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An impossible co-existence in quantum field theory?
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{ “Non-local” in quantum field theory can have various meanings... J

e Violation of microscopic causality: [O(x), O(y)] # 0 for x and y space-like
separated;

e Non-local Lagrangians: infinite number of derivative terms need non-local data;

e Observables whose definition relies on non-local geometric information;

_B\,\_(T/‘\ gh”g‘ Zao
y x @ =

All these concepts are somewhat related, we will focus on the latter type of non-
locality and consider non-local symmetry generators...

their existence in QFT relies on a generalization of the Leibniz rule for their action
on composite quantum states.
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Outline

Beyond Leibniz in 2d

“Bending” phase space in 3d gravity: group valued momenta and NC-fields
NC heat kernel: running spectral dimension

4d case: de Sitter momentum space and x-deformed symmetries

r-Fock space: “hidden entanglement” at the Planck scale
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Quantum mechanics and Leibniz

r

<
Given an action of a symmetry generator g on the space of states of a quantum

system (Hilbert space) H
e action of g on composite system e.g. H ® H (Leibniz rule)

g1 ®12) = g(th1) ® 2 + 1 @ g(1h2)

® action on observables

g(0) = [g 0]
g(0102) (g, 01]0> + O1[g, O]
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Quantum mechanics and Leibniz

-

Given an action of a symmetry generator g on the space of states of a quantum
system (Hilbert space) H

e action of g on composite system e.g. H ® H (Leibniz rule)
g(th1 ® 1h2) = g(¥1) ® Y2 + 1 ® g(12)

® action on observables

g(0) = [g 0]
g(0102) (g, 01]0> + O1[g, O]

These basic facts are the key to implement symmetries in QM... do they admit
generalizations/modifications?

YES...
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Beyond Leibniz in 2d

o Certain 2d QFT exhibit non-local currents J;(x, t), whose definition requires
attaching a curve from —oo to the point x =
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e symmetry generator (charge) Q° associated with J? acts via braided commutator
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Beyond Leibniz in 2d

o Certain 2d QFT exhibit non-local currents J;(x, t), whose definition requires
attaching a curve from —oco to the point x = non-trivial braiding
(Bernard and Leclair, Comm. Math. Phys. 142, 99 (1991)A)

Ji(x, )Ly, t) = RS (y, 1) Ji(x t)
t

e symmetry generator (charge) Q° associated with J? acts via braided commutator
Q*(¢F) = Q*0F — %P Q! = [Q*, 940

e ...and on product of fields like
Q*(dF0") = Q(dK)d" — O D! QP(d")

The non-locality of the currents leads to a generalized “non-Leibniz” action of the
(internal) symmetry generators on fields
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[ Curved momentum space in flatland }
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Curved momentum space from 3d gravity

[ Curved momentum space in flatland

e Gravitational field in 2+1 dimensions admits no local d.o.f.!

e Point particles “puncture” space-like slices — conical space (Deser, Jackiw, 't Hooft, 1984)

e Euclidean plane with a wedge “cut-out” deficit angle 8w Gm
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Curved momentum space from 3d gravity

[ Curved momentum space in flatland ]

e Gravitational field in 2+1 dimensions admits no local d.o.f.!
e Point particles “puncture” space-like slices — conical space (Deser, Jackiw, 't Hooft, 1984)

e Euclidean plane with a wedge “cut-out” deficit angle 8w Gm

\

> identify
[

|
identify (’
]

world lines

e Particle's phase space = space of solutions of e.o.m.
o Geodesics in 3d Minkowski described by positions and momenta = R>! x R*!

o Switch on gravity: positions and generalized momenta = R*' x SL(2,R)

[ Momenta become coordinate functions on a non-abelian group! J
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Group valued momenta and deformed mass-shell

The components p are coordinates on a group manifold

v —167°G%p2 =1
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Group valued momenta and deformed mass-shell

The components p are coordinates on a group manifold

v —167°G%p2 =1

e Geodesics characterized as in R*! by timelike straight lines

e Mass-shell: holonomies representing a rotation by 8wGm = p

ghyg' Ty
(0] []

B = £Tr(hy) where h=ghyg " and k= (47G)"

1672G2

2 _ _sin2(41-er)
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From particles to fields

Phase space of a relativistic particle => (quantum) field theory?
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From particles to fields

Phase space of a relativistic particle => (quantum) field theory?

e Functions on the mass shell C**(Mn,) <= Skc solutions of Klein-Gordon eq.
Fourier trans.

e Lorentz inv. measure on C*°(My,) = invariant inner product = QFT Hilbert space

Particle coupled to 2+1 gravity naturally leads to field theory on a group
¢(P) € C>(My,) C C¥(SL(2,R))

(Deformed mass-shell MG given by holonomies which represent a rotation by o = 8w Gm)
Switch to Euclidean (our goal is to define heat kernel):  SL(2,R) — SU(2)

Fourier transform maps fields on the group manifold to fields on a dual “spacetime”

F(F)(x) = / dun(P)F(P) en(x),

i 5% - i
where: ep(x) = e2= Tr(xP) — oF% \with x = x'o;
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Group-valued plane waves: beyond Leibniz in 3d

...the group structure induces a non-commutative x-product for plane waves

Tr(xPy) S Tr(xPy)

ep, (x) * ep,y(x) = e % e2x — o2 Tr(xP1P2)
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Group-valued plane waves: beyond Leibniz in 3d

...the group structure induces a non-commutative x-product for plane waves

Tr(xPy) S Tr(xPy)

% e2x L Tr(xP1Py)

ep,(x) % ep,(x) = e2r = ez
i) differentiating both sides w.r.t. P1, P> and setting momenta to zero
[X,',Xj]* = I'IiG,'jk Xk

functions of the dual spacetime variables form a non-commutative algebra!
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Group-valued plane waves: beyond Leibniz in 3d

...the group structure induces a non-commutative x-product for plane waves

Tr(xPy) S Tr(xPy)

% e2x L Tr(xP1P;)

ep,(x) % ep,(x) = e2r = e
i) differentiating both sides w.r.t. P1, P> and setting momenta to zero
[xi, Xl = ikeijic X
functions of the dual spacetime variables form a non-commutative algebra!

ii) momenta obey a non abelian composition rule indeed

L L S R S L
PLo B2 = po(B2) Bt po(B) o+~ P12 = Bt Bat —BLA B2+ O(1/K7) # 2 &
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Group-valued plane waves: beyond Leibniz in 3d

...the group structure induces a non-commutative x-product for plane waves

Tr(xPy) S Tr(xP3)

% e2x L Tr(xPyP;)

ep, (x) * ep,(x) = e =e2
i) differentiating both sides w.r.t. P1, P> and setting momenta to zero
[xi, Xl = ikeijic X
functions of the dual spacetime variables form a non-commutative algebra!

ii) momenta obey a non abelian composition rule indeed
s — O L (R N
PLo B2 = po(B2) Bt po(B) o+~ P12 = Bt Bat —BLA B2+ O(1/K7) # 2 &
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Group-valued plane waves: beyond Leibniz in 3d

...the group structure induces a non-commutative x-product for plane waves

L Tr(xP1P3)

Tr(xP1) | 5= Tr(xP3) _ e

ep, (x) * ep,(x) = e * e
i) differentiating both sides w.r.t. P1, P> and setting momenta to zero
[xi, Xl = ikeijic X
functions of the dual spacetime variables form a non-commutative algebra!

ii) momenta obey a non abelian composition rule indeed
s — O L (R N
PLo B2 = po(B2) Bt po(B) o+~ P12 = Bt Bat —BLA B2+ O(1/K7) # 2 &

Plane waves = eigenfunctions of translation generators P,

I

non-abelian composition of momenta = non-Leibniz action on product of plane waves

[Pa(epl ® ep,) = Pa(ep,) ® ep, + epy ® Pa(epy) + £ eavcPo(epy) ® Pe(er) + 0(1/52)]

the smoking gun of symmetry deformation...P, belong to a deformed algebra with « as a
deformation parameter!
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An application: heath kernel and anomalous diffusion

e “Spin” NC space possesses Laplacian Ag: Ag ep(x) = Cs(P)er(x) = B er(x)
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An application: heath kernel and anomalous diffusion
o “Spin” NC space possesses Laplacian Ag: Ag ep(x) = Co(P)ep(x) = p° ep(x)
o Define the Green function: (Ag + M?) G(x,x') = 6(x — x)
e Construct the NC heat kernel (M = 0) (MA and E. Alesci 1108.1507)
G(x,x") = /000 ds K(x,x'; s)
\
Ko(x,x';s) = / dun(P) e *®ep(x)ep(x')
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An application: heath kernel and anomalous diffusion
o “Spin” NC space possesses Laplacian Ag: Ag ep(x) = Co(P)ep(x) = p° ep(x)
o Define the Green function: (Ag + M?) G(x,x') = 6(x — x)
e Construct the NC heat kernel (M = 0) (MA and E. Alesci 1108.1507)
G(x,x") = /00 ds K(x,x'; s)
0
\

Ko(x,x';s) = / dun(P) e *®ep(x)ep(x')

and calculate the spectral dimension ds = —23(;’5);’5’( ... (plot for G =1)

[

Michele Arzano — Non-local charges, curved momentum space and fractal space-time 11/18



4d case: “de Sitter’ momentum space
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4d case: “de Sitter’ momentum space

e Early 90's “deformation” of special relativistic symmetries: introduce UV-scale

e Structural analogies of momentum sector with 3d case only recently appreciated...

> momenta: coordinates on a Lie group B =2 SO(4,1)/SO(3,1), a
sub-manifold of dSs

o+ AT AN =K mo+m >0
> dual Lie algebra “non-commutative space-time" coordinates

[XuaXy] = _é(Xu(SS — XV52) 5
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4d case: “de Sitter” momentum space

e Early 90's “deformation” of special relativistic symmetries: introduce UV-scale

e Structural analogies of momentum sector with 3d case only recently appreciated...

> momenta: coordinates on a Lie group B =2 SO(4,1)/SO(3,1), a
sub-manifold of dSs

o+ AT AN =K mo+m >0
> dual Lie algebra “non-commutative space-time" coordinates

[XuaXy] = _é(Xu(SS — XV52) 5

The non-abelian composition of momenta in “flat slicing” coordinates

2
no(po,p) = HSinhPo/H+%ep°/"7
K
ni(po,p) = piel/",
p2
na(po,p) = kcoshpy/k — — eP/"
2K
. q0 .
reads p&g=(p"+q% p e"F +¢)
12/18
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k-Poincaré and DSR

The non-abelian composition of momenta reflects a non-Leibniz action of
spatial translation generators

Pi(ep, ® ep,) = Pi(ep,) ® ep, + exp(—Po/r)(ep,) @ Pi(er,)
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e Action of spatial rotations and time translations is unchanged
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k-Poincaré and DSR

The non-abelian composition of momenta reflects a non-Leibniz action of
spatial translation generators

Pi(epr, ® ep,) = Pi(ep,) ® ep, + exp(—Po/x)(ep,) ® Pi(ep,)

e Action of spatial rotations and time translations is unchanged

e deformed boost action (finite boosts saturate at the UV scale x!)
s (ks —2h 1 B2 i
[N, P] = ,50(5 (1 e n ) +LP ) + PP

and it's very ugly and non-Leibniz on products of plane waves...
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k-Poincaré and DSR

The non-abelian composition of momenta reflects a non-Leibniz action of
spatial translation generators

Pi(epr, ® ep,) = Pi(ep,) ® ep, + exp(—Po/x)(ep,) ® Pi(ep,)

e Action of spatial rotations and time translations is unchanged

e deformed boost action (finite boosts saturate at the UV scale x!)
o (ks — 2% 1 B2 i
[N, P] = ,50(5 (1 e n ) +LP ) + PP
and it's very ugly and non-Leibniz on products of plane waves...
e deformed mass invariant = Lorentz invariant hyperboloid on B: 7 = const.

CH(P)= (21-isinh <P°>)2 .
K - 2,‘4/ 1

Planck-scale deformation of energy-momentum relation... “DSR-like” features
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k-Poincaré and DSR

The non-abelian composition of momenta reflects a non-Leibniz action of
spatial translation generators

Pi(epr, ® ep,) = Pi(ep,) ® ep, + exp(—Po/x)(ep,) ® Pi(ep,)

e Action of spatial rotations and time translations is unchanged

e deformed boost action (finite boosts saturate at the UV scale x!)
o (k —2h 1 B2 i
[N, P] = ,50(5 (1 e n ) +LP ) + PP
and it's very ugly and non-Leibniz on products of plane waves...

e deformed mass invariant = Lorentz invariant hyperboloid on B: 7 = const.

CH(P)= (21-isinh <P°>)2 .
K - 2,‘4/ 1

Planck-scale deformation of energy-momentum relation... “DSR-like” features

in the limit K — oo recover ordinary Poincaré algebra
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Fractal properties of x-space |

[ Anomalous diffusion for de Sitter momentum space? (D. Benedetti PRL 102 111303 (2009)) ]
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Fractal properties of x-space |

[ Anomalous diffusion for de Sitter momentum space? (D. Benedetti PRL 102 111303 (2009)) ]

e starts from the ansatz

_ [ A s _ [ du(P) s
"ﬁrK_/(%)4 @ — TrKK—/ o ¢

with M?(P) = C.(P) (l + ( )) and dy(P) the left invariant Haar measure on AN(3)
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Fractal properties of x-space |

[ Anomalous diffusion for de Sitter momentum space? (D. Benedetti PRL 102 111303 (2009)) ]

e starts from the ansatz

_ [ A s _ [ du(P) s
’I‘1rK—/(27r)4 e — T‘rKK—/ (2n) e

with M?(P) = C.(P) (1 + ( )) and dy(P) the left invariant Haar measure on AN(3)

o calculate the spectral dimension ds = —235’5);"(... (plot for G = 1)

4.0

36l |
34l / |

324 B

30 L L L
0 8 10 15 20
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Fractal properties of x-space |

[ Anomalous diffusion for de Sitter momentum space? (D. Benedetti PRL 102 111303 (2009)) ]

e starts from the ansatz

_ [ 4P s _ [ du(P) s
’I‘1rK—/(27r)4 e — ’I‘rKK—/ (2n) e

with M?(P) = C.(P) (1 + ( )) and dy(P) the left invariant Haar measure on AN(3)

o calculate the spectral dimension ds = —23('9"'%)%... (plot for G = 1)

4.0

36l |
34l / |

324 B

8 10 15 20

formulate proper Green's function/heat kernel for the theory (work in progress with T. Trezsniewski)
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k-Fock space

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of H
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In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of H

In the k-deformed case try to proceed in an analogous way BUT...
1/vV2([k1) © [ka) + [k2) @ |k1))

is NOT an eigenstate of P, due to the non-Leibniz action of spatial translation generators!!

Pi(lk1) ® |k2)) = Pi(lk1)) ® |k2) + exp(—Po/x)(k1)) ® Pi(lk2))
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In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of H
In the k-deformed case try to proceed in an analogous way BUT...
1/vV2(|k1) @ |k2) + [k2) @ [k1))
is NOT an eigenstate of P, due to the non-Leibniz action of spatial translation generators!!
Pi(lk1) ® |k2)) = Pi(lk1)) ® [k2) + exp(—Po/k)(|k1)) ® Pi(|k2))
Multi-particle states of x-Fock-space are built via a “momentum dependent” symmetrization

o (k) @ fea)) = (1~ ex) k) @101 — 2) M), =
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k-Fock space
In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of H

In the k-deformed case try to proceed in an analogous way BUT...
1/vV2(|k1) @ |k2) + [k2) @ [k1))

is NOT an eigenstate of P, due to the non-Leibniz action of spatial translation generators!!
Pi(lk1) ® [k2)) = Pi(lk1)) ® |k2) + exp(—Po/k)(lk1)) ® Pi(|k2))
Multi-particle states of x-Fock-space are built via a “momentum dependent” symmetrization
k.
7" (k) ® ko)) = (1~ ) g) @11 — e2) Hha), 5 = 1
E.g. there will be two 2-particle states
k1ka) [[k1) ® [k2) + (1 —e1)ka) @ | (1 — €2) k)]
[kaka) 75 [Ik2) ® [ k1) + [ (1 — e2)k1) ® [ (1 — e1) " k2)]
with same energy and different linear momentum

Ki2 =ki @ ky = ki +(1—e)ko
Ky =ka®ki = ka+(1-e)ky

-

V2

-
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In the k-deformed case try to proceed in an analogous way BUT...
1/vV2(|k1) @ |k2) + [k2) @ [k1))

is NOT an eigenstate of P, due to the non-Leibniz action of spatial translation generators!!
Pi(lk1) ® [k2)) = Pi(lk1)) ® |k2) + exp(—Po/k)(lk1)) ® Pi(|k2))
Multi-particle states of x-Fock-space are built via a “momentum dependent” symmetrization
k.
7" (k) ® ko)) = (1~ ) g) @11 — e2) Hha), 5 = 1
E.g. there will be two 2-particle states
k1ka) [[k1) ® [k2) + (1 —e1)ka) @ | (1 — €2) k)]
[kaka) 75 [Ik2) ® [ k1) + [ (1 — e2)k1) ® [ (1 — e1) " k2)]
with same energy and different linear momentum

Ki2 =ki @ ky = ki +(1—e)ko
Ky =ka®ki = ka+(1-e)ky

-

V2

-

given n-different modes one has n! different n-particle states, one for each per-
mutation of the n modes kj , ks ... kn
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Hidden entanglement at the Planck scale

The non-trivial algebraic structure of k-translations endows the Fock space with a
“fine structure”
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Hidden entanglement at the Planck scale

The non-trivial algebraic structure of k-translations endows the Fock space with a
“fine structure”

® the different states can be distinguished measuring their momentum splitting e.g.
|AKy2| = [Ki2 — Ka1| = 2 [kg|ka| — ka|kq|| < 2[kq][ke|

of order |k;|?/x
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The non-trivial algebraic structure of k-translations endows the Fock space with a
“fine structure”

® the different states can be distinguished measuring their momentum splitting e.g.
|AKy2| = [Ki2 — Ka1| = 2 [kg|ka| — ka|kq|| < 2[kq][ke|
of order |k;|?/x

® the 2-mode Hilbert space becomes Hi =~ S)H? ® C2, where SpH? is the ordinary
symmetrized 2-mode Hilbert space and our states can be written as

@1 = |kka)s

|
le) @] 1) |kak1)w

with € = e(kq) + e(ka)
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Hidden entanglement at the Planck scale

The non-trivial algebraic structure of k-translations endows the Fock space with a
“fine structure”
® the different states can be distinguished measuring their momentum splitting e.g.
|AKy2| = [Ki2 — Ka1| = 2 [kg|ka| — ka|kq|| < 2[kq][ke|
of order |k;|?/x

® the 2-mode Hilbert space becomes Hi =~ S)H? ® C2, where SpH? is the ordinary
symmetrized 2-mode Hilbert space and our states can be written as

@1 = |kika)s
@4 = |kaki)w
with € = e(kq) + e(ka)
( Planckian mode entanglement becomes possible! J

® e.g. the state superposition of two total “classical” energies e4 = e(ki,) + €(ka4) and
eg = e(ki1g) + €(kag) can be entangled with the additional hidden modes e.g.

W) = 1/v2(lea) @ | 1) + leg) ® | 1))

...possible consequences for phenomenology?
( MA., D. Benedetti, [arXiv:0809.0889 [hep-th]]. MA., A. Marciano, [arXiv:0707.1329 [hep-th]]. MA, A. Hamma,
S. Severini, [arXiv:0806.2145 [hep-th]].)
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Conclusions

® “Non-local” symmetry generators emerge in different contexts 2d and 3d:
non-Leibniz action on states and observables

e In 3d gravity the topological nature of the theory requires group-valued momenta
which upon quantization lead to non-commutative QFT;

e The non-commutative QFT admits “deformed symmetries” (G as a deformation
parameter); “running” spectral dimension from NC heat-kernel

e In 4d the only model with group valued momenta given by k-Poincaré algebra; x
curvature scale of momentum space = symmetry deformation parameter; hints
for fractal spectral dimension

o At the QFT level the non-trivial behaviour of field modes leads to a fine structure
of Fock space: interesting entanglement phenomena can take place.
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The BIG questions

Some pressing open issues...
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Some pressing open issues...

e Geometric interpretation of group momentum space in 4d: momenta
parametrizing particle/string defects?

o Physical regimes of relevance (if any!!): gravitational shock waves, topological
regimes of 4d gravity?

e Relations with other forms of non-locality in QFT: what beyond [¢(x), ¢(y)]?

e What role of these UV deformed theories for “trans-planckian” issues in
semiclassical gravity (BH evaporation, Inflation)??

Thank you!
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