AdS/CFT and Integrability

The Bethe Ansatz

Deformations

Conclusions

Deformations of the $AdS_5 \times S^5$ Superstring

Marius de Leeuw

ETH, Zürich

Nordita, February 2012

AdS/CFT and Integrability	The Bethe Ansatz	Deformations	Conclusions

Introduction			
•000000000			
AdS/CFT and Integrability	The Bethe Ansatz	Deformations	Conclusions

The AdS/CFT correspondence relates strings on AdS spaces to (conformal) gauge theories [Maldacena'97]

Prototype

IIb string theory on $AdS_5 \times S^5 \iff \mathcal{N} = 4$ Super Yang-Mills

Under the correspondence

energy $E \Leftrightarrow \Delta$ conformal dimensions

Plan 1: compute spectra in planar limit, for arbitrary 't Hooft coupling λ

Plan 2: Extend discussion to less 'special' theories

AdS/CFT and Integrability	The Bethe Ansatz	Deformations	Conclusions
The $AdS_5 \times S^5$ supe	rstring		

Closed string moving in $\mathrm{AdS}_5\times\mathrm{S}^5$ background

• Under AdS/CFT $g \sim \sqrt{\lambda}$

Planar limit: zero string coupling \Rightarrow world sheet is cylinder

000000000		
Introduction		

Problem: Spectrum of QFT in finite volume. Way around this, integrability

Integrable theories are exactly solvable. Symmetry plays an important role.

Guiding principle:

Symmetries & Integrability \Rightarrow Spectrum.

 $AdS_5 \times S^5$ string hints at quantum integrability

Top down approach

Assume quantum integrability and see where it leads

AdS/CFT and Integrability	The Bethe Ansatz	Deformations	Conclusions
Integrability			

Scattering for integrable theories

- no particle production/annihilation
- scattering permutes momenta
- any scattering process is a product of two-particle scattering processes
- two-particle S-matrix satisfies Yang-Baxter equation

Momenta are conserved and *all* scattering info in two-particle S-matrix

AdS/CFT and Integrability	The Beth	ne Ansatz De	eformations (Conclusions
	5			

The $AdS_5 \times S^5$ superstring

Work in light-cone gauge [Arutyunov, Frolov '04], [Frolov, Plefka, Zamaklar '06]

- use AdS time t and S^5 equator-angle ϕ
- Conserved quantities $E = \int d\sigma p_t$, $J = \int d\sigma p_{\phi}$
- Hamiltonian H = E J

Remaining fields

- 4 bosons from AdS₅
- 4 bosons from S⁵
- 8 fermions

Circumference of world-sheet is proportional to J

AdS/CFT and Integrability	The Bethe Ansatz	Deformations	Conclusions
The $AdS_5 \times S^5$ superst	ring		

Decompactification limit:

- Asymptotic states and S-matrices
- Symmetry su(2|2)²_{ce}
- S-matrices give asymptotic spectrum via Bethe Ansatz

[Beisert, Staudacher '05]

Problem: away from infinite volume?

An approach to finite size: Thermodynamic Bethe Ansatz (TBA)

Bottom line: Asymptotics exact, but now thermodynamics.

Ingredients: Scattering data of all particles in spectrum

AdS/CFT and Integrability	The Bethe Ansatz	Deformations 0000000	Conclusions
Symmetry algebra			

Light-cone Hamiltonian has symmetry: $\mathfrak{su}(2|2)^2_{c.e.}$ [Arutyunov, Frolov,

Plefka, Zamaklar '06]

 $\mathfrak{su}(2|2)_{c.e.}$ [Beisert '05]

$$\begin{bmatrix} \mathbb{L}_{a}^{b}, \mathbb{J}_{c} \end{bmatrix} = \delta_{c}^{b} \mathbb{J}_{a} - \frac{1}{2} \delta_{a}^{b} \mathbb{J}_{c} \\ \begin{bmatrix} \mathbb{L}_{a}^{b}, \mathbb{J}^{c} \end{bmatrix} = -\delta_{a}^{c} \mathbb{J}^{b} + \frac{1}{2} \delta_{a}^{b} \mathbb{J}^{c}$$

 $\{\mathbb{Q}^{a}_{\alpha}, \mathbb{Q}^{b}_{\beta}\} = \epsilon_{\alpha\beta}\epsilon^{ab}\mathbb{C}$

$$\begin{split} [\mathbb{R}^{\beta}_{\alpha}, \mathbb{J}_{\gamma}] &= \delta^{\beta}_{\gamma} \mathbb{J}_{\alpha} - \frac{1}{2} \delta^{\beta}_{\alpha} \mathbb{J}_{\gamma} \\ [\mathbb{R}^{\beta}_{\alpha}, \mathbb{J}^{\gamma}] &= -\delta^{\gamma}_{\alpha} \mathbb{J}^{\beta} + \frac{1}{2} \delta^{\beta}_{\alpha} \mathbb{J}^{\gamma} \\ \{\mathbb{Q}^{\dagger \alpha}_{a}, \mathbb{Q}^{\dagger \beta}_{b}\} &= \epsilon^{\alpha \beta} \epsilon_{ab} \mathbb{C}^{\dagger} \end{split}$$

L, R generate bosonic $\mathfrak{su}(2) \oplus \mathfrak{su}(2)$ Q, Q[†] are susy generators H, C, C[†] are central elements

 $\{\mathbb{Q}^{a}_{\alpha},\mathbb{Q}^{\dagger\beta}_{b}\}=\delta^{a}_{b}\mathbb{R}^{\beta}_{\alpha}+\delta^{\beta}_{\alpha}\mathbb{L}^{a}_{b}+\frac{1}{2}\delta^{a}_{b}\delta^{\beta}_{\alpha}\mathbb{H}.$

AdS/CFT and Integrability	The Bethe Ansatz	Deformations 0000000	Conclusions
Symmetry algebra			

Features

- The central elements C, C[†] appear because of world-sheet momenta C ~ g(e^{iP} − 1)
- Representations depend on p, g

The Hilbert space of states carries a representation of this algebra

The S-matrix should respect this symmetry

Deformations

Conclusions

The S-Matrix [Beisert'05]

$$\begin{split} \mathbb{S}(p_{1},p_{2}) &= \frac{x_{2}^{-} - x_{1}^{+}}{x_{2}^{+} - x_{1}^{-}} \frac{\eta_{1} \eta_{2}}{\eta_{1} \eta_{2}} \left(E_{1}^{+} \otimes E_{1}^{1} + E_{2}^{2} \otimes E_{2}^{2} - E_{1}^{+} \otimes E_{2}^{2} - E_{2}^{2} \otimes E_{1}^{1} \right) \\ &+ \frac{(x_{1}^{-} - x_{1}^{+})(x_{2}^{-} - x_{1}^{+})(x_{2}^{-} + x_{1}^{+})}{(x_{1}^{-} - x_{2}^{+})(x_{1}^{-} - x_{2}^{-})(x_{1}^{-} - x_{2}^{-})} \frac{\eta_{1} \eta_{2}}{\eta_{1} \eta_{2}} \left(E_{1}^{+} \otimes E_{2}^{2} + E_{2}^{2} \otimes E_{1}^{1} + E_{1}^{2} \otimes E_{2}^{1} + E_{2}^{1} \otimes E_{1}^{2} + E_{2}^{1} \otimes E_{1}^{2} \right) \\ &- \left(E_{3}^{3} \otimes E_{3}^{3} + E_{4}^{4} \otimes E_{4}^{4} + E_{3}^{3} \otimes E_{4}^{4} + E_{4}^{4} \otimes E_{3}^{3} \right) \\ &+ \frac{(x_{1}^{-} - x_{1}^{+})(x_{2}^{-} - x_{1}^{+})(x_{1}^{-} + x_{2}^{+})}{(x_{1}^{-} - x_{2}^{+})(x_{1}^{-} - x_{2}^{+})} \left(E_{3}^{3} \otimes E_{4}^{4} + E_{4}^{4} \otimes E_{3}^{3} - E_{3}^{4} \otimes E_{4}^{3} - E_{4}^{3} \otimes E_{3}^{4} \right) \\ &+ \frac{x_{2}^{-} - x_{1}^{-}}{(x_{1}^{-} - x_{2}^{+})(x_{1}^{-} - x_{2}^{+})} \left(E_{3}^{3} \otimes E_{1}^{1} + E_{4}^{4} \otimes E_{3}^{3} - E_{4}^{4} \otimes E_{2}^{2} \right) \\ &+ \frac{x_{1}^{+} - x_{2}^{+}}{x_{1}^{-} - x_{2}^{+}} \frac{\eta_{2}}{\eta_{2}} \left(E_{3}^{3} \otimes E_{1}^{1} + E_{4}^{4} \otimes E_{1}^{1} + E_{3}^{3} \otimes E_{2}^{2} + E_{4}^{4} \otimes E_{2}^{2} \right) \\ &+ \frac{(x_{1}^{-} - x_{1}^{+})(x_{2}^{-} - x_{2}^{+})(x_{1}^{+} - x_{2}^{+})}{(x_{1}^{-} - x_{2}^{+})(1 - x_{1}^{-} x_{2}^{-})} \overline{\eta_{1} \eta_{2}}} \left(E_{3}^{4} \otimes E_{4}^{1} + E_{3}^{3} \otimes E_{4}^{2} - E_{4}^{4} \otimes E_{1}^{3} - E_{1}^{3} \otimes E_{4}^{2} \right) \\ &+ \frac{x_{1}^{+} - x_{2}^{-}}{(x_{1}^{-} - x_{2}^{+})(1 - x_{1}^{-} x_{2}^{-})}{(x_{1}^{-} - x_{2}^{+})(1 - x_{1}^{-} x_{2}^{-})} \overline{\eta_{1} \eta_{2}}} \left(E_{3}^{2} \otimes E_{4}^{1} + E_{4}^{1} \otimes E_{3}^{2} - E_{4}^{2} \otimes E_{1}^{3} - E_{3}^{1} \otimes E_{4}^{2} \right) \\ &+ \frac{x_{1}^{+} - x_{1}^{-}}{(x_{1}^{-} - x_{2}^{+})(1 - x_{1}^{-} x_{2}^{-})}{(x_{1}^{-} - x_{2}^{+})(1 - x_{1}^{-} x_{2}^{-})} \left(E_{3}^{2} \otimes E_{4}^{1} + E_{4}^{3} \otimes E_{3}^{2} + E_{4}^{2} \otimes E_{4}^{2} \right) \\ &+ \frac{x_{1}^{+} - x_{1}^{-}}{(x_{1}^{-} - x_{2}^{+}) \eta_{1}}{(E_{1}^{3} \otimes E_{1}^{3} + E_{4}^{1} \otimes E_{4}^{1} + E_{3}^{2} \otimes E_{3}^{2} + E_{4}^{2} \otimes E_{4}^{2} \right) \\ &+ \frac{x_{1}^{+} - x_{1}^{-}}{(x_{1$$

$$\frac{x^+}{x^-} = e^{ip}, \qquad x^+ + \frac{1}{x^+} - x^- - \frac{1}{x^-} = \frac{2i}{g}$$

AdS/CFT and Integrability	The Bethe Ansatz	Deformations 0000000	Conclusions
Bound state S-Matrices	S		

Properties:

- Unitarity
- Crossing Symmetry [Janik '06]
- Yang-Baxter equation (YBE)

The scalar factor is also known [Arutyunov,Frolov,Staudacher'04] [Beisert,Hernandez,Lopez '06] [Beisert,Eden,Staudacher '06]

Similarly scattering data for all states can be found

[Arutyunov,MdL,Torrielli '09][Arutyunov,Frolov '09]

The Bethe Ansatz

Deformations

Conclusions

The Bethe Ansatz

AdS/CFT and Integrability	The Bethe Ansatz ●○○○○○○○○○	Deformations 0000000	Conclusions
NISM			

Example, the Nonlinear Schrödinger model

$$H = \int dx \; \partial \phi \partial \phi^* - c |\phi|^4$$

Number operator commutes with *H*; restrict to 2 particles Ansatz: separated plane waves with momenta k_1 , k_2

$$|k_1, k_2\rangle_1 = \int dx_1 dx_2 \ \theta(x_1 < x_2) e^{ik_n x_n} \phi^*(x_1) \phi^*(x_2) |0\rangle$$

and

$$|k_1, k_2\rangle_2 = \int dx_1 dx_2 \ heta(x_2 < x_1) e^{ik_n x_n} \phi^*(x_1) \phi^*(x_2) |0\rangle$$

Ansatz for eigenstate

$$|\mathbf{k}_1, \mathbf{k}_2\rangle = |\mathbf{k}_1, \mathbf{k}_2\rangle_1 + \mathcal{A}|\mathbf{k}_1, \mathbf{k}_2\rangle_2$$

AdS/CFT and Integrability	The Bethe Ansatz o●ooooooooo	Deformations	Conclusions
NLSM			

Explicit computation shows

$$H|k_1, k_2\rangle = (k_1^2 + k_2^2)|k_1, k_2\rangle$$

provided

$$\mathcal{A} = \frac{k_1 - k_2 - ic}{k_1 - k_2 + ic}$$

This is the S-matrix, $\mathcal{A} = \mathbb{S}$.

AdS/CFT and Integrability	The Bethe Ansatz	Deformations	Conclusions
NLSM			

Periodicity $\psi(x_1, x_2) = \psi(x_1 + L, x_2)$ Bethe equations (quantisation conditions)

$$e^{ik_iL} = \prod_{i
eq j} \mathbb{S}(k_i, k_j)$$

For systems with color

$$\boldsymbol{e}^{ik_jL} = \mathbb{S}_{j+1,j}\mathbb{S}_{j+2,j}\dots\mathbb{S}_{N,j}\mathbb{S}_{1,j}\mathbb{S}_{2,j}\dots\mathbb{S}_{j-1,j}$$

Matrix equation \Rightarrow diagonalize in steps

• apply Bethe like Ansatz on color (nesting)

Twisted Boundary	Conditions		
AdS/CFT and Integrability	The Bethe Ansatz	Deformations	Conclusions

One can also do quasi-periodic boundary conditions (flux)

$$\psi(\mathbf{x}_1,\mathbf{x}_2)=\mathbf{e}^{i\phi}\psi(\mathbf{x}_1+\mathbf{L},\mathbf{x}_2)$$

Bethe equations get modified

$$e^{i(k_jL+\phi)} = \mathbb{S}_{j+1,j}\mathbb{S}_{j+2,j}\dots\mathbb{S}_{N,j}\mathbb{S}_{1,j}\mathbb{S}_{2,j}\dots\mathbb{S}_{j-1,j}$$

Question:

What kind of twist are compatible with integrable structure?

Best answered in Algebraic Bethe Ansatz framework.

AdS/CFT and Integrability	The Bethe Ansatz	Deformations	Conclusions
Algebraic Bethe Ansatz	Z		

Lax operator $L_{a,i}(q, p_i)$ (~ S_{ai}) acts on $V_a \otimes V_i$

$$V_a \otimes \underbrace{V_1 \otimes \ldots \otimes V_K}_{\text{physical space}}$$

It satisfies fundamental commutation relations (~YBE)

$$S_{ab}L_{a,i}L_{b,i} = L_{b,i}L_{a,i}S_{ab}$$

Monodromy and Transfer matrix

$$\mathbb{T}(\boldsymbol{q}|\vec{\boldsymbol{p}}) = L_{a,1} \dots L_{a,K}, \qquad T(\boldsymbol{q}|\vec{\boldsymbol{p}}) = \operatorname{tr}_{\boldsymbol{a}}\mathbb{T}$$

Generates family of conserved charges (FCR)

$$[T(q), T(q')] = 0, \qquad H \sim \frac{d}{dq} \ln T$$

Algebraic Bethe A	nsatz		
AdS/CFT and Integrability	The Bethe Ansatz oooooooooo	Deformations	Conclusions

Suppose S has a symmetry $[S, G \otimes G] = 0$

Twisted Transfer Matrix: $T^G = tr_a(G_a L_{a,1} \dots L_{a,K})$

G determines boundary conditions [Sklyanin '88]

Still defines commuting family of charges!

Integrable B.C. \Leftrightarrow Symmetries of S-matrix

The symmetry of the ${\rm Ad}S_5 \times S^5$ superstring

$$G \in \underbrace{SU(2) \oplus SU(2)}_{AdS} \oplus \underbrace{SU(2) \oplus SU(2)}_{S}$$

W.I.o.g.

$$\boldsymbol{G} = \operatorname{diag}(\boldsymbol{e}^{i\alpha}, \boldsymbol{e}^{-i\alpha} | \boldsymbol{e}^{i\dot{\alpha}}, \boldsymbol{e}^{-i\dot{\alpha}} | \boldsymbol{e}^{i\beta}, \boldsymbol{e}^{-i\beta} | \boldsymbol{e}^{i\dot{\beta}}, \boldsymbol{e}^{-i\dot{\beta}})$$

Phase factors in Bethe equations and transfer matrix

AdS/CFT and Integrability	The Bethe Ansatz ooooooooooo	Deformations	Conclusions
Bethe equations			

Twisted Bethe equations

$$1 = e^{i(\alpha + \dot{\alpha})} \left(\frac{x_k^+}{x_k^-}\right)^J \prod_{l \neq k}^{K^{I}} S_0(p_k, p_l)^2 \prod_{l=1}^{K^{II}} \frac{x_k^- - y_l}{x_k^+ - y_l} \sqrt{\frac{x_k^+}{x_k^-}} \prod_{l=1}^{\dot{K}^{II}} \frac{x_k^- - \dot{y}_l}{x_k^+ - \dot{y}_l} \sqrt{\frac{x_k^+}{x_k^-}}$$

and they are suplemented by the auxiliary Bethe equations

$$1 = e^{i(\beta - \alpha)} \prod_{l=1}^{K^{\mathrm{I}}} \frac{y_{k} - x_{l}^{+}}{y_{k} - x_{l}^{-}} \sqrt{\frac{x_{k}^{-}}{x_{k}^{+}}} \prod_{l=1}^{K^{\mathrm{III}}} \frac{y_{k} + \frac{1}{y_{k}} - w_{l} + \frac{i}{g}}{y_{k} + \frac{1}{y_{k}} - w_{l} - \frac{i}{g}}$$
$$1 = e^{-2i\beta} \prod_{l=1}^{K^{\mathrm{II}}} \frac{w_{k} - y_{k} - \frac{1}{y_{k}} + \frac{i}{g}}{w_{k} - y_{k} - \frac{1}{y_{k}} - \frac{i}{g}} \prod_{l \neq k}^{\mathrm{K}^{\mathrm{III}}} \frac{w_{k} - w_{l} - \frac{2i}{g}}{w_{k} - w_{l} + \frac{2i}{g}}$$

where

$$x_k^+ + rac{1}{x_k^+} - x_k^- - rac{1}{x_k^-} = rac{2i}{g}, \qquad rac{x_k^+}{x_k^-} = e^{ip_k}$$

The Bethe Ansatz	Deformations	Conclusions
	The Bethe Ansatz oooooooooooo	The Bethe Ansatz Deformations coccocccocococococococococococococococ

Partition functions agree $Z = Z_{mir}$

Basic idea of TBA

Spectrum of original theory \Leftrightarrow thermodynamic quantities mirror model

Taking thermodynamic limit on Bethe equations \Rightarrow infinite set of coupled integral equations

AdS/CFT and Integrability	The Bethe Ansatz ooooooooooooo	Deformations	Conclusions
Twisted TBA			

TBA for deformed string models [(Arutyunov),MdL, v. Tongeren '10,'11,'12]

twists \Leftrightarrow chemical potential

Chemical potentials can be projected out

- Simplified TBA same for all deformations
- Y-system same for all deformations

Twists manifest themselves in

- Analytic behaviour
- Asymptotic solutions \Leftrightarrow twisted T^G .

TBA equations are the same, conditions on functions change

AdS/0	CFT and Integrability	The Bethe Ansatz ooooooooooo	Deformations 0000000	Conclusions
TB	A and Lüscher			
	Lüscher's perturbati	ve approach [Baknol	k,Janik'08]	
	 Corrections from 	m virtual particles	in compact direction	
	Bound states a	o around		

Naive formula is correct

$$E\sim\sum_{Q}\int dp e^{-J\mathcal{E}}\mathrm{tr}S_{Q1}S_{Q2}$$

Recognise $T \Rightarrow T^G$

The Bethe Ansatz

Deformations

Conclusions

Susy-Breaking Deformations

Orbifolde			
		000000	
AdS/CFT and Integrability	The Bethe Ansatz	Deformations	Conclusions

Consider strings in (super) space \mathcal{M} , action of discrete group Γ Want to consider \mathcal{M}/Γ \Rightarrow

$$X \equiv hX$$

Project Hilbert space on invariant subspaces Closed strings can close up to group elements

$$X(\mathbf{0},\tau) = g X(\mathbf{2}\pi,\tau)$$

For such B.C. twisted sector H_g For non-Ablian project onto conjugacy classes.

0000000000	0000000000	000000	00
AdS/CFT and Integrability	The Bethe Ansatz	Deformations 000000	Conclusions

We have $\mathcal{M} = \mathrm{AdS}_5 \times \mathrm{S}^5$ and take $\Gamma \subset SU(4) \rightarrow$ orbifold S^5

For simplicity we restrict $\Gamma = \mathbb{Z}_S$:

$$h = \operatorname{diag}(e^{-2\pi i \frac{t_1}{S}}, e^{2\pi i \frac{t_1-t_2}{S}}, e^{2\pi i \frac{t_2-t_3}{S}}, e^{2\pi i \frac{t_2-t_3}{S}}, e^{2\pi i \frac{t_3}{S}})$$

Parameters t_i from different SU(2)s

Quasi-periodic B.C. $X(0, \tau) = e^{i\phi}X(2\pi, \tau)$

AdS/CFT and Integrability	The Bethe Ansatz	Deformations ○○●○○○○	Conclusions 00

Dual QFT

 $\mathcal{N}=4$ SYM with orbifolded R-symmetry

So susy is broken

The action is unchanged. Operators

 $tr(\gamma D^n \Phi \dots)$

Explicit twist follows from B.C.

$$eta=\pirac{2t_1-t_2}{S} \qquad \qquad \doteta=\pirac{2t_3-t_2}{S} \qquad \qquad {\cal P}=2\pirac{t_2}{S}$$

AdS/CFT and Integrability	The Bethe Ansatz	Deformations ○○○●○○○	Conclusions
Orbifolds			

$$\mathcal{O}= ext{tr}(D^2Z^2)$$
BAE: $e^{2i
ho}=S_0(
ho,-
ho)$

Same as for Konishi (same multiplet in $\mathcal{N}=4)$ ightarrow

$$E=2+3g^2-3g^4+rac{21}{4}g^6-g^8\left[rac{9\zeta(3)}{8}+rac{705}{64}
ight]$$

Only differs in finite size corrections

•
$$\mathcal{N} = 4$$
 gives $E_{f.s.} = \left[\frac{81}{64} + \frac{27\zeta(3)}{8} - \frac{45\zeta(5)}{8}\right] g^{\epsilon}$
• $\mathcal{N} = 1$ gives $E_{f.s.} = \frac{3}{8} \sin^2(\frac{\pi}{5}) g^{6}$
• $\mathcal{N} = 0$ gives $E_{f.s.} = -\frac{1}{3} \sin^4(\frac{\pi}{5}) g^{4}$

 $\mathcal{N}=$ 2 state is a bit special, but $E_{f.s.}\sim g^8$

000000000	0000000000	0000000	00
0000000000	0000000000	0000000	00
AdS/CFT and Integrability	The Bethe Ansatz	Deformations	Conclusions

Deform background via TsT transformation [Lunin,Maldacena'05]

 AdS_5

Can be mapped to $AdS_5 \times S^5$ with twisted B.C. [Alday,Arutyunov,Frolov '05]:

$$\phi_i(2\pi) = \phi_i(0) - \epsilon_{ijk}\gamma_j J_k$$

 ϕ angles of $\rm S^5$ and J corresponding angular momentum

AdS/CF1 and Integrability	The Bethe Ansatz	Deformations 00000€0	Conclusions
γ -deformed			

Dual field theory

 $\mathcal{N}=4$ SYM with modified superpotential

Twists:

$$\beta = \pi(\gamma_1(J_2 - J_3) + J_1(\gamma_3 - \gamma_2))$$

$$\dot{\beta} = \pi(J_1(\gamma_2 + \gamma_3) - \gamma_1(J_2 + J_3))$$

For $\gamma_1 = \gamma_2 = \gamma_3$ reduces to β -deformed theory.

• Explicit FT computations [Fiamberti, et al. 08,09] match nicely with twist approach [Ahn et al.10,11] [Gromov et al. 10] [Arutyunov et al. 10]

Ground state			
AdS/CFT and Integrability	The Bethe Ansatz	Deformations ○○○○○●	Conclusions

Interesting: ground state $\mathcal{O} = \operatorname{tr}(Z^J)$ not protected

$$\begin{aligned} E = & \frac{(\cos \alpha - \cos \beta)(\cos \dot{\alpha} - \cos \dot{\beta})}{\sin \alpha \sin \dot{\alpha}} \frac{\Gamma(J - \frac{1}{2})}{2\sqrt{\pi}\Gamma(J)} \times \\ \times & \left[\mathrm{Li}_{2J-1} e^{j(\alpha + \dot{\alpha})} + \mathrm{Li}_{2J-1} e^{-i(\alpha + \dot{\alpha})} - \mathrm{Li}_{2J-1} e^{j(\alpha - \dot{\alpha})} - \mathrm{Li}_{2J-1} e^{-i(\alpha - \dot{\alpha})} \right] \end{aligned}$$

Curious divergency for J = 2

Conclusions

Conclusions

- Spectrum of $AdS_5 \times S^5$ superstring from integrability
- Complete spectrum captured in TBA
- Techniques can be extended to deformations
- Twisted (T)BA describe spectrum of theories with less susy

The Bethe Ansatz

Deformations

Conclusions

Thank you