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Plethora of quantum cosmology problems - we address four of
them
@ The Hilbert space problem
@ The global time problem
e The multiple choice problem
@ The observable problem -

in the problem of 'Effective relational dynamics of the closed FRW
model universe minimally coupled to a massive scalar field." [P.
Hoehn, EK, Artur Tsobanjan, Phys. Rev. D 86, 065014 (2012),
arxiv:1111.5193]
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@ Why effective relational framework?

e the Hilbert space problem is avoided altogether,

e first order quantum corrections to evolution of the system
leave classical solutions untouched,

o ability to switch between different 'clocks’ and thus yield
consistent local time evolution of system provided
semiclassicality conditions hold.
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Why closed FRW?
@ Study of relational dynamics in more general setting

e non-trivial coupling of relational clocks to evolving degrees of
freedom,

e no temporally global clock variable exists,

e non-integrability of the system.

@ Simple cosmology which generically produces inflation.

@ While classical dynamics is understood in detail, complete and
consistent quantisation is still pending.
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Effective framework - system description

@ Natural phase space structure defined by the Poisson bracket

(. ) = EEAD )

@ phase space coordinatized by classical variables

gi = (Gi), pi = (pi) associated with expectation values of
quantum operators.
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Introducing the effective framework

@ infinitely many quantum variables - moments

A(gpPaspsd) = (& — (a1))°(BL — (B))P (2)

X (q2 - (312>)C(P2 - <I§2>)d>Weyla

defined for (a+ b+ c+d) > 2.

@ Semiclassical approximation
- assume A(q7p?) = O(h(@+b)/2) and truncate the system at
the order of A by neglecting all terms of higher order
— moment of two types: spreads (Ax;)? and covariances
A(xjx;). Truncation leads to degenerate Poisson structure,
the usual counting of degrees of freedom does not apply here

anymore.
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Introducing the effective framework

e Following Dirac's constraint quantization condition we
demand that physical states satisfy (Af|¢> = 0. The analogue
of this condition has been formulated directly on the
expectation values as

Cpol = (polC) =0 (3)

for all polynomials ;;5/ in the four basic variables.

@ Quantum Hamiltonian constraint is a linear combination of
quantized classical constraint C and polynomial constraints
Cpo/
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Hamiltonian constraint

@ In the present work, attention will be paid to systems
governed by classical Hamiltonian constraints of the form

C=pi—p5— V(g q).
with V(q1, g2) polynomial.

Since no terms involve products of non-commuting variables,
we take the corresponding constraint operator to be

C=pt—p3— V(a1 &). (5)
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c= (O = P =+ (am) = (Bp) -V - 1V(aa) - 1v(aR) - VA(@aw),

Co =@ —a)C) = 2pA(ap1) +ihpL — 202A(q1p2) — V(Ba@r)? — V' A(q142),

Gy = (b1 —p)E) = 2p1(8p1)° — 2m2A(p1p2) — V(A(q1p1) — 3iR) — V' A(p1aa), (6)
Cop =@ — @)C) = 201A(p1g2) — 2p2A(q2p2) — ilip2 — VA(q102) — V' (Ag2)7,

Gy = (b2 — 2)C) = 2p1A(p1p2) — 2p2(Bp2)* — VA(qLp2) — V' (A(a2p2) — 3iR) .

These five constraints generate only four independent flows (degenerate Poisson structure due to truncation), it is

convenient to fix three of them and be left with one, Hamiltonian flow and interpret it as dynamics of the system.
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The Zeitgeist

@ Choosing g; as the clock, we impose three ‘g;—gauge’
conditions,

¢1:=(Aq1)> =0, ¢2:=A(qq) =0, ¢3:=A(qp2)=0. (7)

@ we require that the values of these variables satisfy positivity
conditions

@2, P2, (AG)%, (Ap2)?, A(qep2) € R
(Ap2)?,(Ag2)* > 0

(DR (Ap) — (Al@2p2)) =

> Zh2 . (8)

@ This choice of time and clock is no more than a gauge
transformation, we will refer to this choice as a Zeitgeist.
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The Fashionables

@ Apply gauge to obtain Hamiltonian constraint

1 P2 4

Cy=C——GC, ——C, ——C,, . 9

2p1 P1 2p% P2 4p% q2 ( )

@ Observables computed in the chosen Zeitgeist are of transient

nature, they are valid only as long as the Zeitgeist is - we call
them fashionables.
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The Fashionables

@ Evolution of the system in chosen Zeitgeist through
corresponding fashionables is given by Hamiltonian equations
of motion X = {x, Cyy}, where x denotes both canonical
variables and moments.

o Consistent solution of the constraints and equations of motion
requires that the expectation value of the clock picks up a
specific imaginary contribution

h

Slai] = “opr (10)
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Closed FRW universe

@ The action of a homogenous massive scalar field ¢(t)
minimally coupled to a (homogeneous and isotropic) closed
Friedman—Robertson—Walker spacetime, of topology R x S3
and described by the metric

ds? = —N?(t) dt* 4 a*(t) dQ? (11)
(where dQ? is the line element on a unit S%), is given by
Sla,¢] = 1/dt Na® <— (LE)Q v iy (i@)z - m2¢2> (12)
2 aN dt a2 N dt
@ the Hamiltonian constraint corresponding to the system

Cr =P} — B — ¥ 4 migRe =0, (13)

is (9) with potential V(a, ¢) = e** — m?$?e5< in (6).
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Classical solutions to FRW universe

Flng €. Two typical classical solutions to the closed FRW spacetime—both ¢ and a generically fail to be
globally valid internal clock functions in this model. Here we used a = In(a) as appropriate for the canonical
discussion following (13). (a) and (c) show extended segments of (both the expanding and re-contracting branch
of) relational evolution up to the point of maximal expansion amax = In(amax). The (new) scale factor o
oscillates between points of regular (non—global) maxima & pmax k = IN(amax, k) and (non—global) minima

min,k = N(amin, k); (b) shows a close—up of the same configuration space trajectory as (a) near cmax, displaying
the non—global extrema in a greater detail, while (d) depicts a close-up on an intermediate section of the trajectory

in(c).
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Constraint system for closed FRW universe

C=p,+(8py)° — p5 — (Apa)’ — € —8e** (Aa)® + m*¢?e® + m*e®* (Ag)?,
Ca = 2Py A(apg) — 2paA(apa) — ihpa + 2m*$e’* A(ag) + (6m*$*e® — 4e**)(Aa)?,
Cp = 2ps A(¢Py) + ihpy — 2paA(Ppa) + (6m°¢°e®* — 4e**) A(ag) + 2m°$e®* (A¢)?,
Coo = 2P A(Papy) — 2Pa(Apa)’ + (6m°¢?e®* — 4e**) A(apa) + 2m*$e®* A(dpa)
— ih(3m?¢2eb> — 2e%),
Coy = 2Pp(AP3)* — 2pa A(papy) + (6m*$*e®™ — 4e**) A(apy) + 2m°e® A(dpy)
— ih m?pe®™.
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What time is it?

e two (gauge) choices of relational clocks:
o a—Zeitgeist,
(Aa)® = A(¢a) = Aapy) =0, (14)
o ¢—Zeitgeist,
(A¢)? = A(ag) = A(dpa) =0, (15)

@ and corresponding Hamiltonian constraints
]

2

P
Cy = /3(27> — pi — et mPp2eb 4 |:1 — T¢:| (Apd))2 —
&

P

2m2 b
=t A9py)

2 4260 _p b

442,12
+ [mZe‘m - a] (8¢ +in ™ (16)
%

Pa

2
Cy = pi — P?x — & mP gl — |:1 — Z—ZD‘:| (Apa)? — %(6m2¢266“‘ — 4" A(apy)
) @

2.2 6o Aay2 2,6
+ | 18m2g2ebe _ getar  Bm7oTe” 226NN | (A g2y iy o9 (17)
pfb P
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Equations of motion in a—Zeitgeist

Equations of motion in a—Zeitgeist

2 4¢2612a

4mP pebep ) _
& = -2 —(A o)+ P A gpg) + T (g - in TP T
12m2$eb%p 12m pRel2e
Pox = 4t —emPp?et 72¢A(4>P¢) — |6me® — B — (A¢)?
P% P&,
18 260 _ goda
. m ¢ e ’
Po
5 m2¢e6a
o = 2py — ——(Apgy)” — > A(¢py)s
«
2m2e8ep 2mt pel2e  emPpede
Py = —2mee® 4 T CP A(gpy) + (B — B
P&, P2, Po
2 2 6
. P, 4m* e’ p, 2
(agp = 4 [1— —j’} A(¢py) — ———L (80,
pa PQ
. pi m4¢2612o¢ s 6 )
A(opg) = 21— 2| (apg)? +2 —— —me | (as),
P2 P2
. 4m? $e8 p m? g2el2
Bpp)? = o (Bpy)? 4 | =P T | A(dpy)- (18)
Pa Pa
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Numerical results

dint—- - =

Figure: Classical trajectory (dotted) and effective relational trajectory in
the configuration space patched together by first evolving it using « as a
clock (solid), followed by transforming to the ¢—Zeitgeist (dashed)
between the extremal points ¢ = @min and o = amax, finally switching
back to the a—Zeitgeist (solid) after & = amax, but before ¢ = dmax-
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Numerical results

Moments

h

Pmin

Figure: (a) Moments in a—gauge on the incoming branch: (A¢)? (thick, dashed), (Apg)? (thin, dashed),
A(¢pg) (solid). cuq, is the quasi—turning point of c on the incoming branch where the clock becomes ‘slow’. (b)

Moments in ¢—gauge: (Acr)? (thick, dashed), (Ape,)? (thin, dashed), A(ape) (solid). (c) Moments in a—gauge
on the outgoing branch: (A¢)? (thick, dashed), (Apd,)2 (thin, dashed), A(¢pg) (solid). aq, is the
quasi—turning point of & on the outgoing branch where the clock becomes ‘slow’.
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Conclusions and outlook

o Effective approach sheds new light on the evolution of more
interesting, non-integrable systems.

@ Although generic trajectories can not be resolved within the
effective framework, we are at least able to make out
behaviour of some more benigne trajectories.

@ It would appear, that the flat universe with cosmological
constant is favoured (see 7 years of WMAP paper), it makes
sense to study such cosmology.
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Thank you!

Emilia Kubalova Effective relational dynamics



