

SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM

Werner Porod and Florian Staub

Tools 2012 Stockholm, 19. June 2012

Outline

- Introduction
- 2 Calculations performed by SPheno
- 3 Models: MSSM and beyond
- 4 Summary

Introduction

- The first version of SPheno has been published 2003
- From the beginning written in Fortran 95
- Optimized for a fast calculation of the MSSM mass spectrum neglecting flavor mixing and CP violation
- ullet Routines for SUSY decays and SUSY production at e^+e^- already included

Introduction

- The first version of SPheno has been published 2003
- From the beginning written in Fortran 95
- Optimized for a fast calculation of the MSSM mass spectrum neglecting flavor mixing and CP violation
- ullet Routines for SUSY decays and SUSY production at e^+e^- already included

SPheno 3

SPheno 3 provides many new features: possibility of CP phases, flavor mixing, calculation of low-energy observables and models beyond the MSSM. It can be downloaded from

http://projects.hepforge.org/spheno/

Calculation of the mass spectrum

The SUSY masses in the MSSM as well as in extensions are calculated with a high precision

Mass spectrum calculation

- 2-loop RGEs including all CP phases and full flavor structure are used
- All thresholds of SUSY particles at EW scale taken into account
- The 1-loop corrections to all SUSY masses include the dependence on the external momenta ('t Hooft gauge, \overline{DR} scheme)
- Complete 1-loop corrections to the Higgs masses and dominant 2-loop corrections $\mathcal{O}(\alpha_S^2, Y_i^2 \alpha_S, Y_i^2 Y_j^2)$, $i, j = t, b, \tau$

Mixing between CP even and odd Higgs fields not yet implemented.

Scale dependence

Variation of Q gives impression of theoretical uncertainty:

- Charginos, neutralinos and sleptons: few per-mile
- Squarks: roughly factor 2 larger
- Gluino: up to 2 per-cent
- Higgs: 1-2 per-cent

Decays of SUSY particle

For all the decays the complete flavor and CP structure is taken into account

Sparticle decays

- All two-body decay modes of all SUSY particles are calcualted at tree-level
- In addition, 1-loop decays are included
 - $\tilde{\chi}_i^0 \to \tilde{\chi}_j^0 \gamma$
 - $\tilde{g} \rightarrow \tilde{\chi}_i^0 g$
- Three body decays of all SUSY fermions in fermionic final states calculated
- Three body decays of stops are included

General agreement with SDECAY and WHIZARD

Routines for 3-body scalar decays exists and are tested

Higgs decays

Also for Higgs decays the CP phases and possible flavor mixing is included

Higgs decays

- All two body decays at tree level but in quarks
- The two body decays in quarks include gluonic 1-loop corrections
- 1-loop induced decays $\phi \to gg$ and $\phi \to \gamma\gamma$ $(\phi = h, H, A^0)$
- Possible decays in a real and a virtual gauge boson are added $(h \to ZZ^*/W^+W^{-,*}/W^-W^{+,*})$
- Mostly agreement with other codes
- For $\phi \to gg$ QCD corrections are missing which are included e.g. in FeynHiggs, HDECAY or HFOLD

Low-energy observables

(semi-) hadronic observables

- Radiative decays: $BR(b \rightarrow s\gamma)$
- bottom decays: $BR(b \to s \mu^+ \mu^-)$, $BR(b \to s \sum_i \nu_i \nu_i)$
- B-meson decays: $BR(B_d^0 \to \mu^+\mu^-)$, $BR(B_s^0 \to \mu^+\mu^-)$, $BR(B_u \to \tau^+\nu)$
- ullet B-mixing: $\Delta M_{B^0_s}$ and $\Delta M_{B^0_d}$

Low-energy observables

(semi-) hadronic observables

- Radiative decays: $BR(b \rightarrow s\gamma)$
- bottom decays: $BR(b \to s\mu^+\mu^-)$, $BR(b \to s\sum_i \nu_i \nu_i)$
- B-meson decays: $BR(B_d^0 \to \mu^+\mu^-)$, $BR(B_s^0 \to \mu^+\mu^-)$, $BR(B_u \to \tau^+\nu)$
- ullet B-mixing: $\Delta M_{B^0_s}$ and $\Delta M_{B^0_d}$

leptonic observables

- electric dipole moments (EDMs) of the leptons
- two body decays $\mu \to e \gamma$, $\tau \to e \gamma$ and $\tau \to \mu \gamma$
- three body decays $\mu \to e e^+ e^-$, $\tau \to e e^+ e^-$ and $\tau \to \mu \mu^+ \mu^-$
- Z decays, $Z \to e^{\pm} \mu^{\mp}$, $Z \to e^{\pm} \tau^{\mp}$ and $Z \to \mu^{\pm} \tau^{\mp}$

Comparison with other flavor codes

Other public code for the calculation of flavor observabales:

SUSY_FLAVOUR , SusyBSG , SuperIso , Micromegas

Good agreement

In general there is a good agreement between SPheno and the other tools

→ detailed comparison by L. Hofer and W. Porod in preparation

In- and Output

- SPheno fully supports SLHA 2 conventions for the MSSM and bilinear RpV
- Many features can be swichted on/off or adjusted with the LesHouches input file (numerical precision, loop level, ...)
- If necessary, SLHA 1 can be used for the output
- For seesaw models the proposals of the 2011 LH working group are used
- Support of FLHA for the output of the low energy observables partly included and going to be extended
- Additional blocks for HiggsBounds are included
 - ightarrow Spectrum file can directly be used to check Higgs constraints

MSSM

Several GUT boundary conditions in case of the MSSM can be used

GUT Boundary conditions

- CMSSM (mSugra): m_0 , $M_{1/2}$, $\tan \beta$, $\operatorname{sign}(\mu)$, A_0
- NUHM: CMSSM + $m_{H_d}^2$, $m_{H_u}^2$ or μ , m_A
- GMSB: Λ , M_{Mess} , an eta, $ext{sign}(\mu)$, n_5 , c_g o Gravitino included in decays
- AMBS: m_0 , $M_{3/2}$, $\tan \beta$, $\operatorname{sign}(\mu)$
- In case of CMSSM also other GUT parameters can defined independently using EXTPAR
- In addition, also a SUSY scale input is possible.

Seesaw models

Seesaw I: up to three generations of gauge singlets

$$W^I = Y_\nu \, \hat{N} \, \bar{5}_M \, 5_H + \frac{1}{2} \hat{N} M_N \hat{N} \; .$$

Seesaw models

Seesaw I: up to three generations of gauge singlets

$$W^I = Y_\nu \, \hat{N} \, \bar{5}_M \, 5_H + \frac{1}{2} \hat{N} M_N \hat{N} \; .$$

Seesaw II: either two complete SU(5) 15-plets or only triplets

$$W^{II} = \frac{1}{\sqrt{2}} \left(Y_T \,\hat{l} \,\hat{T} \,\hat{l} + Y_S \,\hat{d} \,\hat{S} \,\hat{d} \right) + Y_Z \,\hat{d} \,\hat{Z} \,\hat{l} + \frac{1}{\sqrt{2}} \lambda_1 \hat{H}_d \hat{T} \hat{H}_d + \frac{1}{\sqrt{2}} \lambda_2 \hat{H}_u \hat{T} \hat{H}_u + M_T \hat{T} \hat{T} + M_Z \hat{Z} \hat{Z} + M_S \hat{S} \hat{S} .$$

Seesaw models

Seesaw I: up to three generations of gauge singlets

$$W^I = Y_\nu \, \hat{N} \, \bar{5}_M \, 5_H + \frac{1}{2} \hat{N} M_N \hat{N} \; .$$

Seesaw II: either two complete SU(5) 15-plets or only triplets

$$W^{II} = \frac{1}{\sqrt{2}} \left(Y_T \,\hat{l} \,\hat{T} \,\hat{l} + Y_S \,\hat{d} \,\hat{S} \,\hat{d} \right) + Y_Z \,\hat{d} \,\hat{Z} \,\hat{l} + \frac{1}{\sqrt{2}} \lambda_1 \hat{H}_d \hat{T} \hat{H}_d$$
$$+ \frac{1}{\sqrt{2}} \lambda_2 \hat{H}_u \hat{T} \hat{H}_u + M_T \hat{T} \hat{T} + M_Z \hat{Z} \hat{Z} + M_S \hat{S} \hat{S} .$$

Seesaw III: up to three generations of SU(5) 24-plets

$$W^{III} = +\hat{H}_{u}(\hat{W}_{M}Y_{N} - \sqrt{\frac{3}{10}}\hat{B}_{M}Y_{B})\hat{L} + \hat{H}_{u}\hat{\bar{X}}_{M}Y_{X}\hat{D}^{c} + \frac{1}{2}(\hat{B}_{M}M_{B}\hat{B}_{M} + \hat{G}_{M}M_{G}\hat{G}_{M} + \hat{W}_{M}M_{W}\hat{W}_{M}) + \hat{X}_{M}M_{X}\hat{\bar{X}}_{M}$$

More about seesaw

Boundary conditions

The GUT conditions for the seesaw parameters are chosen to be SU(5) invariant:

• Seesaw I: M_R , Y_{ν}

• Seesaw II: M_{15} , Y_{15} , λ_1 , λ_2

• Seesaw III: M_{24} , Y_{24}

More about seesaw

Boundary conditions

The GUT conditions for the seesaw parameters are chosen to be SU(5) invariant:

• Seesaw I: M_R , Y_{ν}

• Seesaw II: M_{15} , Y_{15} , λ_1 , λ_2

• Seesaw III: M_{24} , Y_{24}

Each generation of heavy multiplets is integrated out at a separate threshold scale:

- 1-loop boundary conditions for gauge couplings and gauginos included
- ullet Contributions to Weinberg operator $\kappa(H_uL)(H_uL)$ calculated

More about seesaw

Boundary conditions

The GUT conditions for the seesaw parameters are chosen to be SU(5) invariant:

• Seesaw I: M_R , Y_{ν}

• Seesaw II: M_{15} , Y_{15} , λ_1 , λ_2

• Seesaw III: M_{24} , Y_{24}

Each generation of heavy multiplets is integrated out at a separate threshold scale:

- 1-loop boundary conditions for gauge couplings and gauginos included
- ullet Contributions to Weinberg operator $\kappa(H_uL)(H_uL)$ calculated

For the Weinberg operator also 2-loop RGEs are used and the neutrino masses are calculated at 1-loop

Masses in Seesaw I – III

[Esteves, Hirsch, Porod, Romao, FS, 1010.6000]

$$M_h, m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_1^+}$$

$$M_A, m_{\chi_2^0}, m_{\tilde{\chi}_2^+}$$

full lines: type-I, dashed lines: type-II, dash-dotted lines: type-III

${\rm Br}(\mu \to e \gamma)$ in Seesaw I – III

[Esteves, Hirsch, Porod, Romao, FS, 1010.6000]

red lines: type-I, blue lines: type-II, magenta lines: type-III

R-parity violation

Bilinear RpV

$$W = W_{MSSM} + \epsilon_i \hat{l}_i \hat{H}_u$$

R-parity violation

Bilinear RpV

$$W = W_{MSSM} + \epsilon_i \hat{l}_i \hat{H}_u$$

- ullet Soft-breaking terms B_{ϵ_i} and Vacuum expectation values v_L^i of sneutrinos included
- All possible mixings are taken into account:
 - 7×7 neutralino/neutrino matrix
 - \bullet 5 imes 5 chargino/lepton matrix
 - 8×8 charged Higgs/slepton matrix
 - two 5×5 Higgs/sneutrino matrices
- ullet Routines for decay modes and e^+e^- scattering adjusted accordingly

Implementation of other models

A large variety of other models can be implemented by the user using the Mathematica package SARAH:

SPheno and SARAH

- Model is defined in a short form in SARAH
- SARAH calculates the RGEs, vertices, mass matrices and expressions for loop corrections
- This information is used by SARAH to generates Fortran code
- The code can be compiled together with SPheno
- ightarrow Creates a precision spectrum generator for a new model with nearly the same features as SPheno provides for the MSSM

Implementation of other models

A large variety of other models can be implemented by the user using the Mathematica package SARAH:

SPheno and SARAH

- Model is defined in a short form in SARAH
- SARAH calculates the RGEs, vertices, mass matrices and expressions for loop corrections
- This information is used by SARAH to generates Fortran code
- The code can be compiled together with SPheno
- \rightarrow Creates a precision spectrum generator for a new model with nearly the same features as SPheno provides for the MSSM

See also the talk about SARAH from Monday

Tested SPheno modules

So far SPheno modules by SARAH have been intensively tested for several models:

- MSSM: Cross checked with SPheno and other spectrum calculators (1109.5147)
- Seesaw I-III: cross checked with SPheno implementations (1109.5147)
- NMSSM: Cross checked with NMSSM-Tools (1007.4049)
- Lepton number violating, trilinear RpV (1204.5925)
- $SU(2)_L \times SU(2)_R$ with two intermediated scales (1011.0348,1109.6478)
- Model with additional B-L gauge group (1112.4600)
- Model with $U(1)_R \times U(1)_{B-L}$ gauge sector (1110.3037)

Other models (e.g, linear seesaw, inverse seesaw, E6SSM,...) are used and tested at the moment.

$U(1)_R \times U(1)_{B-L}$ - The model

[Hirsch, Malinsky, Porod, Reichert, FS, 1110.3037], [Hirsch, Porod, Reichert, FS, 1206.XXXX]

• Gauge sector: Motivated by SO(10):

$$SU(3)_c \times SU(2)_L \times U(1)_R \times U(1)_{B-L}$$

 $SU(2)_L \times U(1)_R \times U(1)_{B-L} \rightarrow U(1)_{em}$ at the TeV scale

• Particle content: 3 Generations of SO(10) 16-plets and ...

ſ	Superfield	$SU(3)_c \times SU(2)_L \times U(1)_R \times U(1)_{B-L}$
ſ	\hat{H}_u	$(1,2,+\frac{1}{2},0)$
	\hat{H}_d	$(1,2,-\frac{1}{2},0)$
	$\hat{\chi}_R$	$(1, 1, +\frac{1}{2}, -\frac{1}{2})$
	$\hat{\bar{\chi}}_R$	$(1,1,-\frac{1}{2},+\frac{1}{2})$

Superpotential

$$W = Y_u \hat{u}^c \hat{Q} \hat{H}_u - Y_d \hat{d}^c \hat{Q} \hat{H}_d + Y_\nu \hat{\nu}^c \hat{L} \hat{H}_u - Y_e \hat{e}^c \hat{L} \hat{H}_d + \mu \hat{H}_u \hat{H}_d$$
$$- \mu_R \hat{\bar{\chi}}_R \hat{\chi}_R + Y_s \hat{\nu}^c \hat{\chi}_R \hat{S}$$

• Mass eigenstates: 4 CP even Higgs, 2 CP odd Higgs, 9 neutrinos, 9 sneutrinos, γ , Z, Z'. Charged sector MSSM-like.

$U(1)_R \times U(1)_{B-L}$ - Results for Higgs sector I

[Hirsch, Malinsky, Porod, Reichert, FS, 1110.3037], [Hirsch, Porod, Reichert, FS, 1206.XXXX]

masses of the two lightest scalars

 $SU(2)_L$ doublet fraction $R_{i1}^2 + R_{i2}^2$

Shaded blue area excluded by Z^\prime searches

Mass spectrum based on parameters: $M_{1/2}=800$ GeV, $m_0=250$ GeV, $A_0=0$, $\tan\beta=10$.

Higgs Sector: $M_{A_R}=2.35$ TeV, $\mu_R=800$ GeV $\tan\beta_R=0.94$

$U(1)_R \times U(1)_{B-L}$ - Results for Higgs sector I

[Hirsch, Malinsky, Porod, Reichert, FS, 1110.3037], [Hirsch, Porod, Reichert, FS, 1206.XXXX]

masses of the two lightest scalars

 $SU(2)_L$ doublet fraction $R_{i1}^2 + R_{i2}^2$

Increased MSSM Higgs mass

Near and below the level crossing the mass of the MSSM-like Higgs is significantly increased

$U(1)_R \times U(1)_{B-L}$ - Results for Higgs sector II

 $m_0=0.25$ TeV, $A_0=$ 0, $M_{1/2}=0.8$ TeV, $\tan\beta=10$, $v_R=6$ TeV, $M_{A_R}=2.35$ TeV

$U(1)_R \times U(1)_{B-L}$ - Results for Higgs sector II

$$m_0=0.25$$
 TeV, $A_0=0$, $M_{1/2}=0.8$ TeV, $\tan\beta=10$, $v_R=6$ TeV, $M_{A_R}=2.35$ TeV

• Only small ranges for $\tan \beta_R$ possible (D-flatness) because of contributions to sfermion masses due to D-terms:

$$D \simeq \pm g_{BL}^2 (v_{\chi_R}^2 - v_{\bar{\chi}_R}^2) + g_R^2 (v_u^2 - v_d^2)$$

$U(1)_R \times U(1)_{B-L}$ - Results for Higgs sector II

$$m_0=0.25$$
 TeV, $A_0=0,\,M_{1/2}=0.8$ TeV, $\tan\beta=10,\,v_R=6$ TeV, $M_{A_R}=2.35$ TeV

• Only small ranges for $\tan \beta_R$ possible (D-flatness) because of contributions to sfermion masses due to D-terms:

$$D \simeq \pm g_{BL}^2 (v_{\chi_B}^2 - v_{\bar{\chi}_B}^2) + g_R^2 (v_u^2 - v_d^2)$$

- Higgs masses of 125 GeV can easily be reached
- Very light, right-handed Higgs pass all constraints

$$U(1)_R \times U(1)_{B-L}$$
 - Results for LFV

Large neutrino Yukawa couplings are possible but constraint by lepton flavor observables

New features in contrast to high scale seesaw

- It can be ${\rm Br}(\mu\to 3e)>{\rm Br}(\mu\to e\gamma)$ for a heavy spectrum because of Z^0 penguins
- W⁺ loop with heavy neutrinos can be very important

Summary

- SPheno 3.1 extends the possibilities to study the MSSM by including of CP phases and flavor mixing
- A set of important flavor observables is calculated and in good agreement with other codes
- Seesaw models and bilinear RpV fully implemented
- Other models beyond the MSSM can easily be added by using SARAH