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Being non-local in QFT

“Non-local” in quantum field theory can have various meanings...

• Violation of microscopic causality: [Ô(x), Ô(y)] 6= 0 for x and y space-like
separated;

• Non-local Lagrangians: infinite number of derivative terms need non-local data;

• Observables whose definition relies on non-local geometric information;

Chern–Simons formulation of (2 + 1)-dimensional gravity 2203
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Figure 2. The holonomy of a loop around a puncture.

Then the admissible transformations are Chern–Simons transformations of the form (2.20)
with d = 0 outside an open region containing the particle. The corresponding boundary
condition on the gauge field is the requirement that the gauge field be obtained from A∞ (3.4)
by an asymptotically constant gauge transformation g = ↓ q , i.e. that it be of the form
Ad(g)A∞.

3.2. Phase space and Poisson structure

The simplest graph describing the open spacetime containing a single particle consists of a
single vertex z∞ at the boundary and a loop around the particle. The loop can be built up
from an edge connecting vertex and particle and an (infinitesimal) circle around the particle
as pictured in figure 2.

Using expression (3.3), we calculate that the holonomy around the infinitesimal circle is
the element h0 given by (2.19). If we write g = x for the group element obtained by
parallel transport along the edge connecting vertex and particle, the holonomy h of the loop
starting and ending at z∞ is

h = }〈 0g−1. (3.5)

Defining

p a J a = Ad(v)J 0, (3.6)

and

u = exp(− 0)v−1 = exp(− ⇒ (3.7)

we can also write the holonomy as

h = a = −Ad(u)j (3.8)

where

j = 1 − Ad(u−1))x + sp̂ (3.9)

The fact that the holonomy is an element of a fixed P̃ ↑
3 -conjugacy class determined by mass

and spin s of the particles results in constraints on the parameters p a and j a

p2 = = 2, p · j = | = (3.10)

All these concepts are somewhat related, we will focus on the latter type of non-
locality and consider non-local symmetry generators...

their existence in QFT relies on a generalization of the Leibniz rule for their action
on composite quantum states.
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Outline

• Beyond Leibniz in 2d

• “Bending” phase space in 3d gravity: group valued momenta and NC-fields

• NC heat kernel: running spectral dimension

• 4d case: de Sitter momentum space and κ-deformed symmetries

• κ-Fock space: “hidden entanglement” at the Planck scale
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Quantum mechanics and Leibniz

Given an action of a symmetry generator g on the space of states of a quantum
system (Hilbert space) H

• action of g on composite system e.g. H⊗H (Leibniz rule)

g(ψ1 ⊗ ψ2) ≡ g(ψ1)⊗ ψ2 + ψ1 ⊗ g(ψ2)

• action on observables

g(O) ≡ [g ,O]

g(O1O2) ≡ [g ,O1]O2 +O1[g ,O2]

These basic facts are the key to implement symmetries in QM... do they admit
generalizations/modifications?

YES...
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Beyond Leibniz in 2d

• Certain 2d QFT exhibit non-local currents Ja
µ(x , t), whose definition requires

attaching a curve from −∞ to the point x ⇒

non-trivial braiding
(Bernard and Leclair, Comm. Math. Phys. 142, 99 (1991).)

Ja
µ(x , t)Jb

ν(y , t) = Rab
cd Jc

ν(y , t)Jd
µ(x , t)

102 D. Bernard and A. LeClair

Furthermore, these methods are rather general and self contained, and are
well suited to the clarification of more recent results2.

A preliminary version of some of the following results on the SG theory
appeared in [15].

2. Non Local Charges in 2D QFT

2a. General Theory. In this section we review the general framework for dealing
with non local charges in two dimensional quantum field theory. Part of this
framework was used in [6].

D ue to the possibility of fields with non trivial braiding relations, quantum
field theories in two spacetime dimensions may have non local conserved currents.
The currents, which we denote by Ja

µ(x, t), are localized at the space time points
(x,!). Their precise definition (e.g. from a lattice construction or directly in the
continuum) requires attaching to the currents a one dimensional curve going from
— oo to the point (x, t). The precise location of the string attached to the currents
is irrelevant except when topological obstructions are encountered. One way to
think about this string is in analogy to the disorder line defining disorder fields
[16,17]. This analogy will be clarified in the sequel. The non locality of the currents
is encoded in their equal time braiding relations:

j;(x,t)J%t) = RfcJ
c
v(y9t)J

d
µ(x,t); for x>y. (2.1)

The above equation is implicitly time ordered to the left, e.g. Ja
µ(x, t)Jb

v(y, t) =
Jµ(x, t +  !)Jb

v(y, t\  for " small and positive. The braiding relations (2.1) originate in
the topological obstructions encountered while moving the string attached to the
currents, and are displayed in Fig. 1. In this figure, time increases upward, and
the positions of the strings are dictated by the time ordering. Associativity of the
operator algebra requires the matrix Rfd to be a solution of the Yang Baxter
equation. A more complete discussion of braiding relations in 2D quantum field
theories can be found in [18,19].

F or conserved currents, dµJ
a

µ(x, t) =  0, the global conserved charges Qa acting

on the physical H ubert space are # fl =  —\ dxJ a
t ( x , t) . The charges Qa acting on

2ni t

 co

 0 0

Fig. 1. Graphical representation of braiding

2 We refer the reader to [ 11] for a unified description of integrable quantum field theories based
on symmetries

• symmetry generator (charge) Qa associated with Ja acts via braided commutator

Qa(Φk) ≡ QaΦk −Θak
bl ΦbQ l = [Qa,Φk ]Θ

• ...and on product of fields like

Qa(ΦkΦn) ≡ Qa(Φk)Φn −Θak
bl ΦlQb(Φn)

The non-locality of the currents leads to a generalized “non-Leibniz” action of the
(internal) symmetry generators on fields

Michele Arzano — Non-local charges, curved momentum space and fractal space-time 6/18



Beyond Leibniz in 2d

• Certain 2d QFT exhibit non-local currents Ja
µ(x , t), whose definition requires

attaching a curve from −∞ to the point x ⇒ non-trivial braiding
(Bernard and Leclair, Comm. Math. Phys. 142, 99 (1991).)

Ja
µ(x , t)Jb

ν(y , t) = Rab
cd Jc

ν(y , t)Jd
µ(x , t)

102 D. Bernard and A. LeClair

Furthermore, these methods are rather general and self contained, and are
well suited to the clarification of more recent results2.

A preliminary version of some of the following results on the SG theory
appeared in [15].

2. Non Local Charges in 2D QFT

2a. General Theory. In this section we review the general framework for dealing
with non local charges in two dimensional quantum field theory. Part of this
framework was used in [6].

D ue to the possibility of fields with non trivial braiding relations, quantum
field theories in two spacetime dimensions may have non local conserved currents.
The currents, which we denote by Ja

µ(x, t), are localized at the space time points
(x,!). Their precise definition (e.g. from a lattice construction or directly in the
continuum) requires attaching to the currents a one dimensional curve going from
— oo to the point (x, t). The precise location of the string attached to the currents
is irrelevant except when topological obstructions are encountered. One way to
think about this string is in analogy to the disorder line defining disorder fields
[16,17]. This analogy will be clarified in the sequel. The non locality of the currents
is encoded in their equal time braiding relations:

j;(x,t)J%t) = RfcJ
c
v(y9t)J

d
µ(x,t); for x>y. (2.1)

The above equation is implicitly time ordered to the left, e.g. Ja
µ(x, t)Jb

v(y, t) =
Jµ(x, t +  !)Jb

v(y, t\  for " small and positive. The braiding relations (2.1) originate in
the topological obstructions encountered while moving the string attached to the
currents, and are displayed in Fig. 1. In this figure, time increases upward, and
the positions of the strings are dictated by the time ordering. Associativity of the
operator algebra requires the matrix Rfd to be a solution of the Yang Baxter
equation. A more complete discussion of braiding relations in 2D quantum field
theories can be found in [18,19].

F or conserved currents, dµJ
a

µ(x, t) =  0, the global conserved charges Qa acting

on the physical H ubert space are # fl =  —\ dxJ a
t ( x , t) . The charges Qa acting on

2ni t

 co

 0 0

Fig. 1. Graphical representation of braiding

2 We refer the reader to [ 11] for a unified description of integrable quantum field theories based
on symmetries

• symmetry generator (charge) Qa associated with Ja acts via braided commutator

Qa(Φk) ≡ QaΦk −Θak
bl ΦbQ l = [Qa,Φk ]Θ

• ...and on product of fields like

Qa(ΦkΦn) ≡ Qa(Φk)Φn −Θak
bl ΦlQb(Φn)

The non-locality of the currents leads to a generalized “non-Leibniz” action of the
(internal) symmetry generators on fields

Michele Arzano — Non-local charges, curved momentum space and fractal space-time 6/18



Beyond Leibniz in 2d

• Certain 2d QFT exhibit non-local currents Ja
µ(x , t), whose definition requires

attaching a curve from −∞ to the point x ⇒ non-trivial braiding
(Bernard and Leclair, Comm. Math. Phys. 142, 99 (1991).)

Ja
µ(x , t)Jb

ν(y , t) = Rab
cd Jc

ν(y , t)Jd
µ(x , t)

102 D. Bernard and A. LeClair

Furthermore, these methods are rather general and self contained, and are
well suited to the clarification of more recent results2.

A preliminary version of some of the following results on the SG theory
appeared in [15].

2. Non Local Charges in 2D QFT

2a. General Theory. In this section we review the general framework for dealing
with non local charges in two dimensional quantum field theory. Part of this
framework was used in [6].

D ue to the possibility of fields with non trivial braiding relations, quantum
field theories in two spacetime dimensions may have non local conserved currents.
The currents, which we denote by Ja

µ(x, t), are localized at the space time points
(x,!). Their precise definition (e.g. from a lattice construction or directly in the
continuum) requires attaching to the currents a one dimensional curve going from
— oo to the point (x, t). The precise location of the string attached to the currents
is irrelevant except when topological obstructions are encountered. One way to
think about this string is in analogy to the disorder line defining disorder fields
[16,17]. This analogy will be clarified in the sequel. The non locality of the currents
is encoded in their equal time braiding relations:

j;(x,t)J%t) = RfcJ
c
v(y9t)J

d
µ(x,t); for x>y. (2.1)

The above equation is implicitly time ordered to the left, e.g. Ja
µ(x, t)Jb

v(y, t) =
Jµ(x, t +  !)Jb

v(y, t\  for " small and positive. The braiding relations (2.1) originate in
the topological obstructions encountered while moving the string attached to the
currents, and are displayed in Fig. 1. In this figure, time increases upward, and
the positions of the strings are dictated by the time ordering. Associativity of the
operator algebra requires the matrix Rfd to be a solution of the Yang Baxter
equation. A more complete discussion of braiding relations in 2D quantum field
theories can be found in [18,19].

F or conserved currents, dµJ
a

µ(x, t) =  0, the global conserved charges Qa acting

on the physical H ubert space are # fl =  —\ dxJ a
t ( x , t) . The charges Qa acting on

2ni t

 co

 0 0

Fig. 1. Graphical representation of braiding

2 We refer the reader to [ 11] for a unified description of integrable quantum field theories based
on symmetries

• symmetry generator (charge) Qa associated with Ja acts via braided commutator

Qa(Φk) ≡ QaΦk −Θak
bl ΦbQ l = [Qa,Φk ]Θ

• ...and on product of fields like

Qa(ΦkΦn) ≡ Qa(Φk)Φn −Θak
bl ΦlQb(Φn)

The non-locality of the currents leads to a generalized “non-Leibniz” action of the
(internal) symmetry generators on fields

Michele Arzano — Non-local charges, curved momentum space and fractal space-time 6/18



Beyond Leibniz in 2d

• Certain 2d QFT exhibit non-local currents Ja
µ(x , t), whose definition requires

attaching a curve from −∞ to the point x ⇒ non-trivial braiding
(Bernard and Leclair, Comm. Math. Phys. 142, 99 (1991).)

Ja
µ(x , t)Jb

ν(y , t) = Rab
cd Jc

ν(y , t)Jd
µ(x , t)

102 D. Bernard and A. LeClair

Furthermore, these methods are rather general and self contained, and are
well suited to the clarification of more recent results2.

A preliminary version of some of the following results on the SG theory
appeared in [15].

2. Non Local Charges in 2D QFT

2a. General Theory. In this section we review the general framework for dealing
with non local charges in two dimensional quantum field theory. Part of this
framework was used in [6].

D ue to the possibility of fields with non trivial braiding relations, quantum
field theories in two spacetime dimensions may have non local conserved currents.
The currents, which we denote by Ja

µ(x, t), are localized at the space time points
(x,!). Their precise definition (e.g. from a lattice construction or directly in the
continuum) requires attaching to the currents a one dimensional curve going from
— oo to the point (x, t). The precise location of the string attached to the currents
is irrelevant except when topological obstructions are encountered. One way to
think about this string is in analogy to the disorder line defining disorder fields
[16,17]. This analogy will be clarified in the sequel. The non locality of the currents
is encoded in their equal time braiding relations:

j;(x,t)J%t) = RfcJ
c
v(y9t)J

d
µ(x,t); for x>y. (2.1)

The above equation is implicitly time ordered to the left, e.g. Ja
µ(x, t)Jb

v(y, t) =
Jµ(x, t +  !)Jb

v(y, t\  for " small and positive. The braiding relations (2.1) originate in
the topological obstructions encountered while moving the string attached to the
currents, and are displayed in Fig. 1. In this figure, time increases upward, and
the positions of the strings are dictated by the time ordering. Associativity of the
operator algebra requires the matrix Rfd to be a solution of the Yang Baxter
equation. A more complete discussion of braiding relations in 2D quantum field
theories can be found in [18,19].

F or conserved currents, dµJ
a

µ(x, t) =  0, the global conserved charges Qa acting

on the physical H ubert space are # fl =  —\ dxJ a
t ( x , t) . The charges Qa acting on

2ni t

 co

 0 0

Fig. 1. Graphical representation of braiding

2 We refer the reader to [ 11] for a unified description of integrable quantum field theories based
on symmetries

• symmetry generator (charge) Qa associated with Ja acts via braided commutator

Qa(Φk) ≡ QaΦk −Θak
bl ΦbQ l = [Qa,Φk ]Θ

• ...and on product of fields like

Qa(ΦkΦn) ≡ Qa(Φk)Φn −Θak
bl ΦlQb(Φn)

The non-locality of the currents leads to a generalized “non-Leibniz” action of the
(internal) symmetry generators on fields

Michele Arzano — Non-local charges, curved momentum space and fractal space-time 6/18



Beyond Leibniz in 2d

• Certain 2d QFT exhibit non-local currents Ja
µ(x , t), whose definition requires

attaching a curve from −∞ to the point x ⇒ non-trivial braiding
(Bernard and Leclair, Comm. Math. Phys. 142, 99 (1991).)

Ja
µ(x , t)Jb

ν(y , t) = Rab
cd Jc

ν(y , t)Jd
µ(x , t)

102 D. Bernard and A. LeClair

Furthermore, these methods are rather general and self contained, and are
well suited to the clarification of more recent results2.

A preliminary version of some of the following results on the SG theory
appeared in [15].

2. Non Local Charges in 2D QFT

2a. General Theory. In this section we review the general framework for dealing
with non local charges in two dimensional quantum field theory. Part of this
framework was used in [6].

D ue to the possibility of fields with non trivial braiding relations, quantum
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(x,!). Their precise definition (e.g. from a lattice construction or directly in the
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Curved momentum space from 3d gravity

Curved momentum space in flatland

• Gravitational field in 2+1 dimensions admits no local d.o.f.!

• Point particles “puncture” space-like slices → conical space (Deser, Jackiw, ’t Hooft, 1984)

• Euclidean plane with a wedge “cut-out” deficit angle 8πGm

identify

world lines

identify

Figure 1: The Kepler spacetime can be constructed by cutting out two wedges from a flat
Minkowski space. The faces are identified, such that two conical singularities arise in an
otherwise flat spacetime. In the rest frame of the each particle, the deficit angle of the conical
space is proportional to the mass of the particle.

The more serious problem has to do with the asymptotic structure of the spacetime at infinity.
The region far away from the particles is split into two segments in figure 1. Each segment is a
subset of Minkowski space. But on the wedges we have to apply non-trivial transition functions,
relating the Minkowski coordinates on one side to those on the other side. To find out what the
spacetime looks like at infinity, it would be nicer to have a single coordinate chart covering this
region. There is in fact a particular reason why we are interested in the asymptotic structure
of the Kepler spacetime. In order to quantize it in the end, we first have to set up a proper
classical Hamiltonian formulation. This requires a proper definition of an action principle for the
underlying field theory of Einstein gravity. And this again requires some kind of asymptotical
flatness condition to be imposed on the metric at infinity [14].

The asymptotic structure of the Kepler spacetime depends crucially on the relative motion of
the particles. If they are moving slowly, then far away from the particles the spacetime is also
conical. It looks almost like the gravitational field of a single particle, whose mass is equal to
the sum of the two masses of the real particles. The rest frame of this fictitious particle can be
identified with the centre of mass frame of the universe. If the particles are moving faster, the
apparent mass of the fictitious particle has to be replaced by the total energy of the system. It
also receives a spin, which represents the total angular momentum. But still, the universe looks
like a cone at infinity, and this cone defines the centre of mass frame.

Something strange happens when the relative motion of the particles exceeds a certain thresh-
old [15]. The definition of a centre of mass frame then breaks down, and the asymptotic structure
of the spacetime is no longer conical. Even more peculiar, the spacetime then contains closed
timelike curves [16, 17, 18]. Clearly, these are very interesting features of such a simple two
particle spacetime. But for our purpose we have to exclude them, again because we want to set
up a proper Hamiltonian framework. This requires a well defined causal structure of the space-

2

• Particle’s phase space = space of solutions of e.o.m.

• Geodesics in 3d Minkowski described by positions and momenta = R2,1 × R2,1

• Switch on gravity: positions and generalized momenta = R2,1 × SL(2,R)

Momenta become coordinate functions on a non-abelian group!
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particle spacetime. But for our purpose we have to exclude them, again because we want to set
up a proper Hamiltonian framework. This requires a well defined causal structure of the space-

2

• Particle’s phase space = space of solutions of e.o.m.

• Geodesics in 3d Minkowski described by positions and momenta = R2,1 × R2,1

• Switch on gravity: positions and generalized momenta = R2,1 × SL(2,R)

Momenta become coordinate functions on a non-abelian group!
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Group valued momenta and deformed mass-shell

The components ~p are coordinates on a group manifold

u2 − 16π2G 2~p 2 = 1
2992 H-J Matschull and M Welling

Figure 1. The group manifold SL(2), embedded in R4, using the coordinates pA = (pa, u),
with p2 suppressed. The picture to the right shows the two mass shells for m = π/6 (a deficit
angle of 60◦), obtained by intersecting the group manifold with the plane u = cosm, and the
lightcones emerging from 1 and −1 (on the back). The grid lines on the group manifold are the
Euler angles ρ and χ .

is always the same. They split into two subsets, the ‘particle’ and the ‘antiparticle’ mass
shell, consisting of the positive and negative timelike vectors of length sinm.

To visualize these mass shells, let us use the coordinates (pa, u) to embed the group
manifold into R4. The condition (2.17) defines a hyperboloid therein, which is shown in
figure 1. The mass shells are the intersections of this hyperboloid with the plane u = cosm.
We see that there is an upper and a lower mass shell, corresponding to the positive and
negative timelike vectors p, and that they look very similar to those of a relativistic point
particle. But there are also some features that are different.

One essential difference is that the range of m is bounded from below and from above.
We can now see that this is because the momentum u lives on the group manifold SL(2),
and not in flat Minkowski space. If the mass approaches the lower bound m = 0, then the
mass shells approach the ‘lightcones’ emerging from u = 1. They consist of those elements
of the group for which u = 1, so that p is a lightlike vector. But now there is a second pair
of lightcones, emerging from the group element u = −1. There, we have u = −1, and so
p is also lightlike. For m = π , the mass shells coincide with these lightcones.

Between these two pairs of lightcones, there is only a finite range of u, which coincides
with the range of the cosine in the mass-shell condition. The whole range of timelike
momenta u is covered by 0 < m < π , and on both sides of this interval the momentum
becomes lightlike. Using the conventional terminology, we can say that the particle is
‘massless’ for m = 0 as well as for m = π . This is what we already mentioned in the
beginning. It is the reason why the description of the particle in its own rest frame fails for
these values of m.

To see what goes wrong if we take the limit m → 0 or m → π in the rest frame of the
particle, consider the dreibein (2.2) and the spin connection (2.3). The momentum is then
given by

ū = emγ0 = cosm1+ sinmγ0. (2.19)

In the limits m → 0 and m → π , we have ū → ±1 and therefore p̄ → 0. The same
happens for a relativistic point particle if we take the limit m → 0 in the rest frame. The
momentum does not end up on the lightcone, but vanishes. To get a proper description
of lightlike particles, we have to exclude the special solutions ū = ±1 of the mass-shell

• Geodesics characterized as in R2,1 by timelike straight lines

• Mass-shell: holonomies representing a rotation by 8πGm ⇒ ~p 2 = − sin2(4πGm)

16π2G2

Chern–Simons formulation of (2 + 1)-dimensional gravity 2203

h0g g–1

ooz

οοz

g=(v,x)

h0

Figure 2. The holonomy of a loop around a puncture.

Then the admissible transformations are Chern–Simons transformations of the form (2.20)
with d = 0 outside an open region containing the particle. The corresponding boundary
condition on the gauge field is the requirement that the gauge field be obtained from A∞ (3.4)
by an asymptotically constant gauge transformation g = ↓ q , i.e. that it be of the form
Ad(g)A∞.

3.2. Phase space and Poisson structure

The simplest graph describing the open spacetime containing a single particle consists of a
single vertex z∞ at the boundary and a loop around the particle. The loop can be built up
from an edge connecting vertex and particle and an (infinitesimal) circle around the particle
as pictured in figure 2.

Using expression (3.3), we calculate that the holonomy around the infinitesimal circle is
the element h0 given by (2.19). If we write g = x for the group element obtained by
parallel transport along the edge connecting vertex and particle, the holonomy h of the loop
starting and ending at z∞ is

h = }〈 0g−1. (3.5)

Defining

p a J a = Ad(v)J 0, (3.6)

and

u = exp(− 0)v−1 = exp(− ⇒ (3.7)

we can also write the holonomy as

h = a = −Ad(u)j (3.8)

where

j = 1 − Ad(u−1))x + sp̂ (3.9)

The fact that the holonomy is an element of a fixed P̃ ↑
3 -conjugacy class determined by mass

and spin s of the particles results in constraints on the parameters p a and j a

p2 = = 2, p · j = | = (3.10)

~p = κ
2i
Tr(h~γ) where h = gh0g−1 and κ = (4πG)−1
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From particles to fields

Phase space of a relativistic particle =⇒ (quantum) field theory?

• Functions on the mass shell C∞(Mm) ⇐⇒︸︷︷︸
Fourier trans.

SKG solutions of Klein-Gordon eq.

• Lorentz inv. measure on C∞(Mm) ⇒ invariant inner product ⇒ QFT Hilbert space

Particle coupled to 2+1 gravity naturally leads to field theory on a group

φ(P) ∈ C∞(MG
m ) ⊂ C∞(SL(2,R))

(Deformed mass-shell MG
m given by holonomies which represent a rotation by α = 8πGm)

Switch to Euclidean (our goal is to define heat kernel): SL(2,R) −→ SU(2)

Fourier transform maps fields on the group manifold to fields on a dual “spacetime”

F(f )(x) =

∫
dµH(P)f (P) eP(x) ,

where: eP(x) = e
i

2κ
Tr(xP) = e i~p·~x with x = x iσi
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Group-valued plane waves: beyond Leibniz in 3d

...the group structure induces a non-commutative ?-product for plane waves

eP1 (x) ? eP2 (x) = e
i

2κ
Tr(xP1) ? e

i
2κ

Tr(xP2) = e
i

2κ
Tr(xP1P2)

i) differentiating both sides w.r.t. P1, P2 and setting momenta to zero

[xi , xj ]? = iκεijk xk

functions of the dual spacetime variables form a non-commutative algebra!

ii) momenta obey a non abelian composition rule indeed

~p1⊕~p2 = p0(~p2)~p1 +p0(~p2)~p2 +
1

κ
~p1∧~p2 = ~p1 +~p2 +

1

κ
~p1∧~p2 +O(1/κ2) 6= ~p2⊕~p1

Plane waves = eigenfunctions of translation generators Pa

⇓
non-abelian composition of momenta = non-Leibniz action on product of plane waves

Pa(eP1 ⊗ eP2 ) = Pa(eP1 )⊗ eP2 + eP1 ⊗ Pa(eP2 ) + 1
κ
εabcPb(eP1 )⊗ Pc(eP2 ) +O(1/κ2)

the smoking gun of symmetry deformation...Pa belong to a deformed algebra with κ as a
deformation parameter!
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i) differentiating both sides w.r.t. P1, P2 and setting momenta to zero

[xi , xj ]? = iκεijk xk

functions of the dual spacetime variables form a non-commutative algebra!

ii) momenta obey a non abelian composition rule indeed

~p1⊕~p2 = p0(~p2)~p1 +p0(~p2)~p2 +
1

κ
~p1∧~p2 = ~p1 +~p2 +

1

κ
~p1∧~p2 +O(1/κ2) 6= ~p2⊕~p1

Plane waves = eigenfunctions of translation generators Pa

⇓
non-abelian composition of momenta = non-Leibniz action on product of plane waves

Pa(eP1 ⊗ eP2 ) = Pa(eP1 )⊗ eP2 + eP1 ⊗ Pa(eP2 ) + 1
κ
εabcPb(eP1 )⊗ Pc(eP2 ) +O(1/κ2)

the smoking gun of symmetry deformation...Pa belong to a deformed algebra with κ as a
deformation parameter!
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An application: heath kernel and anomalous diffusion

• “Spin” NC space possesses Laplacian ∆G : ∆G eP(x) = CG (P)eP(x) = ~p2 eP(x)

• Define the Green function: (∆G + M2) G(x , x ′) = δ(x − x ′)

• Construct the NC heat kernel (M = 0) (MA and E. Alesci 1108.1507)

G(x , x ′) =

∫ ∞
0

ds K(x , x ′; s)

⇓

KG (x , x ′; s) =

∫
dµH(P) e−sCG (P)eP(x)eP(x ′)

and calculate the spectral dimension ds = −2 ∂ log T̃rK
∂ log s

... (plot for G = 1)
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4d case: “de Sitter” momentum space

• Early 90’s “deformation” of special relativistic symmetries: introduce UV-scale κ

• Structural analogies of momentum sector with 3d case only recently appreciated...

I momenta: coordinates on a Lie group B ∼= SO(4, 1)/SO(3, 1), a
sub-manifold of dS4

−η2
0 + η2

1 + η2
2 + η2

3 + η2
4 = κ2 ; η0 + η4 > 0

I dual Lie algebra “non-commutative space-time” coordinates

[xµ, xν ] = − i

κ
(xµδ

0
ν − xνδ

0
µ) .

The non-abelian composition of momenta in “flat slicing” coordinates

η0(p0, p) = κ sinh p0/κ+
p2

2κ
ep0/κ,

ηi (p0, p) = pi e
p0/κ,

η4(p0, p) = κ cosh p0/κ−
p2

2κ
ep0/κ.

reads p ⊕ q = (p0 + q0; pj e−
q0

κ + qj )
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κ-Poincaré and DSR

The non-abelian composition of momenta reflects a non-Leibniz action of
spatial translation generators

Pi (eP1 ⊗ eP2 ) = Pi (eP1 )⊗ eP2 + exp(−P0/κ)(eP1 )⊗ Pi (eP2 )

• Action of spatial rotations and time translations is unchanged

• deformed boost action (finite boosts saturate at the UV scale κ!)

[Nj ,Pl ] = iδlj
(
κ
2

(
1− e−

2P0
κ

)
+ 1

2κ
~P2
)

+ i
κ

PlPj

and it’s very ugly and non-Leibniz on products of plane waves...

• deformed mass invariant ⇒ Lorentz invariant hyperboloid on B: η4 = const.

Cκ(P) =

(
2κ sinh

(
P0

2κ

))2

− PiP
ieP0/κ

Planck-scale deformation of energy-momentum relation...“DSR-like” features

in the limit κ −→∞ recover ordinary Poincaré algebra

Michele Arzano — Non-local charges, curved momentum space and fractal space-time 13/18



κ-Poincaré and DSR
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Fractal properties of κ-space I

Anomalous diffusion for de Sitter momentum space? (D. Benedetti PRL 102 111303 (2009))

• starts from the ansatz

TrK =

∫
d4p

(2π)4
e−sC(p) =⇒ TrKκ =

∫
dµ(P)

(2π)4
e−sM2(P)

with M2(P) = Cκ(P)
(

1 + Cκ(P)

4κ2

)
and dµ(P) the left invariant Haar measure on AN(3)

• calculate the spectral dimension ds = −2 ∂ log T̃rK
∂ log s

... (plot for G = 1)

3

infinity while R ln q = κ−1 is a real number which is held
fixed and finite. As explained in [19] such limit might
be of relevance for a theory of quantum gravity. The re-
sult of such contraction is another Hopf algebra which in
terms of the generators of translations Pµ, rotations Mj

and boosts Nj (as usual Greek indices run from 0 to 3
while Latin indices run from 1 to 3, and repeated indices
are summed over) has the deformed algebra relations

[Ni, Pj ] = δijκ sinh P0

κ , (12)

[Ni, Nj ] = −εijk(Mk cosh P0

κ − 1
4κ2 PkPlMl) ,

the other commutators being as in undeformed Poincaré.
As shown in [20] hermitian irreducible representations of
the Poincaré algebra with C1 = PµPµ ≥ 0 can be lifted to
hermitian irreducible representations of κ-Poincaré with

Cκ
1 = (2κ sinh P0

2κ )2 − $P 2 ≥ 0, and the latter reduce in the
κ → ∞ limit to the undeformed ones.

κ-Minkowski spacetime was introduced in [10] as the
space which is dual to the translation sector of κ-Poincaré
algebra and on which the whole κ- Poincaré algebra acts
covariantly, and as such is a subgroup of the so-called κ-
Poincaré group [21]. It turns out to be a noncommutative
spacetime with coordinates x̂µ satisfying the relations

[x̂0, x̂j ] =
i

κ
x̂j , [x̂i, x̂j ] = 0 . (13)

Following [10] it is convenient to introduce a new basis
for κ-Poincaré by defining new boost generators

N b
j = Nje

− P0
2κ − εjkl

2κ
MkPle

− P0
2κ , (14)

such that the bicrossproduct structure of κ-Poincaré
Pκ = U(so(3, 1)%! T becomes evident, with generators
of rotations and boost forming the standard Lorentz al-
gebra and with deformed action of U(so(3, 1) on T given
by the remaining commutators

[N b
i , P0] = e− P0

2κ Pi , (15)

[N b
i , Pj ] = δije

− P0
2κ (κ sinh P0

κ + 1
2κ

$P 2) − 1
2κe− P0

2κ PiPj .

One nice consequence of the bicrossproduct structure is
that the dual P ∗

κ possesses the same structure, i.e. P ∗
κ =

T ∗ "&C(SO(3, 1)), and so we can think of κ-Minkowski
as the homogeneous space P ∗

κ/SO(3, 1), and this justifies
us in applying the previous formalism for evaluating the
trace of the heat kernel on κ-Minkowski.

Before doing that we have to switch to Euclidean sig-
nature in order to make sense of our definition of ef-
fective dimension, but this constitutes no problem, it
just amounts to the substitution (see for example [22])
P0 → iP0, κ → iκ. When applied to the first Casimir of
the algebra such substitution yields

Cκ
1 = (2κ sinh

P0

2κ
)2 + $P 2 , (16)

in agreement with the most intuitive extension of the
two- and three-dimensional cases of [23].

Next we also have to note that any function of Cκ
1 is

still a valid Casimir1. To select one unique expression
we can make appeal to the existing theory of differen-
tial calculus on κ-Minkowski [24] (see also [25] for recent
applications to quantum field theory on κ-Minkowski)
and compare our group theoretical construction with the
Laplacian defined via such differential calculus. We find
that in the basis we have chosen the eigenvalues of the
Laplacian are given by

M2(p) = Cκ
1 (p)(1 +

Cκ
1 (p)

4κ2
) . (17)

We can now use M2(p) as the Casimir eigenvalue, and
write down the following formula for κ-Minkowski

TrKq =

∫
dµ(p)

(2π)4
e−sM2(p) , (18)

where we have also used the κ-deformed Lorentz invariant

measure dµ(p) ≡ e
3p0

2κ d4p. Finally from (3) we obtain the
spectral dimension of (the Wick-rotated) κ-Minkowski
space. The integration cannot be done analytically, but
numerically it poses no problems and we can plot the
result as for example in Fig. 2. The limiting values at
s → ∞ and s → 0 can be obtained analytically by re-
spectively taking the limits of small and large p0/κ for
the integrand, obtaining

ds =

{
4 for s → ∞
3 for s → 0.

(19)
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3.0

3.2

3.4

3.6

3.8

4.0

s

d s

FIG. 2: A plot of the spectral dimension ds of κ-Minkowski space
for κ = 1 as function of the diffusion time s. For comparison we plot
also the constant behaviour of the spectral dimension of classical
Minkowski space (ds = 4).

1 Having an extra parameter which is dimensionful we can con-
struct arbitrary functions with mass-squared dimension, the only
restriction being given by the limit κ → ∞, for which we ought
to recover the standard Casimir.

formulate proper Green’s function/heat kernel for the theory (work in progress with T. Trezsniewski)
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As shown in [20] hermitian irreducible representations of
the Poincaré algebra with C1 = PµPµ ≥ 0 can be lifted to
hermitian irreducible representations of κ-Poincaré with
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space. The integration cannot be done analytically, but
numerically it poses no problems and we can plot the
result as for example in Fig. 2. The limiting values at
s → ∞ and s → 0 can be obtained analytically by re-
spectively taking the limits of small and large p0/κ for
the integrand, obtaining

ds =

{
4 for s → ∞
3 for s → 0.

(19)
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FIG. 2: A plot of the spectral dimension ds of κ-Minkowski space
for κ = 1 as function of the diffusion time s. For comparison we plot
also the constant behaviour of the spectral dimension of classical
Minkowski space (ds = 4).

1 Having an extra parameter which is dimensionful we can con-
struct arbitrary functions with mass-squared dimension, the only
restriction being given by the limit κ → ∞, for which we ought
to recover the standard Casimir.
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Fractal properties of κ-space I

Anomalous diffusion for de Sitter momentum space? (D. Benedetti PRL 102 111303 (2009))

• starts from the ansatz

TrK =

∫
d4p

(2π)4
e−sC(p) =⇒ TrKκ =

∫
dµ(P)

(2π)4
e−sM2(P)

with M2(P) = Cκ(P)
(

1 + Cκ(P)

4κ2

)
and dµ(P) the left invariant Haar measure on AN(3)

• calculate the spectral dimension ds = −2 ∂ log T̃rK
∂ log s

... (plot for G = 1)

3

infinity while R ln q = κ−1 is a real number which is held
fixed and finite. As explained in [19] such limit might
be of relevance for a theory of quantum gravity. The re-
sult of such contraction is another Hopf algebra which in
terms of the generators of translations Pµ, rotations Mj

and boosts Nj (as usual Greek indices run from 0 to 3
while Latin indices run from 1 to 3, and repeated indices
are summed over) has the deformed algebra relations

[Ni, Pj ] = δijκ sinh P0

κ , (12)

[Ni, Nj ] = −εijk(Mk cosh P0

κ − 1
4κ2 PkPlMl) ,

the other commutators being as in undeformed Poincaré.
As shown in [20] hermitian irreducible representations of
the Poincaré algebra with C1 = PµPµ ≥ 0 can be lifted to
hermitian irreducible representations of κ-Poincaré with

Cκ
1 = (2κ sinh P0

2κ )2 − $P 2 ≥ 0, and the latter reduce in the
κ → ∞ limit to the undeformed ones.

κ-Minkowski spacetime was introduced in [10] as the
space which is dual to the translation sector of κ-Poincaré
algebra and on which the whole κ- Poincaré algebra acts
covariantly, and as such is a subgroup of the so-called κ-
Poincaré group [21]. It turns out to be a noncommutative
spacetime with coordinates x̂µ satisfying the relations

[x̂0, x̂j ] =
i

κ
x̂j , [x̂i, x̂j ] = 0 . (13)

Following [10] it is convenient to introduce a new basis
for κ-Poincaré by defining new boost generators

N b
j = Nje

− P0
2κ − εjkl

2κ
MkPle

− P0
2κ , (14)

such that the bicrossproduct structure of κ-Poincaré
Pκ = U(so(3, 1)%! T becomes evident, with generators
of rotations and boost forming the standard Lorentz al-
gebra and with deformed action of U(so(3, 1) on T given
by the remaining commutators

[N b
i , P0] = e− P0

2κ Pi , (15)

[N b
i , Pj ] = δije

− P0
2κ (κ sinh P0

κ + 1
2κ

$P 2) − 1
2κe− P0

2κ PiPj .

One nice consequence of the bicrossproduct structure is
that the dual P ∗

κ possesses the same structure, i.e. P ∗
κ =

T ∗ "&C(SO(3, 1)), and so we can think of κ-Minkowski
as the homogeneous space P ∗

κ/SO(3, 1), and this justifies
us in applying the previous formalism for evaluating the
trace of the heat kernel on κ-Minkowski.

Before doing that we have to switch to Euclidean sig-
nature in order to make sense of our definition of ef-
fective dimension, but this constitutes no problem, it
just amounts to the substitution (see for example [22])
P0 → iP0, κ → iκ. When applied to the first Casimir of
the algebra such substitution yields

Cκ
1 = (2κ sinh

P0

2κ
)2 + $P 2 , (16)

in agreement with the most intuitive extension of the
two- and three-dimensional cases of [23].

Next we also have to note that any function of Cκ
1 is

still a valid Casimir1. To select one unique expression
we can make appeal to the existing theory of differen-
tial calculus on κ-Minkowski [24] (see also [25] for recent
applications to quantum field theory on κ-Minkowski)
and compare our group theoretical construction with the
Laplacian defined via such differential calculus. We find
that in the basis we have chosen the eigenvalues of the
Laplacian are given by

M2(p) = Cκ
1 (p)(1 +

Cκ
1 (p)

4κ2
) . (17)

We can now use M2(p) as the Casimir eigenvalue, and
write down the following formula for κ-Minkowski
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FIG. 2: A plot of the spectral dimension ds of κ-Minkowski space
for κ = 1 as function of the diffusion time s. For comparison we plot
also the constant behaviour of the spectral dimension of classical
Minkowski space (ds = 4).

1 Having an extra parameter which is dimensionful we can con-
struct arbitrary functions with mass-squared dimension, the only
restriction being given by the limit κ → ∞, for which we ought
to recover the standard Casimir.
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κ-Fock space

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of H

In the κ-deformed case try to proceed in an analogous way BUT...

1/
√

2 (|k1〉 ⊗ |k2〉+ |k2〉 ⊗ |k1〉)
is NOT an eigenstate of Pµ due to the non-Leibniz action of spatial translation generators!!

Pi (|k1〉 ⊗ |k2〉) = Pi (|k1〉)⊗ |k2〉+ exp(−P0/κ)(|k1〉)⊗ Pi (|k2〉)

Multi-particle states of κ-Fock-space are built via a “momentum dependent” symmetrization

σκ(|k1〉 ⊗ |k2〉) = |(1− ε1) k2〉 ⊗ |(1− ε2)−1 k1〉 , εi =
|ki |
κ

E.g. there will be two 2-particle states

|k1k2〉κ = 1√
2

[
| k1〉 ⊗ | k2〉+ | (1− ε1)k2〉 ⊗ | (1− ε2)−1k1〉

]
|k2k1〉κ = 1√

2

[
| k2〉 ⊗ | k1〉+ | (1− ε2)k1〉 ⊗ | (1− ε1)−1k2〉

]
with same energy and different linear momentum

K12 = k1 ⊕ k2 = k1 + (1− ε1)k2

K21 = k2 ⊕ k1 = k2 + (1− ε2)k1

given n-different modes one has n! different n-particle states, one for each per-
mutation of the n modes k1 , k2 ... kn
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Hidden entanglement at the Planck scale

The non-trivial algebraic structure of κ-translations endows the Fock space with a
“fine structure”

• the different states can be distinguished measuring their momentum splitting e.g.

|∆K12| ≡ |K12 − K21| = 1
κ
|k1|k2| − k2|k1|| ≤ 2

κ
|k1||k2|

of order |ki|2/κ
• the 2-mode Hilbert space becomes H2

κ
∼= S2H2 ⊗ C2, where S2H2 is the ordinary

symmetrized 2-mode Hilbert space and our states can be written as

|ε〉 ⊗ | ↑〉 = |k1k2〉κ
|ε〉 ⊗ | ↓〉 = |k2k1〉κ

with ε = ε(k1) + ε(k2)

Planckian mode entanglement becomes possible!

• e.g. the state superposition of two total “classical” energies εA = ε(k1A) + ε(k2A) and
εB = ε(k1B) + ε(k2B) can be entangled with the additional hidden modes e.g.

|Ψ〉 = 1/
√

2(|εA〉 ⊗ | ↑〉+ |εB〉 ⊗ | ↓〉)
...possible consequences for phenomenology?
( MA., D. Benedetti, [arXiv:0809.0889 [hep-th]]. MA., A. Marciano, [arXiv:0707.1329 [hep-th]]. MA, A. Hamma,

S. Severini, [arXiv:0806.2145 [hep-th]].)
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2(|εA〉 ⊗ | ↑〉+ |εB〉 ⊗ | ↓〉)
...possible consequences for phenomenology?
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Conclusions

• “Non-local” symmetry generators emerge in different contexts 2d and 3d:
non-Leibniz action on states and observables

• In 3d gravity the topological nature of the theory requires group-valued momenta
which upon quantization lead to non-commutative QFT;

• The non-commutative QFT admits “deformed symmetries” (G as a deformation
parameter); “running” spectral dimension from NC heat-kernel

• In 4d the only model with group valued momenta given by κ-Poincaré algebra; κ
curvature scale of momentum space ⇒ symmetry deformation parameter; hints
for fractal spectral dimension

• At the QFT level the non-trivial behaviour of field modes leads to a fine structure
of Fock space: interesting entanglement phenomena can take place.
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The BIG questions

Some pressing open issues...

• Geometric interpretation of group momentum space in 4d: momenta
parametrizing particle/string defects?

• Physical regimes of relevance (if any!!): gravitational shock waves, topological
regimes of 4d gravity?

• Relations with other forms of non-locality in QFT: what beyond [φ(x), φ(y)]?

• What role of these UV deformed theories for “trans-planckian” issues in
semiclassical gravity (BH evaporation, Inflation)??

Thank you!
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