INFRARED MODIFICATIONS OF GRAVITY

FELIX BERKHAHN ASC @ LMU MUNICH

JCAP 1011 (2010) 018
IN COLLABORATION WITH DENNIS D. DIETRICH (CP3) StEFAN HOFMANN (LMU) FLORIAN KÜHNEL (LMU)
Parvin Moyassari (LMU)
FLORIAN NIEDERMANN (LMU) arXiv:1205.6801 (hep-th), accecpted to published in Robert Schneider (LMU)

Phys. Rev. Lett. 106 (2011) 191102
JCAP 09 (2011) 024
Phys.Rev.Lett. 108 (2012) 131102

Physical Review D
*e Motivation on

POINT OF VIEW

\star Cosmological constant problem is a challenge of technical naturalness.

Cannot be solved in a technical natural way by new high energy physics.
\star Cosmological constant is only inferred gravitationally. Maybe the resolution resides in the gravitational sector?

- Massive Gravity and Brane Induced Gravity are examples of such theories.

New dofs in the IR?

BRANE INDUCED GRAVITY

$\star S=\int d^{4+n} x\left(\sqrt{-G} M_{4+n}^{n+2} R[G]+\sqrt{-g} M_{P P}^{2} \delta^{(n)}(x) R[g]+\sqrt{-g} \delta^{(n)}(x) \mathcal{L}(\Psi)\right)$
This effectively weakens gravity at large distances because of graviton leackage into the bulk.

Crossover between 4dim- and (4+n)dim-gravity.

$$
\left.r_{c}^{2}=\left(M_{4}^{2} / M_{4+n}\right)\right)\left(\epsilon^{2-n} / M_{4+n}^{n-2}\right)
$$

For $\mathrm{n}>\mathrm{I}: \mathrm{CC}$ on the brane curves the bulk and leaves the brane curvature untouched.

Very interesting with respect to the cosmological constant problem.

GHOST OR NO GHOST?

Former claims in the literature suggested that BIG with $n>1$ contains a linear ghost.

However, we do not expect a ghost physically:

GHOST OR NO GHOST?

Former claims in the literature suggested that BIG with $n>1$ contains a linear ghost.

However, we do not expect a ghost physically:

Bulk

GHOST OR NO GHOST?

Former claims in the literature suggested that BIG with $n>1$ contains a linear ghost.

However, we do not expect a ghost physically:

$$
\sqrt{-G} M_{6}^{4} R_{6}[G]
$$

Bulk

GHOST OR NO GHOST?

Former claims in the literature suggested that BIG with $n>1$ contains a linear ghost.

However, we do not expect a ghost physically:
$\sqrt{-G} M_{6}^{4} R_{6}[G]$
\uparrow
Bulk

GHOST OR NO GHOST?

Former claims in the literature suggested that BIG with $n>1$ contains a linear ghost.

However, we do not expect a ghost physically:
$\sqrt{-G} M_{6}^{4} R_{6}[G]$

Bulk

$$
\sqrt{-g} \delta^{(2)}(x) \mathcal{L}(\Psi)
$$

GHOST OR NO GHOST?

Former claims in the literature suggested that BIG with $n>1$ contains a linear ghost.

However, we do not expect a ghost physically:

HAMILTONIAN ANALYSIS

* Successive ADM splits:
$\star \quad g_{A B}=\left(\begin{array}{cc}\lambda_{\mu \nu} & \Lambda_{\mu} \\ \Lambda_{\nu} & \Lambda^{2}+\Lambda_{\lambda} \Lambda^{\lambda}\end{array}\right)$
$\star \quad \lambda_{\mu \nu}=\left(\begin{array}{cc}\omega_{\alpha \beta} & \Omega_{\alpha} \\ \Omega_{\beta} & \Omega^{2}+\Omega_{\gamma} \Omega^{\gamma}\end{array}\right)$

$$
\omega_{\alpha \beta}=\left(\begin{array}{cc}
-\Gamma^{2}+\Gamma_{i} \Gamma^{i} & \Gamma_{i} \\
\Gamma_{j} & \gamma_{i j}
\end{array}\right)
$$

CONSTRAINTS

\star Inversion of $\Pi_{l}=\frac{\partial \mathcal{L}}{\partial \dot{\rho}_{l}}\left(\rho_{l}, \dot{\rho}_{l}\right)$ yields 6 primary constraints $\phi_{a}^{(1)}$
\star Canonical consistency gives $\phi_{a}^{(2)}=\dot{\phi}_{a}^{(1)}=\left\{H, \phi_{a}^{(1)}\right\}$
6 secondary constraints
\star Secondary constraints are conserved $\dot{\phi}_{a}^{(2)}=\left\{H, \phi_{a}^{(2)}\right\} \simeq 0$
\star First class system $\forall p, p^{\prime}, a, a^{\prime}:\left\{\phi_{a}^{(p)}, \phi_{a^{\prime}}^{\left(p^{\prime}\right)}\right\} \simeq 0$
\longrightarrow Gauge freedom $\delta \Theta=\xi\left\{\Theta, \phi_{a}^{(p)}\right\}$
\star Same number of constraints as in higher dimensional GR

SO(2) SYMMETRY IN EXTRA DIMENSIONS

\star Gravitational sources respect $\mathrm{SO}(2)$ Symmetry
Components of graviton field h are $\mathrm{SO}(2)$ symmetric.
\star Implement this symmetry, for example

$$
\begin{aligned}
N_{i} & =\tilde{N}_{i} \cos \varphi \\
L_{i} & =\tilde{N}_{i} \sin \varphi
\end{aligned} \text { where } \begin{aligned}
& N_{i}=\delta \Omega_{i} \\
& L_{i}=\delta \Lambda_{i}
\end{aligned}
$$

are the extra-dimensional shift functions.

Implementation before performing the ADM split allows to
\star generalize to arbitrary n (in preparation with L. Eglseer and F. Niedermann)

DEGREES OF FREEDOM

\star Index symmetry of $h_{A B}$ yields 21 independent entries
42 phase space degrees of freedom (psdof)
$\star \quad 12$ first class constraints $+\mathrm{SO}(2)$ symmetry

Reduction by $24+8=32$ psdof. Gives $42-32=10$ psdof.

5 physical degrees of freedom. Same number as in Massive Gravity! [Generic for every n]
\star However, only 2 are sourced by 4 -dim. source $h_{\mu \nu} T^{\mu \nu}$

No GHOST!

Using the constraints and $\mathrm{SO}(2)$ Symmetry, we obtain the Hamiltonian on the constraint surface:

$$
\begin{aligned}
\mathcal{H}= & \frac{1}{M_{6}^{4}} \Pi_{(R) i j}^{(T)} \Pi_{(R)}^{(T) i j}+\frac{1}{M_{4}^{2}} \delta_{y}^{(2)} \Pi_{(I) i j}^{(T)} \Pi_{(I)}^{(T) i j}+\frac{1}{4 M_{6}^{4}} \Pi_{N}^{2}+\frac{1}{2 M_{6}^{4}} \tilde{\Pi}_{i} \tilde{\Pi}^{i}+\frac{1}{4} M_{6}^{4} \tilde{F}_{i j} \tilde{F}^{i j} \\
& +\frac{1}{4} M_{6}^{4} \partial_{a} h_{i j}^{(t t)} \partial^{a} h^{(t t) i j}+\frac{1}{4}\left(M_{6}^{4}+M_{4}^{2} \delta_{y}^{(2)}\right) \partial_{k} h_{i j}^{(t t)} \partial^{k} h^{(t t) i j}+2 M_{6}^{4} \partial_{a} N \partial^{a} N
\end{aligned}
$$

Manifestly positive definite!

does not contain a ghost

COVARIANT APPROACH

\star Former treatments diagnosed the ghost in the scalar mode S

$$
h_{\alpha \beta}=D_{\alpha \beta}^{(\mathrm{tt)}}+P_{\alpha \beta}^{(\|)} B+\eta_{\alpha \beta} S
$$

In some kinematic regime, S has the wrong sign in front of its kinetic operator.

Brane-to-brane propagator suggests the exchange of a ghost degree of freedom

$$
G^{(\mathrm{S})}\left(p^{2}\right)=\frac{2}{\left(\frac{n+2}{n-1}\right) \kappa_{n}^{-1} g_{n}^{-1}\left(p^{2}\right)-2 \kappa_{0}^{-1} p^{2}}
$$

For example for $\operatorname{codim} 2 \quad g_{n}\left(p^{2}\right) \propto \ln \left(1+\frac{\kappa_{2}^{-1 / 2}}{p^{2}}\right)$

Possible Resolution

\star Former treatments did not consider the 00-Einstein constraint

$$
\begin{aligned}
& {\left[\partial^{i} \partial^{j}-\delta^{i j}\left(\Delta_{3}+\Delta_{n}\right)\right] D_{i j}^{(\mathrm{tt)}}+\frac{n+2}{n-1}\left[\Delta_{n} P_{i}^{(\| \|)}+\Delta_{3}\right] S } \\
&=\delta^{n}(x) \kappa_{n}\left\{2 t_{00}+\kappa_{0}^{-1}\left(2 \Delta_{3} S-\left(\partial^{i} \partial^{j}-\delta^{i j} \Delta_{3}\right) D_{i j}^{(t t)}\right)\right\}
\end{aligned}
$$

$\rightarrow S$ is a constrained degree of freedom

Conventional brane-to-brane propagator bad diagnostic tool (maybe use of Dirac brackets?)

* Cosmology solution on

METRIC ANSATZ

Most general metric ansatz consistent with spatial homogeneity and isotropy along the 3 brane directions
$d s^{2}=-n^{2}(\tilde{r}, \tilde{t}) d \tilde{t}^{2}+c^{2}(\tilde{r}, \tilde{t}) d \tilde{r} d \tilde{t}+a^{2}(\tilde{r}, \tilde{t}) \delta_{i j} d x^{i} d x^{j}+b^{2}(\tilde{r}, \tilde{t}) d \tilde{r}^{2}+d^{2}(\tilde{r}, \tilde{t}) \tilde{r}^{2} d \Omega$
\star Use gauge symmetry $\tilde{t} \rightarrow \tilde{t}(t, r)$ to implement $c(r, t)=0$

$$
\tilde{r} \rightarrow \tilde{r}(t, r) \quad b(r, t)=d(r, t)
$$

$$
d s^{2}=-n^{2}(r, t) d t^{2}+a^{2}(r, t) \delta_{i j} d x^{i} d x^{j}+b^{2}(r, t)\left(d r^{2}+r^{2} d \Omega\right)
$$

\star Residual gauge symmetry $t \rightarrow t\left(t^{\prime}\right)$ allows to set $n\left(r_{0}, t\right)=1$
\star Brane width ϵ necessary to obtain a modification
\star Regularize the brane width using a hollow cylinder
Technical advantage, use same approach as Deffayet (jump, mean etc)
\star Minimal regularization scheme

\star Results will not depend on regularization scheme
$\star \quad \delta^{(n)}(y) \rightarrow \frac{\delta(r-\epsilon)}{\epsilon^{n-1}} \frac{\Gamma(n / 2)}{2 \pi^{n / 2}}$

FROM PDE TO ODE (I)

$\star 5$ independent Einstein equations ($00, \mathrm{ij}, \mathrm{rr}, \mathrm{tr}, \phi \phi$)
\star For example, the 00 -Einstein equation reads

$$
\begin{aligned}
M_{6}^{4}\left(-3 \frac{\dot{a}^{2}}{a^{2} n^{2}}-6 \frac{\dot{a} \dot{b}}{a b n^{2}}-\frac{\dot{b}^{2}}{b^{2} n^{2}}\right. & \left.+3 \frac{a^{\prime}}{a b^{2} r}+3 \frac{a^{\prime 2}}{a^{2} b^{2}}+\frac{b^{\prime}}{b^{3} r}-\frac{b^{\prime 2}}{b^{4}}+3 \frac{a^{\prime \prime}}{a b^{2}}+\frac{b^{\prime \prime}}{b^{3}}\right) \\
& +\frac{1}{2 \pi \epsilon b} \delta(r-\epsilon)\left(M_{4}^{2}\left(-3 \frac{\dot{a}^{2}}{a^{2} n^{2}}\right)-\frac{\rho}{n^{2}}\right)=0
\end{aligned}
$$

Goal: Elimination of r derivatives
\star Delta functions induce a kink: $a^{\prime \prime}=\hat{a}^{\prime \prime}+\delta(r-\epsilon)\left[a^{\prime}\right]$
\star With the jump $\left[a^{\prime}\right]=\lim _{\delta \rightarrow 0}\left(a^{\prime}(\epsilon+\delta, t)-a^{\prime}(\epsilon-\delta, t)\right)$ and regular part $\hat{a}^{\prime \prime}$
$\longrightarrow 3$ delta function matching conditions

FROM PDE TO ODE (II)

\star Additional information: Mean and Jump of Einstein equations $\left[G_{00}\right]=0, \# G_{00} \#=0$, etc.
$\# a^{\prime} \#=\frac{1}{2} \lim _{\delta \rightarrow 0}\left(a^{\prime}(\epsilon+\delta, t)+a^{\prime}(\epsilon-\delta, t)\right)$

* 10 additional equations (8 independent), for 15 variables $\rho, a, b, \# a^{\prime} \#,\left[a^{\prime}\right], \ldots$
\star Together with matching conditions $8+3=11$ equations. $\longrightarrow 4$ are missing.

No surprise:
Initial conditions on extra-dimensional hypersurface impact brane evolution

Embedded in a Minkowski Bulk

\star Embed in a Minkowski bulk

$$
R_{\mu \nu \alpha \beta}=0
$$

No dependence on initial conditions
\star Taking the limes from outside $\lim _{\delta \rightarrow 0}\left(R_{\mu \nu \alpha \beta}(\epsilon+\delta, t)\right)=0$ gives exactly 4 more independent equations

Modified second Friedman equation

$$
a H \frac{d H}{d a}=-\frac{3}{2} \sum_{i} \Omega_{i}(a)-b \Omega_{\epsilon}\left(\frac{\sum_{i} \Omega_{i}(a)}{H}-3 H\right)
$$

$$
\pm \frac{1}{2} \sqrt{\left(2 b \Omega_{\epsilon} \frac{\sum_{i} \Omega_{i}(a)}{H}-6 b \Omega_{\epsilon} H\right)^{2}+6 b \Omega_{\epsilon}\left(\sum_{i} \Omega_{i}(a)\right)\left(2 \frac{\sum_{i} \Omega_{i}(a)}{H}-6 H\right)+8 b \Omega_{\epsilon} H\left(-\sum_{i} \Omega_{i}(a)+4 H^{2}\right)}
$$

SUMMARY BIG

\star No Ghost in $\mathrm{n}>1$ models
Possible to derive modified Friedman equations as it was for $n=1$
\star Outlook: Confront theory with supernova data

* Massive Gravity on

DEGRAVITATION

\star Massless spin-2 field:

$$
\epsilon_{\mu \nu}^{\alpha \beta} h_{\alpha \beta}=\Lambda \eta_{\mu \nu}
$$

$$
h_{\mu \nu}=\frac{\Lambda}{6} x_{\mu} x_{\nu}
$$

\star Massive spin-2 field:

$$
\epsilon_{\mu \nu}^{\alpha \beta} h_{\alpha \beta}-m^{2}\left(h_{\mu \nu}-\eta_{\mu \nu} h\right)=\Lambda \eta_{\mu \nu}
$$

$$
h_{\mu \nu}=\frac{\Lambda}{3 m^{2}} \eta_{\mu \nu}
$$

\star Flat space is a solution:

$$
g_{\mu \nu}=\left(1+\frac{\Lambda}{3 m^{2}}\right) \eta_{\mu \nu}
$$

GENERAL „MASSIVE" DEFORMATIONS

\star We are addressing cosmological questions.
\Rightarrow Consider linear theory in a cosmological background.
$S=\frac{1}{2} \int_{M} d^{4} x \sqrt{\left|g_{0}\right|}\left(h_{\mu \nu}\left[\mathcal{E}^{\alpha \beta \mu \nu}\left(g_{0}, \nabla\right)+\mathcal{M}\left(g_{0}\right)^{\alpha \beta \mu \nu}\right] h_{\alpha \beta}+T^{\mu \nu} h_{\mu \nu}\right)$
$g_{0}^{\mu \nu}$ standard FRW metric.

Question: Is there a unique choice for
like for a Minkowski background?

GENERAL „MASSIVE" DEFORMATIONS

\star We are addressing cosmological questions.
\Rightarrow Consider linear theory in a cosmological background.

$$
\left.S=\frac{1}{2} \int_{M} d^{4} x \sqrt{\left|g_{0}\right|}\left(h_{\mu \nu}^{\mathcal{E}^{\alpha \beta \mu \nu}}\left(g_{0}, \nabla\right)+\mathcal{M}\left(g_{0}\right)^{\alpha \beta \mu \nu}\right] h_{\alpha \beta}+T^{\mu \nu} h_{\mu \nu}\right)
$$ $g_{0}^{\mu \nu}$ standard FRW metric.

Question: Is there a unique choice for
like for a Minkowski background?

GENERAL „MASSIVE" DEFORMATIONS

\star We are addressing cosmological questions.
\Rightarrow Consider linear theory in a cosmological background.
Deformation term.
$S=\frac{1}{2} \int_{M} d^{4} x \sqrt{\left|g_{0}\right|}(h_{\mu \nu} \underbrace{}_{\mathcal{E}^{\alpha \beta \mu \nu}}\left(g_{0}, \nabla\right)+\underset{\mathcal{M}\left(g_{0}\right)^{\alpha \beta \mu \nu}}{>} h_{\alpha \beta}+T^{\mu \nu} h_{\mu \nu})$ $g_{0}^{\mu \nu}$ standard FRW metric.

Question: Is there a unique choice for
like for a Minkowski background?

* Stability Analysis on

Higuchi Bound

\star The most simple ansatz would be the naive FP

$$
\mathcal{M}^{\mu \nu \alpha \beta}=m^{2}\left(g_{0}^{\mu \nu} g_{0}^{\alpha \beta}-g_{0}^{\mu \beta} g_{0}^{\nu \alpha}\right)
$$

\star On a deSitter background, Higuchi has shown that

$$
m^{2}>H^{2}=\text { const }
$$

to guarantee the absence of negative norm states.
\star On FRW: $\quad H \rightarrow H(t) \quad$ Implications?

RESULTS OF NAIVE FP IN FRW I

\star At high energies the action can be diagonalized:
$\mathcal{L} \supset A(t) \dot{\phi}^{2}+B(t)(\vec{\nabla} \phi / a)^{2}$

1. Sign of A (册termines the norm in Fock-space:
$\rightarrow\left[a(\mathbf{k}), a^{\dagger}\left(\mathbf{k}^{\prime}\right)\right]=\operatorname{sign}(\mathrm{A}) \delta^{(3)}\left(\mathbf{k}-\mathbf{k}^{\prime}\right)$
\rightarrow Unitarity bound:

$$
m^{2}>H^{2}+\dot{H}
$$

2. Sign of B (ithplies classical (in)stability.

Stability bound:

$$
m^{2}>H^{2}+\frac{1}{3} \dot{H}
$$

Results of Naive FP in FRW il

Additionally, we performed a complete cosmological perturbation analysis.
\star Valid at all energies.
\star Incorporates all degrees of freedom.

Orange: Classically unstable for zero momentum.

Green: Classically unstable for high momenta.

Blue: Unitarity violating.

SELF-PROTECTION

The stability bound is stronger than the unitarity bound for non-phantom matter . $H<0$
\Rightarrow
System self-protects from direct unitarity violation.
\star Violation of stability bound
\Rightarrow Large fluctuations.
\Rightarrow Formation of a new background.
\star How to avoid the classical instability?
Try $\quad m \rightarrow m(t)$! Or even more general

The "DeFORMATION MATRIX"

\star Covariance and symmetry constrain the IR leading terms of the deformation matrix as:

$$
\begin{aligned}
& \mathcal{M}^{\mu \nu \alpha \beta}=\left(m^{2}+\alpha R_{0}\right)\left(g_{0}^{\mu \nu} g_{0}^{\alpha \beta}-g_{0}^{\mu \beta} g_{0}^{\nu \alpha}\right) \\
&+\beta\left(R_{0}^{\mu[\nu} g_{0}^{\beta] \alpha}+R_{0}^{\alpha[\beta} g_{0}^{\nu] \mu}\right) \\
&+\gamma R_{0}^{\mu \alpha \nu \beta} \\
& S=\frac{1}{2} \int_{M} d^{4} x \sqrt{\left|g_{0}\right|}\left(h_{\mu \nu}\left[\mathcal{E}^{\alpha \beta \mu \nu}\left(g_{0}, \nabla\right)+\mathcal{M}\left(g_{0}\right)^{\alpha \beta \mu \nu}\right] h_{\alpha \beta}+T^{\mu \nu} h_{\mu \nu}\right)
\end{aligned}
$$

\star On FRW: $\gamma=0 \quad$ [vanishing Weyl tensor]

STABILITY ANALYSIS: GENERAL CASE

Bounds in the general case $\quad \alpha \neq 0, \beta \neq 0$ are much more complicated.

$$
m=0
$$

Green: Classically stable and unitary.

Yellow: Self-Protection.

Red: Unitarity violation.

Black: No stability or unitarity today.

STABILITY ANALYSIS: CONCLUSION

\star ONLY the "running mass" deformation
$\mathcal{M}^{\mu \nu \alpha \beta}=\left(m_{0}^{2}+\alpha R_{0}\right)\left(g_{0}^{\mu \nu} g_{0}^{\alpha \beta}-g_{0}^{\mu \beta} g_{0}^{\nu \alpha}\right)$
will yield a stable theory.

Absolute stability requires proper covariantization of the deformation matrix!
$\star \quad \alpha$ must be sufficiently negative.

The form of the theory is constrained UNIQUELY like in Minkowski!

