Framework for precision calculations in the NMSSM

Lisa Zeune

Tools, Stockholm

June 21, 2012

Based on work in collaboration with:

- R. Benbrik, M. Gomez Bock, S. Heinemeyer,
- O. Stål, G. Weiglein

Motivation

- Precise theory predictions in models beyond the SM needed
 - Test model predictions
 - Constrain model parameters
- Requires framework for loop-calculations and numerical studies
- First results using framework for the Next-to-Minimal Supersymmetric SM

Outline

- NMSSM
- Introduction to computational framework
- Higgs decays
 - Study of $h \to \gamma \gamma$
 - Comparison to experimental results

W-boson mass

- Theoretical prediction for M_W
- Comparison to prediction for W-mass in the MSSM and SM
- Impact of LHC results on M_W

- Two complex Higgs doublets H₁, H₂ and one complex scalar singlet S
- NMSSM superpotential

$$W^{\text{NMSSM}} = (\text{Yukawa terms}) + \lambda \hat{S} \hat{H}_2 \cdot \hat{H}_1 + \frac{1}{3} \kappa \hat{S}^3$$

Soft breaking terms

$$V_{\text{soft}}^{\text{NMSSM}} = V_{\text{soft}}^{\text{MSSM}} + m_S^2 |S|^2 + \lambda A_\lambda S H_2 \cdot H_1 + \frac{1}{3} \kappa A_\kappa S^3$$

Motivation for the NMSSM: Solves µ problem of the MSSM

$$W_{(2)} = \mu \hat{H}_2 \hat{H}_1 \to \lambda \hat{S} \hat{H}_2 \hat{H}_1$$

 $\rightarrow \mu_{\text{eff}} = \lambda v_s$ naturally of the EW scale

The NMSSM Higgs sector

Spontaneous symmetry breaking

$$H_{1} = \begin{pmatrix} v_{1} + \frac{1}{\sqrt{2}} (\phi_{1} - i\chi_{1}) \\ -\phi_{1}^{-} \end{pmatrix}, \quad H_{2} = \begin{pmatrix} \phi_{2}^{+} \\ v_{2} + \frac{1}{\sqrt{2}} (\phi_{2} + i\chi_{2}) \end{pmatrix}$$
$$S = v_{s} + \frac{1}{\sqrt{2}} (\phi_{s} + i\chi_{s}).$$

• Extended Higgs sector:

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = U^H \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_s \end{pmatrix}, \ \begin{pmatrix} a_1 \\ a_2 \\ G \end{pmatrix} = U^A \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_s \end{pmatrix}, \ \begin{pmatrix} H^{\pm} \\ G^{\pm} \end{pmatrix} = U^A \begin{pmatrix} \phi_1^{\pm} \\ \phi_2^{\pm} \end{pmatrix}$$

3 CP-even Higgs

2 CP-odd Higgs

charged Higgs

 The Chargino sector and the Sfermion sector are unchanged with respect to the MSSM

The NMSSM

Neutralino sector:

Superpartner of Higgs singlet $\tilde{S} \rightarrow 5^{\text{th}}$ neutralino

• Neutralino mass matrix in basis $(\tilde{B}, \tilde{W}^0, \tilde{H}^0_1, \tilde{H}^0_2, \tilde{S})$

$$\mathrm{M}_{ ilde{\chi}^0} = \left(egin{array}{cccccc} M_1 & 0 & -M_Z s_W ceta & M_Z s_W seta & 0 \ 0 & M_2 & M_Z c_W ceta & -M_Z c_W seta & 0 \ -M_Z s_W ceta & M_Z c_W ceta & 0 & -\mu & -\lambda v_2 \ M_Z s_W seta & -M_Z c_W seta & -\mu & 0 & -\lambda v_1 \ 0 & 0 & -\lambda v_2 & -\lambda v_1 & 2K\mu \end{array}
ight)$$

• MSSM limit:

$$\lambda \to 0, \ \kappa \to 0, \quad K = \frac{\kappa}{\lambda} = ext{constant}$$

- Doublet couplings become MSSM-like
- Couplings of the singlet vanish

Framework for 'easy' loop calculations in NMSSM

- Framework we are using: FeynArts/FormCalc T. Hahn (Package involves model-files for SM, MSSM, 2HDM)
- We implemented NMSSM model file
- Generated with the use of **SARAH** F. Staub
- **SARAH** output optimized:
 - Using FormCalc standard notation
 - Applying unitarity relations
 - \rightarrow Improving the speed of calculations
 - → Achieving analytical cancellation of UV divergencies
- Supplemented with a code for numerical evaluation of calculated observables

- Analytic FormCalc results can be exported to Fortran code
- Evaluation of loop-integrals with LoopTools M. Perez-Victoria
- Calculation of Higgs and sparticle masses:
 - Choice at the moment between tree-level or masses from
 NMSSMTools U. Ellwanger, C. Hugonie
- Restrictions on the NMSSM parameter space can be imposed
 - Constraints implemented in NMSSMTools accessible (e.g. theoretical constraints, flavour constraints)
 - LEP, Tevatron and the LHC Higgs search limits can be checked with HiggsBounds
 P. Bechtle, O. Brein, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein and K. Williams

- Consistency check
 - Model file checked against second independent implementation using FeynRules N. D. Christensen, C. Duhr, B. Fuks
- Calculations in MSSM limit checked
- Comparison of several tree-level processes with NMSSMTools results
- Extensive check of processes appearing at 1-loop level
 - Many 1 \rightarrow 2 and 2 \rightarrow 2 processes evaluated and checked for UV-finiteness

Excess in di-photon channel

- Largest excess observed in the di-photon channel
 - by Atlas at 126.5 GeV with a local significance of 2.8σ
 - by CMS at 124 GeV with a local significance of 3.1σ
- γγ rate above and WW rate slightly below SM prediction
 - Statistical fluctuation?
 - Sign of physics beyond the SM?

Higgs decay into two photons

- Calculation of the one-loop induced process $h_{1,2}
 ightarrow \gamma\gamma$
- Rate compared to SM:

Blue: Allowed by Higgs constraints Black: Allowed also by flavour constraints and (g-2)

- Sizable enhancenment of $R_{\gamma\gamma}$ possible over the whole mass range

Heavy Higgs case

• Additional light CP-even Higgs, could be below LEP limit

• Enhancement of $R_{\gamma\gamma}$ possible in the mass range 120-145 GeV

Both h_1 and h_2 at 125 GeV interpretations (with enhanced $\gamma\gamma$ rate) possible in the NMSSM

Higgs decay into WW

- Strong correlation between $R_{\gamma\gamma}$ and R_{WW}
 - $h_{1,2}
 ightarrow \gamma \gamma$ dominated by W-boson loops
- But a slight simultaneous suppression of WW and enhancement of γγ is possible

Mechanism to enhance $R_{\gamma\gamma}$

- Enhancement of $R_{\gamma\gamma}$ possible if H₁ component of h₁ vanishes
- Reduced h₁bb coupling in the NMSSM $\propto U_{11}^H$
- $R_{\gamma\gamma}$ enhanced by a strong suppression of $h \rightarrow bb$ via doublet – singlet mixing
- Genuine feature of the NMSSM

- Electroweak precision observables $M_W, \Gamma_Z, \sin \Theta_W^{eff}...$
- Highly sensitive to quantum effects of 'New physics'
- New experimental values from Tevatron
 - World average:

 $M_W^{exp} = 80.385 \pm 0.015 \,\,{
m GeV}$

Tevatron Electroweak Working Group, April '12

- Further improvement may be possible by LHC and LC
- To test and constrain a model: Precise theoretical calculation for the W-boson mass needed Our work:
 - W-boson calculation in the MSSM with complex parameters and in the NMSSM

Determination of the W-boson mass

 Comparison of muon decay in SM and Fermi model gives:

$$\frac{G_F}{\sqrt{2}} = \frac{e^2}{8s_W^2 M_W^2} \left(1 + \Delta r(M_W, M_Z, m_t, ..., X)\right)$$

• X model dependent!

Δr – Calculation:

- Stand-alone one-loop calculation in SM, MSSM and NMSSM (general model, complex phases, CKM mixing)
- Incorporation of all known SM and SUSY higher order corrections

$$\Delta r^{(N)MSSM} = \Delta r^{SM} + \Delta r^{SUSY} \longrightarrow \begin{array}{c} \text{Easily extendable} \\ \text{to new models} \end{array}$$

Most exact MW prediction in MSSM and NMSSM

 ν_{μ}

 \mathcal{V}_{e}

Mw in the MSSM

Green: MSSM region Blue: Overlap region MSSM/SM

- LHC excludes SM Higgs with 127 < MH < 600 GeV
 - → No SM-only region anymore
- Direct mass limits and HiggsBounds constraints applied
- Sizable SUSY contributions from Sfermions, Higgs, Charginos and Neutralinos
- Largest contributions from Stop/Sbottom sector

- Additional one-loop diagrams have been calculated
 - Containing NMSSM Higgs bosons

Containing the additional Neutralino

W-boson mass in the NMSSM

- Mw prediction for NMSSM points with:
 - Light CP-even Higgs around 125 GeV

- SM prediction for W-boson mass too low
- MW prediction close to experimental value (within 1σ band)

W-boson mass in the NMSSM

- MW prediction for NMSSM points with:
 - Heavy CP-even Higgs around 125 GeV

- MW in good agreement with experimental measurement
- Improved exp. accuracy → Sensitivity to SUSY effects

Light Higgs case:

- SUSY contributions around 30 MeV
- Dominant contributions from
 - → Charginos/Neutralinos: 11 MeV
 - → Stops/Sbottoms: 8 MeV
 - → Sleptons: 6 MeV
- Mainly MSSM contributions
- How large are pure NMSSM-type effects?

NMSSM contribution

- Comparison to MSSM limit
- Higgs sector:
 - Light Higgs could give large contributions
 - But strongly constrained by Higgs searches
 - In allowed region Higgs contributions only few MeV
- Neutralino sector:
 - Contributions can be sizable

- New framework facilitating loop calculations in the NMSSM
 - NMSSM model file and Fortran driver for FeynArts/FormCalc
- Two applications:

$\textbf{H} \rightarrow \textbf{\gamma} \textbf{\gamma} \text{ decay}$

• For both h_1 and h_2 we find a possible enhancement of the $H \rightarrow \gamma \gamma$ rate in the interesting mass region 120-130 GeV

W - boson mass in the NMSSM

- Large SUSY contributions possible
- Genuine NMSSM effect rather small

Plan for the future

Use this framework to include Higgs results into an NMSSM extension of FeynHiggs

Backup

Ryy in the MSSM

- 40% enhancement of the width possible
 - Due to contributions from light staus Carena, Gori, Shah, Wagner
- Enhancement of $R\gamma\gamma$ due to suppression of $h \rightarrow bb$
 - hbb coupling suppressed if $lpha_{
 m eff}pprox 0\,$ or $\,\Delta_b\,$ large
- Also heavy Higgs in the mass range 120 130 GeV with an enhanced Rγγ possible in the MSSM

NMSSM Scan ranges

Parameter	Minimum	Maximum	
$A_t = A_b = A_\tau$	-2400	2400	GeV
μ	150	250	GeV
M_{H^+}	500	1000	GeV
aneta	2.6	6	
λ	0.5	0.7	
K	0.3	0.5	
A_{κ}	-100	-5	GeV

• Total width in the NMSSM calculated as $\Gamma_{tot}(h_i) = \frac{1}{m_{h_i}} \operatorname{Im}(\Sigma_{h_i}(m_{h_i}^2)) + \Gamma(h_i \to WW^{(*)}) + \Gamma(h_i \to \gamma\gamma) + \Gamma(h_i \to gg)$

• $\sigma(gg \to h_i)$ approximated by $\Gamma(h_i \to gg) \to$ $R_X^{h_i} \simeq = \frac{\Gamma(h_i \to gg) \times \Gamma(h_i \to X) \times \Gamma_{\text{tot}}(H_S M)}{\Gamma(H_S M \to gg) \times \Gamma(H_S M \to X) \times \Gamma_{\text{tot}}(h_i)}$

Lisa Zeune | Framework for precision calculations in the NMSSM | Tools 2012 | Page 26

MSSM Higgs at 125 and impact of stop/sbottom limits

- Both MSSM interpretations of a Higgs at 125 GeV give MW prediction in good agreement with experimental value
- Even if stops are heavy: Sizable SUSY contributions possible

Lisa Zeune | Framework for precision calculations in the NMSSM | Tools 2012 | Page 27

MW measurement at Tevatron and LHC challenge

W-boson mass measurements: Tevatron versus LEP2

Slides from Daniel Froidevaux, Rencontres de Blois 2012

Measurement of m_w at the Tevatron: beyond the legacy of LEP!

D0: W to ev (4+1 fb ⁻¹)	CDF: W to ev (2.2 fb ⁻¹)	CDF: W to µv (2.2 fb ⁻¹)
55k Z to ee	16k Z to ee (!!)	60k Ζ to μμ
1.7M W (ΙηΙ < 1.05!!)	0.5M W	0.6M W
δm _w (stat) = 13 MeV	δm _w (stat) = 13 MeV	δm _w (stat) = 13 MeV
δm _w (syst) = 22 MeV	δm _w (syst) = 18 MeV	δm _w (stat) = 16 MeV
Combine with 1 fb ⁻¹ result	Combine J/ ψ &Y to $\mu\mu$ with m _z from LEP!!	
δm _w (tot) = 23 MeV	δm _w (tot) = 19 MeV	

· Can more than double statistics with full runll dataset

• Current incompressible systematic is 10 MeV from PDFs (not worked on yet to reduce this using Tevatron data)

- · Hope to reach 10-15 MeV ultimately per experiment
- → challenge for LHC will be at the 5 MeV level

NMSSM Higgs sector contribution to MW

- A light NMSSM Higgs with a non vanishing doublet-component gives large contribution to MW
- But these scenarios are strongly constraint by Higgs search results
 → In allowed region NMSSM Higgs contributions only few MeV

MW in the SM

$$\Delta r^{SM} = \Delta r^{(\alpha)} + \Delta r^{(\alpha\alpha_s)} + \Delta r^{(\alpha\alpha_s^2)} + \Delta r^{(\alpha^2)}_{ferm} + \Delta r^{(\alpha^2)}_{bos} + \Delta r^{(G^2_\mu\alpha_s m_t^4)} + \Delta r^{(G^3_\mu m_t^6)} + \Delta r^{(G_\mu m_t^2 \alpha_s^3)}$$

SUSY higher order corrections

Supersymmetric two-loop contributions

- Irreducible supersymmetric two-loop contributions
 - SUSY QCD corrections of $\mathcal{O}(\alpha \alpha_s)$:

(S)quark loops with gluon and gluino exchange [Djouadi et. al '98]

□ Two-loop Yukawa contributions $\mathcal{O}(\alpha_t^2), \mathcal{O}(\alpha_t \alpha_b), \mathcal{O}(\alpha_b^2)$:

(S)quark loops with Higgs and Higgsino exchange

[Haestier, Heinemeyer, Stoeckinger, Weiglein '05]

- Leading reducible two-loop corrections [Consoli, Hollik, Jegenlehner '89]
 - Complete Δr^{MSSM} agrees with previous result [Heinemeyer, Hollik, Stöckiger, Weber, Weiglein '06]

Sfermion sector

- > $\mathcal{O}(\alpha \alpha_s)$ contributions up to 15 MeV (\gtrsim exp. accuracy at LHC and ILC)
- > Can enter with both signs
- > Important for a precise M_W prediction!