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Introduction

We consider 4D deformed Euclidean space:

[x̂i, x̂j] = iθij(x̂) ,

θij = −θji = const,

• θij(x̂) = const, canonical

• θij(x̂) = κc
ij
k x̂

k, kappa

• θij(x̂) = (1
q
R̂

ij
kl − δilδ

j
k)x̂

kx̂l, quantum groups
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Introduction

Let us choose canonical relations. Can be represented as

[xi ⋆, xj] = iθij ,

with Weyl-Moyal ⋆-product

f ⋆ g (x) = e
i
2Θ

ij∂x
i ∂

y
j f(x) g(y)

∣

∣

∣

y→x
.

⇒ non-local product

– Typeset by FoilTEX – 4



Introduction

NC scalar φ4

S =

∫

d4x

(

1

2
∂µφ∂µφ+

m2

2
φ2 +

λ

4!
φ ⋆ φ ⋆ φ ⋆ φ

)

Feynman rules:

• propagator G(p) = 1
p2+m2

• vertex function Γ(p1, . . . , p4) = λδ(4)(p1 + p2 + p3 + p4)e
−i

∑
i<j piΘpj
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Introduction

2-point tadpole

Π(Λ, p) ∝
∫

d4k
2 + cos kp̃

k2 +m2
= ΠUV (Λ) + ΠIR(Λ, p)

with the IR-divergent non-planar part

ΠIR ∼ 1

p̃2

p̃µ = Θµνpν;

not yet a problem:
∫

d4p φ̃(p) 1
p̃2
φ̃(−p)

but higher loop insertions yields:
∫

d4p φ̃(p) 1
(p̃2)n

φ̃(−p)

UV/IR mixing destroys renormalizability.
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Introduction
2 different strategies to cure UV/IR mixing:

1 - Adding an oscillator potential (Grosse, Wulkenhaar 03, 05):

S =

∫

dDx

(

1

2
φ ⋆ [x̃ν, [x̃

ν, φ]⋆]⋆ +
Ω2

2
φ ⋆ {x̃ν, {x̃ν, φ}⋆}⋆

+
µ2

2
φ ⋆ φ+

λ

4!
φ ⋆ φ ⋆ φ ⋆ φ

)

(x) ,

where x̃ν = θ−1
ναx

α and i∂µf = [x̃µ, f ]⋆

2 - Adding a non-local term (Gurau, Magnen, Rivasseau, Tanasa 08):

Snl =

∫

d4p
a

2
φ(p)

1

p̃2
φ(−p)
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Introduction
Properties of the oscillator model:

• Langmann-Szabo duality

• no UV/IR mixing due to oscillator term; propagator given by the Mehler
kernel - IR damping implemented

KM(p, q) =
ω3

8π2

∫

∞

0

dα

sinh2α
e−

ω
4 (p−q)2 coth α

2−
ω
4 (p+q)2 tanh α

2

• theory perturbatively renormalisable, vanishing β function (Rivasseau et al.

2006)

• Oscillator term can be interpreted as coupling of the scalar field to the
curvature of a NC background (Buric, MW 08)
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Introduction

• Moreover, there are hints that this model can be constructed non-
perturbatively, at least at the self-dual point Ω = 1 (Grosse, Wulkenhaar

2012).

They obtain a non-linear equation for the function G alone, at λ 6= 0.

Then, two- and four-point functions can be expressed entirely in terms
of G.

• Minkowski space: Rank 2, i.e. commutative time (Grosse, MW 2012)

Analytic continuation of the 1-loop contributions

Fixed point, i.e. βλ = 0, as in Euclidean case with full rank
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Remark on localization

Grosse, Lechner 2007:
Consider free NC scalar fields on NC Minkowski space. Some localisation is
indeed present:

[ΦW (x), ΦW̃ (y)] = 0 ,

if the wedges (W + x) spacelike to (W̃ + y)

W0 := {ΛW1 : Λ ∈ L} ,

where W1 is the reference wedge

W1 := {x ∈ R
4 : x1 > |x0|} .
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Induced NC gauge theory

gauge invariant action

S =

∫

dDx

(

1

2
φ ⋆ [X̃ν, [X̃

ν, φ]⋆]⋆ +
Ω2

2
φ ⋆ {X̃ν, {X̃ν, φ}⋆}⋆

+
µ2

2
φ ⋆ φ+

λ

4!
φ ⋆ φ ⋆ φ ⋆ φ

)

(x) ,

where X̃µ = x̃µ +Aµ are covariant coordinates, and

φ 7→ u∗ ⋆ φ ⋆ u ,

Aµ 7→ iu∗ ⋆ ∂µu+ u∗ ⋆ Aµ ⋆ u ,

X̃µ 7→ u∗ ⋆ X̃µ ⋆ u .
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Induced gauge theory

heat kernel expansion

Γǫ
1l[φ] = −1

2

∫

∞

ǫ

dt

t
Tr

(

e−tH − e−tH0
)

.

where we use the effective potential

δ2S

δφ2
≡ H =

2

θ
H0 + V

H0 field independent; field dependent terms contained in V .
The method is not manifestly gauge invariant, contributions from different
orders need to add up to a gauge invariant result.
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Induced NC gauge theory

The action contains an oscillator term

Ω2

2
φ ⋆ {X̃ν, {X̃ν, φ}⋆}⋆ .

This term is crucial, it alters the free theory.

Therefore, we expand around the free action −∆+ Ω2x̃2 rather than −∆.
Seeley-de Witt coefficients cannot be used!! (e.g. Vassilevich 04)

Tre−tH ≃
∑

n

t
n−4
2

∫

M

d4x
√
g an(x,H)
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Induced NC gauge theory

Induced gauge action (de Goursac, Wallet, Wulkenhaar 07; Grosse, MW 07)

S =

∫

d4x

{

3

θ
(1− ρ2)(µ̃2 − ρ2)(X̃ν ⋆ X̃

ν − x̃2)

+
3

2
(1− ρ2)2

(

(X̃µ ⋆ X̃µ)
⋆2 − (x̃2)2

)

− ρ4

4
FµνFµν

}

,

where Fµν = −i[x̃µ, Aν]⋆ + i[x̃ν, Aµ]⋆ − i[Aµ, Aν]⋆

X̃µ = x̃µ +Aµ, ρ = 1−Ω2

1+Ω2 , µ̃
2 = m2θ

1+Ω2

– Typeset by FoilTEX – 14



Induced NC gauge theory

• Ω → 0 (ρ → 1): usual NCYM

• Ω → 1 (ρ → 0): obtain interesting matrix models

• non-trivial vacuum
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Induced NC gauge theory

• For 1-loop calculation introduce an x-dependent gauge fixing in order to
eliminate terms linear in A:

Sgf =

∫

d4xs(−ic̄ ⋆ f − α

2
c̄ ⋆ B)

with
f = x̃µAµ + βx̃2 + γ

α = 1
2, β = α

2g , γ = κα
2g

• 1-loop calculation, additional counter terms arise, also terms linear in A
again

x̃2x̃µAµ , x̃µAµ , (x̃µAµ)
2
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Curved gauge model

Truncated Heisenberg algebra:

[µx̂1, µx̂2] = iǫ(1− µ̄x̂3) ,

[µx̂1, µ̄x̂3] = iǫ(µx̂2µ̄x̂3 − µ̄x̂3µx̂2) ,

[µx̂2, µ̄x̂3] = −iǫ(µx̂1µ̄x̂3 − µ̄x̂3µx̂1) ,

limit µ̄ → 0 leads to 2D Heisenberg algebra

This algebra has non-vanishing curvature, computed using frame formalism
of J. Madore and M. Buric.
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We are interested in the 2-dimensional limit, x̂3 → 0, where the curvature
survives.

S =

∫

d2x

(

1

2
∂µφ∂

µφ+
M2

2
φ2 +

ξ

2
Rφ2 +

λ

4!
φ⋆4

)

where R = 15µ2

2 − 8µ4(x2 + y2).
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Curved gauge model

Differential calculus remains 3-dimensional (as e.g. for the fuzzy sphere)
{A1, A2, A3} → {A1, A2, φ}.

Action proposed by Buric, Grosse, Madore 10

S =

∫

d2x
(

(1− α2)F ∗2
12 − 2(1− α2)µF12 ⋆ φ+ (5− α2)µ2φ2

+4iαF12 ⋆ φ
⋆2 + (Diφ)

2 − α2{pi +Ai
⋆, φ}2

)
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Curved gauge model

• 1-loop calculations leads to (logarithmic) IR divergences only (Buric,

Dimitrijevic, Radovanovic, MW 2012):

∫

d2φ ,

∫

d2xx̃µ ⋆ Aµ

∫

d2xAµ ⋆ Aµ ,

∫

d2xφ ⋆ φ ,

∫

d2x{x̃µ
⋆, Aµ} ⋆ φ

• no UV divergences
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Aspects of gravity

gl(x) ⋆ f(x) ⋆ g
−1
l (x) = f(x+ l) ,

with

gl = e
−ilkθ−1

kj
xj

⋆
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Aspects of gravity

Emergent gravity (Steinacker et al. 2008/09, Yang 2008/09)

Reinterpretation of UV/IR mixing in terms of gravity.

Starting point

S = Tr
1

2
gab[X

a,Φ][Xb,Φ] ,

for n× n matrices with [Xa, Xb] = iθab(X)

In the semiclassical limit, this can be written as

S ∼
∫

d4x

√

|Gµν|Gµν∂µφ∂νφ ,

with Gµν = θµαθνβgαβ and [Xµ,Φ] ∼ iθµν(x)∂νφ.
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Aspects of gravity

• Expand around Weyl-Moyal vacuum

Xa = Y a − θ̄abAa ,

where [Y a, Y b] = iθ̄ab = const.

Therefore e.g.

iθab(x) = iθ̄ab − iθ̄acθ̄bdFcd

• compute 1-loop effective action using Seeley-de Witt coefficients and
express the effective coupling in terms of the field strength
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• second approach: compute 1-loop effective action for NC U(1) gauge
theory by calculating Feynman graphs explicitly

⇒ both approaches coincide

– Typeset by FoilTEX – 24



Concluding remark

• Similar to the scalar case, overcome 1-loop order and find a
renormalization scheme to all orders

algebraic renormalization

multiscale analysis
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Questions

• How can one extract the gravity degrees of freedom from NC U(1) gauge
theory?

• Is a better localization than on wedges possible in NC field theory?
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