cut-off
 - + a low surface brightness, but significantly more extended and somewhat hotter thermal component (RXTE PCA normalization closer to the HXD PIN value!)
- * Robust total emission / mass determinations require studies to and beyond the virial radius

Another handle on non-thermal emission: γ -rays

Upper limits for γ -ray emission for clusters measured by Fermi (Abdo, ..., Bechtol 2011)

Future observations

- Traditional, collimated hard X-ray instruments probably reached their ultimate sensitivity, ~ 0.5 x 10¹¹ erg/cm²/s (say 10-50 keV)
- Any advances will need focussing optics
- Advantages: much lower background, and of course imaging
- Easier to do below 10 keV, more difficult above 10 keV (cannot use standard reflection from grazing incidence)
- Major breakthrough: multi-layered optics allows focussing to 80 keV and possibly beyond; proven in balloon flights
- * Examples: NuSTAR (2012), Astro-H (2014)

CdZnTe detectors: pixel size 0.6 mm (~ 12") Max. count rate: 300 cts/s HEFT heritage

NuSTAR: What is it?

- * NuSTAR will be the first satellite-based focusing X-ray telescope operating in the hard X-ray band, 5 80 keV
- * Leading institution is Caltech (Fiona Harrison, PI)
- * It is scheduled for launch in February of 2012 into a low-Earth, nearly equatorial orbit -> low background
- It is a part of NASA's Small Explorer program

NuSTAR will feature three key novel technologies:

- Co-aligned multi-coated focusing hard X-ray telescopes: excellent angular resolution will allow surveys at unprecedented sensitivity
- Pixellated CdZnTe detectors: broad bandpass well matched to the telescope reflectivity
- Deployable mast, enabling the ~ 10 m focal length

NuSTAR: key parameters

Energy range	5 – 80 keV
Angular resolution	43" Half Power Diameter, 7.5" FWHM
Field of View	13 arc min x 13 arc min @ 10 keV
Spectral resolution	1.2 keV at 68 keV
Sensitivity (3σ, 10 ⁶ Sec)	2 x 10 ⁻¹⁵ erg/cm²/s (6-10 keV) 1 x 10 ⁻¹⁴ erg/cm²/s (10-30 keV)
Timing resolution	0.1 millisecond
ToO response	< 48 hour
Launch date	February 2012
Orbit	6° inclination, 550 x 600 km
Mission lifetime	2 years baseline
Orbit lifetime	> 7 years
1	

Low instrumental background due to focussing optics, equatorial orbit

Simulated NuSTAR 200 ks observation of Abell 2256

NuSTAR effective area

Astro-H and its instruments

- Three instruments will feature X-ray focussing optics
- Fourth, the Soft Gamma-ray Detector, will use Compton kinematics + passive collimation

Design Parameters of Instruments

		Specifications	(D
		Specifications	(Requirement)
Hard X-ray Imaging System (HXT+HXI) <mark>5-80 keV</mark>	Effective area : 300 cm ² (@30 keV)		
	5-80 keV	Spatial resolution : 1.7 arcmin (HPD))
		Energy resolution : 2 keV	
		Field of view : 9 arcmin ² @30 keV	
Soft X-ray Spectrometer		Energy resolution : 7 eV	
System (SXT-S+SXS) 0.3-10 keV	Spatial resolution : 1.7 arcmin (HPD))	
	0.3-10 keV	Effective area : 210 cm ² (@6 keV)	
		Field of view : 3 arcmin ² @6 keV	
Soft X-ray Imaging S (SXT-I+SXI)	g System	Spatial resolution : 1.7 arcmin (HPD))
	0.5-12 keV	Effective area : 360 cm ² @6 keV	
		Energy resolution : 150 eV	
		Field of view : 38 arcmin ² @6 keV	
Soft y-ray detecto	or (SGD)	Effective area : 100cm ² @100 keV	
10-600 keV		Energy resolution : 2 keV @40 keV	
		Astrometric accuracy : <0.6 arcdeg	(E<150 keV)

Astro-H - Soft X-ray Spectrometer: Scientific objectives for the instrument

6.34

 High resolution X-ray spectroscopy is crucial in understanding physical conditions in astrophysical sources

6.28

6.3

6.32 Energy (keV)

Astro-H - Hard X-ray Imager: novel telescopes and detectors

- Novel multi-layer technology allows for focussing of X-rays up to ~ 80 keV
- Requires long focal length (> 10 meters)

Astro-H - Hard X-ray Imager: novel telescopes and detectors

 Detectors for the Hard X-ray Imager need to be sensitive up to ~ 100 keV, with very low background, but pixellated – to allow for imaging

Next few years will bring major breakthroughs in understanding non-thermal emission / processes in clusters

