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I will make some considerations about relevant physical aspects

of the general framework of spectral geometry

The framework in which I will present the work is that of the

spectral triples, i.e. the approach to geometry based on the spec-

tral properties of the algebra of operators defined upon them.

The construction is the one mathematically needed to generalize

ordinary geometry to noncommutative geometry

The whole work presented here however could be recast in a way

which does not make any explicit mention of noncommutative

geometry. I feel nevertheless useful to have in mind the larger

picture.
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The starting point of Connes’ approach to is that geometry and
its (noncommutative) generalizations are described by the spec-
tral data of three basic ingredients:

• An algebra A which describes the topology of spacetime.

• An Hilbert space H on which the algebra act as operators,
and which also describes the matter fields of the theory.

• A (generalized) Dirac Operator D0 which carries all the in-
formation of the metric structure of the space, as well as
other crucial information about the fermions.

An important role is also played by two other operators: the
chirality γ and charge conjugation J
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There is a profound mathematical result (Gefand-Najmark) which
states that the category of commmutative C∗ -algebras and that
of topological Hausdorff spaces are in one to one correspondence.
The algebra being that of continuous complex valued functions
on the space.

Connes programme is the transcription of all usual geometrical
objects into algebraic terms, so to provide a ready generalization
to the case for which the algebra is noncommutative

The points of the space (that can be reconstruced) are pure
states, or maximal ideals of the algebra, or irreducible represen-
tations. They all coincide in the commutative case.

The metric aspects are encoded in the Dirac operator. For ex-
ample the metric distance is given by
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d(x, y) = sup
‖[D0,a]‖≤1

|a(x)− a(y)|

One forms are represented by operators of the kind a[D0, b] .

Bundles are projective module . . .

The construction the dictionary is progressing encompassing most

of geometry. And making ir ready for the noncommutative gen-

eralization
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While the formalism is geared towards the construction of genuine noncom-

mutative spaces, spectacular results are obtained considering almost com-

mutative geometries, which leads to: Connes’ approach to the standard

model

The project is to transcribe electrodynamics on an ordinary manifold using

algebraic concepts: The algebra of functions, the Dirac operator, the Hilbert

space and chirality and charge conjugation. One can then write the action in

purely algebraic terms.

Then the machinery can be applied to noncommutative space,
or in general to other algebras.

Remarkably, if one applies this to the algebra of functions valued in diagonal

2× 2 matrices one finds the Higgs Lagrangian of a U(1)× U(1)→ U(1)

breaking, in which the Higgs is the “vector” boson corresponding to the

internal degree of freedom.
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In this case the space is only “almost” noncommutative, in the sense that

there still is an underlying spacetime, the noncommutative algebra describing

space is said to be Morita equivalent to a commutative algebra

For the full standard the algebra is a tensor product A = C(R4)⊗AF , with

AF a finite matrix algebra of 3× 3 matrices, quaternions (which are matri-

ces of the kind aµσµ ) and complex numbers corresponding to SU(3), SU(2)

and U(1) respectively.

The information about masses and Cabibbo mixing are encoded in the D

operator
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There is a translation in algebraic terms of the requirement that

a generic topological space is a manifold (i.e. it has a differential

structure). This is a set of seven purely algebraic conditions on

the algebra, the Hilbert space and the D0, γ and J operators.

Application of these conditions to the almost commutative ge-

ometry, plus the imposition of chirality, select the gauge group

to be SU(3)× SU(2)× U(1) .

The model, especially in its last version (Chamseddine-Connes-Marcolli) has

predictive power (mass of the Higgs). Many of the actual calculations were

made also by the Marseille group, and in the next days Thomas Schucker will

give more details.
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The presence of chirality γ = γ† , with γ2 = 1 , the generaliza-

tion of γ5 , causes the splitting

H = HL ⊕HR

Eigenspaces of 1
2(1± γ)

The other operator, J , charge conjugation, which however plays no important role in this

seminar. it has important mathematical connections, Tomita-Takesaki operator, KMS states

etc.

The central idea behind spectral geometry is that these ingredients are suf-

ficient to describe not only a geometry, but also the behaviour of the fields

defined on them, and their couplings to the geometry of spacetime (gravity).

Treating on an equal footing the external geometry (spacetime), with the

inner one, gauge degrees of freedom
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The main success of this view is the spectral action. The algebra is the product of the

algebra of functions on spacetime, the Hilbert space is that of fermion matter fields, and the

Dirac operator contains all information on the metric of spacetime, as well as the masses ,

couplings and mixings of fermions.

The spectral action contains two part, one is the bosonic action, to be read

in a Wilsonian renormalization group sense:

SB = Trχ
(
DA
Λ

)

where DA = D0 +A is a fluctuation of the Dirac operator, χ is the char-

acteristic function of the interval [0,1] , or some smoothened version of it,

and Λ is a cutoff

Then there is a “standard” fermionic action 〈Ψ|DA |Ψ〉

The bosonic action is finite by construction, the fermionic part needs to be

regularized
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In the work of Chamseddine, Connes and Marcolli the renormalization group

flow is done by considering as boundary condition the unification of e three

interaction coupling constants at Λ . This is approximately (but not exactly)

true.

The various couplings and parameters are then found at low energy via the

renormalization flow

Yukawa couplings (masses) and mixings are taken as inputs. The mass pa-

rameter of the Higgs is however not needed, and is a function of the other

parameters (which are dominated by the top mass).

There is therefore predictive power. I defer to Thomas’s talk

later for the detailed analysis of the Higgs predictions situation
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There is an intimate connection between the fermionic and the

bosonic action (AAA,FL). Consider the fermionic action alone,

a theory in which fermions move in a fixed background

The classical action is invariant for the following transformation

|Ψ〉 → e
1
2φ |Ψ〉

D → e−
1
2φDe−

1
2φ

Recalling the presence of
√

det g in the integral for the position

representation of the Hilbert space it is easy to see that this is

actually related to Weyl rescaling

gµν → e2φgµν
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This is a however symmetry of the classical action, not of the

regularized quantum partition function

Z(D) =
∫

[dψ][dψ̄]e−Sψ

and therefore there is an anomaly because a classical Weyl symmetry is not

preserved at the quantum level by a regularized diffeomorphism invariant mea-

sure.
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We can therefore either “correct” the action to have an invariant

theory, or consider a theory in which the symmetry is explicitly

broken by a physical scale

We need a scale to regularize the theory. The expression of

the partition function can be formally written as a determinant,

introducing a normalization dimensional constant µ :

Z(D,µ) =
∫

[dψ][dψ̄]e−Sψ = det

(
D

µ

)

The determinant is still infinite and we need to introduce a cutoff
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The regularization can be done in several ways. In the spirit of noncom-

mutative geometry the most natural one is a truncation of the spectrum of

the Dirac operator. This was considered long ago by Andrianov, Bonora,

Fujikawa, Novozhilov, Vassilevich

The cutoff is enforced considering only the first N eigenvalues of D

Consider the projector PN =
∑N

n=0 |λn〉 〈λn| with λn and |λn〉 the eigenvalues

and eigenvectors of D

N is a function of the cutoff defined as N = maxn such that λn ≤ Λ

We effectively use the N th eigenvalue as cutoff

The choice of a sharp cutoff could be changed in favour of a cutoff function, similar to the

choice of χ
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Define the regularized partition function

Z(D,µ) =
N∏
n=1

λn

µ
= det

(
1l− PN + PN

D

µ
PN

)

The cutoff Λ can be given the physical meaning of the energy

in which the effective theory has a phase transition, or at any

rate an energy in which the symmetries of the theory are funda-

mentally different.
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Under the change µ→ γµ the partition function changes

Z(D,µ)→ Z(D,µ)e− log γ trPN

On the other side

trPN = N = trχ
(
D

Λ

)
= SB(Λ, D)

for the choice of χ the characteristic function on the interval, a consequence of our sharp

cutoff on the eigenvalues.

We found the spectral action.

We could have started without it and the renormalization flow

would have provided it for free.
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Let us now consider the Dirac operator for the standard model,

in its barest essentiality (for our purposes). In the left-right

splitting of H , the operator D it is a 2× 2 matrix

D =

(
iγµDµ + A γ5S

γ5S
† iγµDµ + A

)

where

Dµ = ∂µ + ωµ , ωµ the spin connection.

A contains all gauge fields

S contains the Higgs field H , Yukawa couplings, mixings. . .
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Technically the bosonic spectral action is a sum of residues and can be ex-
panded in a power series in terms of Λ−1 as

SB =
∑
n

fn an(D2/Λ2)

where the fn are the momenta of χ

f0 =

∫ ∞
0

dxxχ(x)

f2 =

∫ ∞
0

dxχ(x)

f2n+4 = (−1)n∂nxχ(x)

∣∣∣∣
x=0

n ≥ 0

the an are the Seeley-de Witt coefficients which vanish for n odd. For D2 of
the form

D2 = −(gµν∂µ∂ν1l + αµ∂µ + β)
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defining (in term of a generalized spin connection containing also the gauge
fields)

ωµ =
1

2
gµν
(
αν + gσρΓν

σρ1l
)

Ωµν = ∂µων − ∂νωµ + [ωµ, ων]
E = β − gµν

(
∂µων + ωµων − Γρ

µνωρ
)

then

a0 =
Λ4

16π2

∫
dx4√g tr 1lF

a2 =
Λ2

16π2

∫
dx4√g tr

(
−
R

6
+ E

)
a4 =

1

16π2

1

360

∫
dx4√g tr (−12∇µ∇µR+ 5R2 − 2RµνR

µν

+2RµνσρR
µνσρ − 60RE + 180E2 + 60∇µ∇µE + 30ΩµνΩ

µν)

tr is the trace over the inner indices of the finite algebra AF and in Ω and E
are contained the gauge degrees of freedom including the gauge stress energy
tensors and the Higgs, which is given by the inner fluctuations of D
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We can split the partition function in the product of a term invariant for Weyl

transformations, and another not invariant, which will depend on the field φ ,

the dilaton.

We also need to understand what this dilaton is. We will infer its meaning

from the form of the partition function.

Split the partition function in an invariant and a noninvariant part

Z = ZinvZnot

The terms in Znot exist due to the Weyl anomaly and we can calculate them.

Using Dφ = e−
1

2
φDe−

1

2
φ consider the identity

Z(D) =
(∫

[dφ] 1
Z(Dφ)

)−1 ∫
[dφ] Z(D)

Z(Dφ)
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Since the first term is invariant by construction, Zinv =
(∫

[dφ] 1
Z(Dφ)

)−1
, the

second is the not invariant one

Znot(D) =
∫

[dφ]e−Snot =
∫

[dφ] Z(D)
Z(Dφ)

This manipulation shows the meaning of φ . We have traded in the partition

function the integration over [dΨ̄][dΨ] with an integration over [dφ]

The dilaton is a collective mode of fermions, and is mediating the breaking

of the symmetry

We assume therefore the presence, in an earlier epoch, of a conformal point,

in which the symmetry is restored. A phase in which all particles are massless,

and the Higgs potential does not have the degenerate minimum
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We can calculate now the bosonic action

Snot = ln
Z(Dφ)
Z(D)

The calculation of Snot can be done easily for φ constant and

the result is

Snot =
∫ φ
0 dt′

(
1− Λ2 log Λ2

µ2∂Λ2

)
Tr Θ

1− (e−
t′
2De

−t
′

2 )2

Λ2



=
∫ φ
0 dt′

(
1− Λ2 log Λ2

µ2∂Λ2

)
SB(Λ, (e−

t′
2De−

t′
2)2)

This is a slight modification of the spectral action
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Let me stress the fact that we used very few ingredients and the
analysis is quite independent on the details. We have a Higgs
field and a dilaton. We can therefore ask ourselves if we can
say something about the effective potential involving these two
fields, and its possible role in the early universe

Therefore we make the approximations of neglecting all other
fields and the derivative of the Higgs, and retain in the heat
kernel expansion only the terms involving the Higgs field H and
the dilaton φ

In this view, unlike earlier work, we do not consider a formal RG
flow, but the time evolution of the system, fixing the normaliza-
tion by the request that the vacuum energy in the present epoch
is vanishing small, and using the conformal point as boundary
condition
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The behaviour of D under Weyl rescaling gives the transformation of H

under such transformation. Only the H4 term in the effective potential is

invariant, and it can be multiplied by a constant quantity ( φ0 ). This gives,

in this approximation, the invariant part of the effective potential

The other terms of the effective potential can be calculated using the heat

kernel. The effective potential, sum of the invariant and not invariant part

has the form has the form

V = V0 + a(e2φ − 1) + bH2(e2φ − 1)− cH4(φ+ φ0) + EH2

The coefficients are in principle calculable at one loop, and are functions of

the the parameters Λ and µ and there is another (integration) constant

φ0 , in principle also calculable.

with a shift φ→ φ− φ0 and a redefinition if the constants the potential can be written as

V = V0 +Ae4φ +BH2e2φ − CH4 + EH2
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The normalization constant µ can be fixed requiring that the

constant term in the action proportional to Λ4 vanishes. This

give
Λ

µ
= e

1
4

One can then evolve the potential and finds the following prop-

erties for the Higgs-dilaton potential

• The existence of a local minimum

• The existence of an unbroken phase from which the potential may roll

down to the broken phase
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Plot of the effective Higgs-Dilaton potential:

26



We see that for different values of φ , the potential V (H) has

a transition from a symmetric to a broken phase.
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What I have describe so far referred to the case of a constant dilaton.

It is possible to actually calculate explicitly the action of the collective modes:

Scoll ≡
∫
d4x
√
g
(
A
(
e4φ − 1

)
+BH2

(
e2φ − 1

)
− CφH4 − α1

(
e2φ − 1

)
R+ α2e2φ

(
φ;µφ

µ
;

)
−α3 φ

(
3y2

(
DµHDµH − 1

6
RH2

)
+Gi

µνG
µνi +Wα

µνW
µνα + 5

3
BµνBµν − 9

16
CµνρλC

µνρλ
)
}

−α4

(
12R

(
φ µ

;µ + φ;µφ
µ

;

)
+ 11φGB + 44Gµνφ;µφ;ν + 14

(
φ µ

;µ + φ;µφ
µ

;

)2
+ 22

(
φ µ

;µ

)2
))

where Gµν stands for the Einstein tensor and the constants A,B,C, α1..α4 ,

are defined as follows:

A =

(
2 log

Λ2

µ2
− 1

)
45Λ4

32π2
, B =

(
1− log

Λ2

µ2

)
15Λ2y2

16π2
, C =

3z2

4π2
,

α1 =

(
1− log

Λ2

µ2

)
15Λ2

32π2
, α2 =

(
1− log

Λ2

µ2

)
45Λ2

16π2
, α3 =

1

4π2
, α4 =

1

128π2
.
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Conclusions

• Starting from the general framework of noncommutative geometry it is
possible to say something of phenomenological interest. These models
are quite rigid. Not all Yang-Mills theories come from NCG for example.

• Although the models are not yet fully ready to be confronted with ex-
periment, they are promising

• Weyl symmetry (and anomaly) play an important role in the genesis of
the spectral action

• The effective Higgs-dilaton potential also emerges with desirable features:
broken and symmetrical phases, roll down

• It would be interesting to investigate the full predictive power of these
models.
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