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Predictions in quantum cosmology

Anthropic interpretation We find ourselves in a decohered branch of
the wave function that is suitable for life (cf. ‘landscape’
picture)

Peak in the wave function If the wave function is peaked around
particular values of a, φ, . . ., this corresponds to the
prediction that these values occur with high probability;
if the wave function vanishes, the corresponding values
are not allowed (relevant e.g. for singularity avoidance)

Semiclassical interpretation The wave function can only be
interpreted in the semiclassical regime, where an
approximate ‘WKB time’ emerges from the timeless
Wheeler–DeWitt equation.

Interpret here a sharp peak in the wave function as a prediction:
inflation, for example, occurs ‘naturally’ if Ψ has a peak at a
sufficiently large value of the inflaton field φ.



DeWitt’s boundary proposal (1967)

◮ The wave function should obey Ψ
[

(3)G
]

= 0 for all singular
three-geometries (3)G. (This can also include large
three-geometries.)

◮ The danger with this condition is that only the trivial
function Ψ ≡ 0 may survive as a solution to the
Wheeler–DeWitt equation.

◮ DeWitt expressed the hope that a unique solution is found
after this boundary conditon is imposed.



No-boundary proposal

t

Time

Time 

τ = 0τ
Imaginary

S. W. Hawking, Vatican conference 1982:
There ought to be something very special about the boundary
conditions of the universe and what can be more special than
the condition that there is no boundary.

Ψ[hab,Φ,Σ] =
∑

M

ν(M)

∫

M

DgDΦ e−SE[gµν ,Φ]



A particular example

In minisuperspace, one has

ψ(a, φ) =

∫

dN

∫

DaDφ e−I[a(τ),φ(τ),N ],

where I denotes here the Euclidean action for a Friedmann
Universe with a massive scalar field. Implement the
no-boundary condition by demanding a(0) = 0 for the Euclidean
paths to be summed over in the path integral. In a saddle-point
approximation, one obtains

ψNB ∝
(

a2V (φ)− 1
)−1/4

exp

(

1

3V (φ)

)

cos

(

(a2V (φ)− 1)3/2

3V (φ)
−
π

4

)

The no-boundary wave function is real; the various complex
semiclassical components are separated by decoherence (see
morning talk)



Problems with the no-boundary proposal

◮ Four-manifolds are not classifiable;
◮ problems with Euclidean gravitational action

−→ evaluation for general complex metrics;
◮ many solutions in minisuperspace;
◮ only applicable in a semiclassical approximation;
◮ solutions do in general not correspond to classical

solutions
(e.g. increase exponentially for large a)



Problem with the classical limit

Indefinite Oscillator

Ĥψ(a, χ) ≡ (−Ha +Hχ)ψ ≡

(

∂2

∂a2
−

∂2

∂χ2
− a2 + χ2

)

ψ = 0

C.K. (1990)



No-boundary wave function for the indefinite oscillator

The no-boundary condition does not give solutions that can be
used to construct wave packets (C.K. 1991). It yields the solutions

K0

(

|χ2 − a2|

2

)

and

I0

(

a2 − χ2

2

)

,

which diverge for either |a| = |χ| or for large a.



Tunnelling condition

There are only outgoing modes near singular boundaries of
superspace (Vilenkin 1982 and others):

j =
i

2
(ψ∗∇ψ − ψ∇ψ∗) , ∇j = 0

A WKB solution of the form ψ ≈ C exp(iS) leads to

j ≈ −|C|2∇S

For the above minisuperspace model, the result is

ψtunnel ∝ (a2V (φ)− 1)−1/4 exp

(

−

1

3V (φ)

)

exp

(

−

i

3V (φ)
(a2V (φ)− 1)3/2

)

While the no-boundary state is real, the tunneling state is
complex (distinguishes a direction in superspace). However,
without the reference phase exp(−iEt/~), the sign of the
imaginary unit i has no intrinsic meaning



Symmetric initial condition

SIC!: Demand normalizability for a→ 0 through introduction of
a ‘Planck potential’ and assume a completely symmetric initial
wave function (Conradi and Zeh 1991)

The SIC! can be justified, for example, from loop quantum
cosmology



Beyond the tree-level approximation

◮ Barvinsky and Kamenshchik (1990): probability
ρ(φ) ∼ e±I−Γ1−loop ∼ e±Iφ−Z−2: normalizable state for
anomalous scaling Z > −1

◮ Barvinsky and Kamenshchik (1998): For non-mimimal
coupling, the tunnelling wave function is also at the
one-loop order peaked around values suitable for inflation

◮ more recently: quantum cosmology for non-minimal Higgs
inflation



The Higgs field as an inflaton

Application to a cosmological model for which the Lagrangian
of the graviton–inflaton sector reads

L(gµν , Φ) =
1

2

(

M2
P + ξ|Φ|2

)

R−
1

2
|∇Φ|2 − V (|Φ|),

V (|Φ|) =
λ

4
(|Φ|2 − v2)2, |Φ|2 = Φ†Φ,

where Φ is the Standard Model Higgs boson, whose
expectation value plays the role of an inflaton and which is
assumed here to possess a strong non-minimal curvature
coupling with ξ ≫ 1; M2

P = 1/8πG (~ = 1 = c).

A. O. Barvinsky, A. Yu. Kamenshchik, C. K., A. A. Starobinsky, and C. Steinwachs,

J. Cosmol. Astropart. Phys. 12 (2009) 003



Probability of inflation

ρtunnel(ϕ) = exp

(

−
24π2M4

P

V̂ (ϕ)

)
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Figure: The effective potential for the instability threshold M inst
H

= 134.27 GeV. A

false vacuum occurs at tinst ≃ 41.6, ϕ ∼ 80MP. An inflationary domain for a N = 60

CMB perturbation is marked by dashed lines.



Boundary conditions and singularity avoidance

No general agreement!

Sufficient criteria in quantum geometrodynamics:
◮ Vanishing of the wave function at the point of the classical

singularity (DeWitt 1967)
◮ Spreading of wave packets when approaching the region

of the classical singularity

concerning the second criterium:
only in the semiclassical regime (narrow wave packets following
the classical trajectories) do we have an approximate notion of
geodesics −→ only in this regime can we apply the classical
singularity theorems



Quantum cosmology with big brake

Classical model: Equation of state p = A/ρ, A > 0, for a
Friedmann universe with scale factor a(t) and scalar field φ(t)
with potential (24πG = 1)

V (φ) = V0

(

sinh (|φ|)−
1

sinh (|φ|)

)

;

develops pressure singularity (only ä(t) becomes singular)

Quantum model: Normalizable solutions of the
Wheeler–DeWitt equation vanish at the classical singularity
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(Kamenshchik, C. K., Sandhöfer 2007)



Supersymmetric quantum cosmological billiards

D = 11 supergravity: near a spacelike singularity, the
cosmological billiard description is based on the
Kac–Moody group E10 −→ discussion of the
Wheeler–DeWitt equation

◮ Ψ → 0 near the singularity
◮ Ψ is generically complex and oscillating

(Kleinschmidt, Koehn, Nicolai 2009)



Quantum phantom cosmology

Classical model: Friedmann universe with scale factor a(t)
containing a scalar field with negative kinetic term (‘phantom’)
−→ develops a big-rip singularity
(ρ and p diverge as a goes to infinity at a finite time)

Quantum model: Wave-packet solutions of the Wheeler–DeWitt
equation disperse in the region of the classical big-rip
singularity
−→ time and the classical evolution come to an end;
only a stationary quantum state is left

Exhibition of quantum effects at large scales!

(Da̧browski, C. K., Sandhöfer 2006)



Loop quantum cosmology

M. Bojwald (2001): Dynamical initial conditions;
the difference equation for the quantum state leads to a
consistency condition for the initial data

Unification of dynamical law and initial condition?
(was also the original hope with the no-boundary condition)


