Real clocks: a toy model for non-locality

luis j. garay

Universidad Complutense de Madrid

NORDITA, Stockholm

Non-locality:

Aspects and Consequences

29 June 2012

Contents

- Non-ideal clocks
- Good clocks
- Evolution
- Loss of coherence
- Non-local interactions
- Spacetime fluctuations

Pictures by

Evolution according to ideal clocks

- s: ideal Schrödinger time
- Ideal Hamiltonian evolution:

$$\partial_s \varrho(s) = -i [H, \varrho(s)] \coloneqq -i \mathscr{L} \varrho(s)$$

Non-ideal clocks

- Any clock is prone to errors
- Degree of randomness in the measure of time
- Sources: quantum, temperature, imperfections...

Perform N experiments:

t = 0	•••	t	→	•	Prob(A)
$ \psi_0 angle$	•••	A_1		0	quantum
	•••	•••		0	lack of knowledge of
$ \psi_0 angle$	•••	A_N			exact Schrödinger time

Functional approach

- Relative error $\alpha(t)$: $\frac{ds}{dt} = 1 + \alpha(t)$ (Langevin eq.) Absolute error: $s = t + \Delta(t)$, $\Delta(t) = \int dt \alpha(t)$
- Clock described by the probability functional $\mathcal{P}[\alpha]$.
 - Alternative: probability function P(t,s): $P(t,s) = \int \mathcal{D}\alpha \mathcal{P}[\alpha] \delta(t + \Delta(t) - s)$
 - No systematic drift: $\langle \alpha(t) \rangle = 0 \quad \Leftrightarrow \quad \langle s \rangle_t = t$
 - The clock should always behave in the same:
 𝒫[α(t)] should be stochastically stationary

- For good clocks, the relative errors should always be small:
 - ★ Correlation function:

$$\langle \alpha(t')\alpha(t) \rangle \coloneqq c(t'-t) \le c(0)$$

Correlation time: $\vartheta \equiv \frac{1}{c(0)} \int dt c(t)$

- ★ Small relative errors: $c(0) := \tau/\vartheta \ll 1$
- Microcausality $\Rightarrow \alpha \ge 0$

*

Evolution according to real clocks

Evolution of $\rho(s)$ evolution of $\rho(t) = \langle \rho(s) \rangle$ Steps to obtain the evolution equation in clock time *t*:

- 1. Hamiltonian evolution of $\rho(s)$: $\partial_s \rho(s) = -i \mathscr{L} \rho(s)$
- 2. For each stochastic process α , $s = t + \Delta(t) \implies \partial_t = (1 + \alpha)\partial_s, \quad \rho_\alpha(t) \coloneqq \rho(t + \Delta)$ $\implies \partial_t \rho_\alpha = -i(1 + \alpha) \mathscr{L} \rho_\alpha$

3. • Use interaction picture: $\rho_{\alpha}^{I}(t) = e^{it\mathcal{L}}\rho_{\alpha}(t)$,

$$\dot{\varrho}^{\mathrm{I}}_{\alpha}(t) = -\alpha \mathscr{L} \varrho^{\mathrm{I}}_{\alpha}(t)$$

- Expand in powers of α (integrate and substitute) • Average over α with $\mathscr{P}[\alpha(t)]$
- Undo interaction picture

$$\partial_t \rho(t) = -i \mathscr{L} \rho(t) - \int_0^t \mathrm{d}t' c(t') \mathscr{L}^2 \rho(t-t') + \iint c^2 \mathscr{L}^4 \rho$$

4. Good clock

- Intrinsically: $\tau \ll \vartheta$ (small correlations)
- For the system: $\vartheta \ll \zeta$, where

 $\zeta \equiv 1/\Delta \omega_{\rm max}$ is the characteristic evolution time

Then,
$$\iint c^2 \mathscr{L}^4 \sim \tau^4 / \vartheta^2 \zeta^2 \ll \tau^2 / \vartheta \zeta \sim \int c \mathscr{L}^2 \quad \checkmark$$

Second order expansion is fine

4. Markov approximation: $\vartheta \ll \zeta$, $\Rightarrow \rho(t - t') \sim \rho(t)$

Quantum evolution according to a real clock:

$$\partial_t \rho = -i \mathscr{L} \rho - \tau \mathscr{L}^2 \rho$$

Loss of coherence

• Exact solution (in the energy basis)

$$\rho_{nm}(t) = \rho_{nm}(0)e^{-i\omega_{nm}t}e^{-\tau(\omega_{nm})^2t}$$

- Energy conservation: $\langle H \rangle = \text{Tr}(H\rho) = \text{constant}$
- Decoherence: off-diagonal terms decay
- Decoherence time: $T \sim \zeta^2 / \tau \gg \zeta$

Non-local description

- Master equation:
 - evolution with a free Hamiltonian *H* plus
 - classical noise with interaction Hamiltonian αH .
- Path integral formalism

- Qualitatively, the idea is simple:
 - Path integral for this system Q := (q, p)

$$\int \mathcal{D}\alpha \mathcal{P}[\alpha] \int \mathcal{D}Q e^{iS_0[Q] - i\int \mathrm{d}t \alpha H(Q(t))}$$

• $\mathcal{P}[\alpha]$ Gaussian for simplicity:

$$\mathscr{P}[\alpha] = e^{-\int \mathrm{d}t_1 \mathrm{d}t_2 \alpha(t_1) \alpha(t_2)/2c(t_1 - t_2)}$$

• Integrate over α (Gaussian)

$$\int \mathscr{D}Q e^{iS_0[Q]} e^{-\frac{1}{2}\int dt_1 dt_2 c(t_1 - t_2) H(Q(t_1)) H(Q(t_2))}$$

- Technically, it is a bit more sophisticated → influence functional
 - Evolution operator $\rho(t) = \$(t)\rho(0)$
 - Factorization of \Rightarrow unitary evolution:

$$\rho(t) = \$(t)\rho(0) = U(t)\rho(0)U(t)^{-1} \implies \\ \Rightarrow \operatorname{Tr}\rho(t)^{2} = \operatorname{Tr}\rho(0)^{2}$$

In other words

(t) =
$$\int \mathcal{D}Q \mathcal{D}Q' e^{iS_0[Q;t]} e^{-iS_0[Q';t]}$$

• Non-factorizability controlled by the influence functional *W*

$$\$(t) = \int \mathscr{D}Q \mathscr{D}Q' e^{-iS_0[Q;t]} e^{iS_0[Q';t]} e^{W[Q,Q';t]}$$

where

$$W[Q,Q';t] = -\frac{1}{2} \int dt_1 dt_2 c(t_1 - t_2) \times [H(Q(t_1)) - H(Q'(t_1))] \times [H(Q(t_2)) - H(Q'(t_2))]$$

Spacetime fluctuations

- Inaccuracies in time \rightsquigarrow inaccuracies in spacetime
- In a semiclassical picture, spacetime topological (or quantum) fluctuations could be modelled by an effective flat spacetime plus non-local interactions just as for time errors and clocks:
 - Influence functional
 - Master equation

- Energy (and momentum, etc.) conservation need not be incompatible with loss of coherence
 - Interactions that commute with the bare evolution
 - Relational evolution
 - Non-Markovian effects at very small scales
- Since non-localities are localised, asymptotic dynamics enforce conservation

Non-ideal clocks

- Good-clock requirements
- Evolution
- Decoherence
- Effective non-local descriptions

"Real" spacetime

