
Near-conformal BSM theories on 
the lattice
Kieran Holland

University of the Pacific

Mass 2012, Nordita, June 13 2012

in collaboration with Julius Kuti, Zoltan Fodor, Daniel Nogradi, Chris Schroeder, Chik Him Wong



summary

lattice role for BSM

what can you do on the lattice?

limitations of simulations

latest SU(3) results

future focus

Kieran Holland Nordita June 13 2012



lattice role for BSM

strong dynamics for EWSB: fix naturalness, triviality

near-conformal (“walking”): fix FCNC/mass generation tension?

new vista: reps beyond SU(3) fundamental, less tension with expt

interesting models likely non-perturbative: lattice

can lattice show if any given gauge theory conformal or not?

would be sad if we (lattice) were not exploring possibility of new 
strong gauge theories in Nature
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conformal window

(Walking) technicolor

(Sannino)

Fundamental: gray
2 antisym: blue
2 sym: red
adjoint: green

each TC fermion rep has window in 
flavor-color space where theory conformal

perturbative: find IR fixed point of beta-fn

amend: strong IRFP could 
break chiral symmetry

near-conformal just below window

Nf

Nc

fundamental

antisymmetric

symmetric
adjoint

Dietrich,Sannino,Tuominen

lattice task: where exactly are the windows?
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lattice
discretize space-time: regulator, lattice spacing

fermions on sites, gauge fields on links U

gauge-invariance exact

lose symmetry: translation, rotation, chirality
recovered in continuum limit (zero spacing)

〈B〉 =

∫
DU{Det(D[U ])}Nf exp(−Sg[U ]) B[U ]

∫
DU →

∑
typical U

non-perturbative
no expansion

Monte Carlo simulation

observable

can fix

a

fundamental Lagrangian e.g. QCD: quarks, gluons
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limitations of simulations

1. generation of U configurations: numerical algorithm
slow due to non-local fermion determinant

2. discrete lattice action - artifacts, difference from continuum
improve lattice action: reduce artifacts (good) reduce speed (bad)

3. always simulate at finite volume, typically at finite mass
control: continuum limit at fixed large physical volume,
then take chiral limit - always saturate available computers

4. larger Nf or unusual representation - even harder than QCD!
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cost

USQCD: central US allocation of hep-lat computational resources

BSM efforts: tens of millions of computer core-hours per year

1 core-year approx. 8,000 core hours

similar resources as large-scale QCD efforts (MILC/HPQCD)

since 2007, many lattice groups worldwide work on BSM 

lattice community not trying to do BSM on the cheap! 
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lattice observables

particle spectrum

chiral condensate, Dirac operator eigenvalues

running of renormalized gauge coupling (various schemes)

detection of finite-temperature phase transitions

S parameter

RG flow in bare coupling space

Kieran Holland Nordita June 13 2012



which theories

Kieran Holland

my talk:
(a) 2-flavor SU(3) 2-index symmetric rep (sextet/NMWT)
(b) 12-flavor SU(3) fundamental rep

why?
(a) sextet attractive for BSM: 3 Goldstones match W&Z, few d.o.f.
(b) much work on fundamental rep for various number flavors

next talk: Francis Bursa on SU(2) reps
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particle spectrum

expectations:

if chirally broken

M
2

π
= a1m+ a2m

2

Fπ = F + b1m

Mnuc = Mnuc,0 + c1m

〈Ψ̄Ψ〉 = d0 + d1m+ d2m
2

if conformal
Mhadron = chadronm

1/(1+γ)

〈Ψ̄Ψ〉 = ccondm
(3−γ)/(1+γ) + c1m

notation ym = 1 + γ

polynomials chiPT motivated
but not sensitive to logs
+ large Nf issues in chiPT

universal critical exponent
no mass gap in chiral limit

anomalous dimension
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2-flavor SU(3) sextet Fodor et al. arXiv:1205.1878

simulation details:
staggered fermion discretization - fast, remnant chiral symmetry
but flavor symmetry broken
partial fix - improved fermion and gauge lattice action

bare parameter choice: set fermion mass and lattice spacing

largest lattice size 48
3
× 96 lightest fermion mass 1/(mπa) ≈ 7

several lattice volumes, fermion masses, 2 lattice spacings

each simulation: 1-2 thousand gauge configurations - expensive
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results: spectrum

Kieran Holland

Twelve fundamental and two sextet fermion flavors J. Kuti and C. Schroeder
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Figure 8: Polynomial fits from the analytic mass dependence of the chiral Lagrangian without logarithmic loop correc-
tions are shown for the Goldstone pion, Fπ , Mρ , and the 0++ state with mass MHiggs. The dashed line in the Goldstone
pion plot shows the leading linear contribution. F0 on the top right plot sets the eletroweak vev scale. The disconnected
diagram, which can shift the final value of the Higgs mass from M0 = 6.06 ·F0 on the bottom right plot, is not included
in the calculation.

would require further testing at weaker gauge couplings and using partially quenched staggered
chiral perturbation theory. Our runs at β = 3.25 should provide the data for this analysis.

3.4 Conformal hypothesis and the critical exponent γ

It is important to compare the polynomial fits with conformal scaling behavior for small mass
deformations m. In the infinite volume limit the masses of composite particles and Fπ are expected
to scale as M ∼ m

1/1+γ with the same exponent γ in all channels. When the four lowest fermion
mass values closest to the critical surface are fitted separately with the leading conformal form,
we get good χ2 fits but very different γ exponents, which is not consistent with mass deformed
conformal behavior. The conflicting fits are illustrated side by side in Figure 9 for the Goldstone
pion and the Fπ decay constant. Fitting to the pion mass requires γ = 1.091(34) while the Fπ fit is
forcing γ = 2.13(18). In the combined fit they compromise with γ = 1.47(26) and the unacceptable
χ2/dof = 31.1. It is very difficult to see how this conflict, also in disagreement with [46], could
be resolved within the conformal hypothesis. From the tests we were able to perform, the sextet
model is consistent with χSB and inconsistent with conformal symmetry. It will require further
investigations to show that subleading effects cannot alter this conclusion. We will consider com-

11

chiPT-like fit good description of data
chiral limit of pion decay constant non-zero
sets physical scale of theory

aF0 = 0.0281(5)
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Figure 8: Polynomial fits from the analytic mass dependence of the chiral Lagrangian without logarithmic loop correc-
tions are shown for the Goldstone pion, Fπ , Mρ , and the 0++ state with mass MHiggs. The dashed line in the Goldstone
pion plot shows the leading linear contribution. F0 on the top right plot sets the eletroweak vev scale. The disconnected
diagram, which can shift the final value of the Higgs mass from M0 = 6.06 ·F0 on the bottom right plot, is not included
in the calculation.

would require further testing at weaker gauge couplings and using partially quenched staggered
chiral perturbation theory. Our runs at β = 3.25 should provide the data for this analysis.

3.4 Conformal hypothesis and the critical exponent γ

It is important to compare the polynomial fits with conformal scaling behavior for small mass
deformations m. In the infinite volume limit the masses of composite particles and Fπ are expected
to scale as M ∼ m

1/1+γ with the same exponent γ in all channels. When the four lowest fermion
mass values closest to the critical surface are fitted separately with the leading conformal form,
we get good χ2 fits but very different γ exponents, which is not consistent with mass deformed
conformal behavior. The conflicting fits are illustrated side by side in Figure 9 for the Goldstone
pion and the Fπ decay constant. Fitting to the pion mass requires γ = 1.091(34) while the Fπ fit is
forcing γ = 2.13(18). In the combined fit they compromise with γ = 1.47(26) and the unacceptable
χ2/dof = 31.1. It is very difficult to see how this conflict, also in disagreement with [46], could
be resolved within the conformal hypothesis. From the tests we were able to perform, the sextet
model is consistent with χSB and inconsistent with conformal symmetry. It will require further
investigations to show that subleading effects cannot alter this conclusion. We will consider com-
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again, chiPT-like fits to data are good
non-zero mass gaps in chiral limit

Mρ

F0
∼ 7,

Mhiggs

F0
∼ 6ratios
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results: chiral condensate

Twelve fundamental and two sextet fermion flavors J. Kuti and C. Schroeder

theory, or in Lüscher’s non-perturbative finite volume analysis [73]. This does not require to reach
the 1-loop chiral log limit as long as the pion is the lightest state dominating the finite volume
corrections. The infinite volume limits of Mπ , Fπ , and �ψψ� for m = 0.003 at β = 3.2 were
determined self-consistently from the fitting procedure. Similar fits were applied to other composite
states. Based on the fits at m = 0.003, one percent accuracy of the infinite volume limit is reached
at MπL = 5. In the fermion mass range m ≥ 0.004 the condition MπL > 5 is reached at L = 32.
Although it will require high precision runs to test, we do not expect more than one percent residual
volume dependence in the 323 × 64 runs for m ≥ 0.004. Based on these observations, we will
present chiral and conformal analyses with extrapolated infinite volume scaling behavior from the
323 ×64 runs for m ≥ 0.004.

3.2 The chiral condensate and χSB

We follow the analysis of the chiral condensate as described for the Nf = 12 model. The �ψψ�
condensate data were fitted with a third order polynomial of the form c0 + c1m+ c2m3 while the
condensate with derivative subtraction was fitted without the linear term. Both independently mea-
sured quantities have to converge to the same chiral limit. The chiral condensate and its subtracted
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Figure 7: For any given m ≥ 0.004 the largest volume condensate data is used since the finite volume analysis remains
incomplete. The two plots are discussed in the text.

derivative version are shown in Figure 7 with a consistent strong χSB signal in the chiral limit.

3.3 Spectrum and the χSB hypothesis

Based on the analytic fermion mass dependence of the chiral Lagrangian, and using the lowest
fermion masses in the m = 0.003−0.008 range, good polynomial fits were obtained without loga-
rithmic loop corrections as shown in Figure 8 for four select states. The plotted 243×48 data points
for m ≥ 0.004 agree with the fitted data from the 323 ×64 runs indicating the infinite volume limit
within the accuracy of the data. Small corrections, if required, should not effect the conclusions.
Although we could fit Mπ and Fπ with the continuum chiral logarithms included, the separate sets
of F and B from the fits are not quite self-consistent. A combined staggered SU(2) chiral perturba-
tion theory fit is required for simultaneous fits of Mπ and Fπ with a consistent pair of fundamental
chiral parameters F and B. The explicit cutoff dependent corrections to the F and B parameters

10

Kieran Holland

chiral condensate also fit reasonably, with non-zero chiral limit
2nd independent measurement of subtracted condensate
two methods have consistent values in chiral limit - very good
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volume-dependence

Kieran Holland

Twelve fundamental and two sextet fermion flavors J. Kuti and C. Schroeder

with [45], conformal FSS based analysis of the spectrum and related sum rules on moments of the

correlators we have been developing are deep renormalization group based probes of the conformal

phase. As explained in our forthcoming publication [70], we remain skeptical about the fitting

procedure followed in [24] with efforts to rescue the conformal interpretation. The issues are not

settled and ultimately will be decided in more definitive analyses.

3. Two fermion flavors in the sextet SU(3) color representation

This model has been studied recently by three BSM groups [20, 44, 46, 48]. Our findings

are different from results based on the Schrödinger functional [44, 46] and compatible with the

finite temperature phase transition in [48]. The disagreement with Schrödinger functional results is

particularly significant based on the lower bound γ ≥ 1 we find adopting the conformal hypothesis.

This can be important in BSM applications and remains in contrast with the small exponent γ <

0.45 published in [46].

We have new simulation results at β = 3.2 in the fermion mass range m = 0.003−0.010 on

24
3 × 48 and 32

3 × 64 lattices. Five fermion masses at m = 0.003,0.004,0.005,0.006,0.008 are

used in most fits. For further checks on finite volume dependence, a very large and expensive

48
3 ×96 run was added recently at m = 0.003 to follow the strategy of finite volume extrapolation

at fixed fermion mass m. We also have new preliminary simulation results at β = 3.25 in the mass

range m = 0.004−0.008 on 24
3 × 48 and 32

3 × 64 lattices. Based on the chiral and conformal

analyses of the model, continued runs at existing run parameters and new runs are planned at both

couplings to further probe the conformal FSS hypothesis in the sextet model following the strategy

we presented for the Nf = 12 model.

3.1 Finite volume extrapolation
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Figure 6: Finite volume dependence at the lowest fermion mass for β = 3.2. The form of �g1(λ ,η) is a complicated

infinite sum which contains Bessel functions and requires numerical evaluation [71]. Since we are not in the chiral log

regime, the prefactor of the �g1(λ ,η) function was replaced by a fitted coefficient. The leading term of the function

�g1(λ ,η) is a special exponential Bessel function K1(λ ) which dominates in the simulation range.

Based on the χSB hypothesis, infinite volume extrapolations of the Goldstone pion, Fπ , and

�ψψ� are shown in Figure 6 where �g1(λ ,η) describes the finite volume corrections with λ = Mπ ·L
and aspect ratio η = T/L from the lightest pion [72]. The fitting procedure approximates the

leading treatment of the pion which wraps around the finite volume, whether in chiral perturbation

9

volume-dependence of spectrum significant

MπL > 5 to be within 1% of infinite-volume value
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alternative:conformal?
Twelve fundamental and two sextet fermion flavors J. Kuti and C. Schroeder
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Figure 9: The left side plot and the middle plot represent separate conformal fits. The right side plot display the Mπ
residuals from the global fit. It is unacceptable for Fπ as well. The global fit is trying to choose a γ value between γ ∼ 1
in the Goldstone pion channel and γ ∼ 2 in the Fπ fit resulting in a very high χ2 value. All fits are at β = 3.2.

prehensive conformal FSS tests which do not rely on infinite volume extrapolation in the scaling
fits. This is at a preliminary stage requiring new runs and systematic analysis.

If χSB of the sextet model is further confirmed in the massless fermion limit, its relevance for
the realization of the composite Higgs mechanism is transparent. The large anomalous exponent
γ of our conformal fits will be interpreted in this case as an important ingredient of the model in
the χSB phase. Importantly, the model has the perfect match of three Goldstone pions to provide
the longitudinal components of the W± and Z bosons. To understand the slowly changing gauge
coupling close to the conformal window without infrared fixed point will require high precision
methods to calculate the renormalized gauge coupling and its beta function. This will demand
extended and more reliable Schrödinger functional analysis or alternate methods which are being
developed. The difference between the large exponent γ reported here and the low value of γ
published earlier [46] is significant and will require clarifications. Conformal FSS tests very close
to the critical surface will provide further independent checks of our results.
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fit data to power-like conformal behavior

anomalous dimension

fit states together: bad

Mhad = chadm
1/1+γ γ

individual fits reasonable; combined fit unacceptable

γ = 1.091± 0.0034 γ = 2.13± 0.18

γ = 1.47± 0.26

large
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other 2-flavor sextet work

EW phase transition in sextet Higgs model  - early universe

16

sextet model (Kogut-Sinclair)

potential implications in early cosmology

finite temperature 
EW phase transition?

SU(3) gauge theory with sextet fermions

Figure 4: The chiral susceptibility on Nt = 8 and Nt = 12 lattices from [6] and [7] respectively.

to a given Nt = 1/(aT ), β is used to change the temperature and the continuum limit is achieved

via Nt →∞. A thermal phase transition corresponds to a critical βc(Nt) coupling for each Nt which

for large Nt scales according to the continuum β -function; in particular βc → ∞. A bulk phase

transition on the other hand is characterized by critical βc(Nt) couplings which do not scale and for

large Nt approach a fixed value.

As always with any thermodynamics study finite volume effects needs to be under control and

the quark mass needs to be small enough. Since staggered fermions are used the lattice spacing

also needs to be small enough in order to avoid dangerous taste violation effects especially because

the low energy dynamics is very sensitive to the number of massless flavors.

The critical coupling βc was determined in [5] from the peak of the chiral susceptibility on

Nt = 4 lattices for two values of the quark mass. The location of the peaks appear to be mass

independent and is around βc ≈ 6.3, see left panel of figure 3. The Nt = 6 result at the same two

quark masses also from [5] is shown on the right panel of figure 3. The critical coupling moved

to βc ≈ 6.6. On even finer lattices [6], at Nt = 8, the critical coupling moved further, to around

βc = 6.7 with additional small quark masses added, see left panel of figure 4. Again the quark

mass dependence is quite small. Finally the Nt = 12 lattices are preliminary [7] at the moment but

seem to indicate further increase in βc, see the right panel of figure 4. If indeed βc scales with Nt

correctly the located phase transitions would correspond to a continuum phase transition indicating

chirally broken symmetry at zero temperature.

A priori it is not clear how large Nt needs to be in order to be in the scaling regime. Most

importantly the thin link action suffers from possible large taste violation. Unfortunately, these

effects are not quantified yet. One could in principle reduce them by using smeared actions. In any

case a continuum extrapolation is necessary.
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direction via lattice spacing (bare coupling)
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consistent with chiSB at zero temperature
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Figure 2: The step scaling function from [4] using fat links for the fermion action only (blue) and fat links
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Figure 3: The chiral susceptibility on Nt = 4 and Nt = 6 lattices from [5].

structure with various types of phase transitions and phase boundaries most of which however hap-
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The thermodynamic study of the Nf = 2 sextet model was initiated in [5]. Using unimproved
rooted staggered fermions in the fixed−Nt approach the Polyakov loop and the chiral condensate
was measured at various quark masses. In the fixed−Nt approach one lattice spacing corresponds
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Figure 1: The step scaling function calculated in [2] (left) with thin links indicating an infrared fixed point.

Using fat links for the fermion action (right) the fixed point disappears [3]. See the text for more details.

The calculatation of the running coupling in the Schroedinger functional scheme using Wilson

fermions was started in [2] for the Nf = 2 sextet model. Using an unimproved (think link) Wilson

action a zero of the step scaling function was measured at one lattice spacing corresponding to

4
4 → 8

4
, see left panel of figure 1. Two more lattice spacings corresponding to 6

4 → 12
4

and

8
4→ 16

4
were then added [3] using an improved (fat link) Wilson action, see right panel of figure

1. The fixed point disappeared with a possible interpretation that the rougher lattice spacing result

was an artifact. The gauge action was the same in the two calculations. However changing not only

the fermion action but the gauge action as well to use fat links resulted in a step scaling function

with a zero for the lattice spacing corresponding to 6
4→ 12

4
, see figure 2. A possible interpretation

is that the absence of the zero previously was the artifact after all [4].

Changing the action and/or the lattice spacing led to results so far which show that discretiza-

tion effects are still there. Clearly a careful continuum extrapolation is necessary with a given

action in order to decide which finite lattice spacing result is the one prevailing all the way to the

continuum. A good check of the procedure would be the reproduction of the 2-loop β -function for

small renormalized coupling, carefully extrapolated to the continuum.

As a cross-check it would be helpful if the running coupling would be calculated in a different

non-perturbatively well-defined scheme. Reproducing the 2-loop β -function for small coupling is

always a good test for any scheme. For larger coupling two schemes can disagree on the value of

the coupling but if a fixed point exist for one scheme a fixed point should exist for the other scheme

too.

2.2 Thermodynamics

Another way of addressing the infrared behavior of the model is studying it at finite tempera-

ture. If chiral symmetry is broken at T = 0 one expects a chiral symmetry restoration temperature

Tc. If the model is conformal in the infrared then as far as chiral symmetry is concerned there

is no phase transition at all for T > 0. Lattice investigations of thermodynamical properties are

complicated by the fact that the lattice system at finite lattice spacing typically has a rich phase

4
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The calculatation of the running coupling in the Schroedinger functional scheme using Wilson

fermions was started in [2] for the Nf = 2 sextet model. Using an unimproved (think link) Wilson

action a zero of the step scaling function was measured at one lattice spacing corresponding to
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4

and
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were then added [3] using an improved (fat link) Wilson action, see right panel of figure

1. The fixed point disappeared with a possible interpretation that the rougher lattice spacing result

was an artifact. The gauge action was the same in the two calculations. However changing not only

the fermion action but the gauge action as well to use fat links resulted in a step scaling function

with a zero for the lattice spacing corresponding to 6
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, see figure 2. A possible interpretation

is that the absence of the zero previously was the artifact after all [4].

Changing the action and/or the lattice spacing led to results so far which show that discretiza-

tion effects are still there. Clearly a careful continuum extrapolation is necessary with a given

action in order to decide which finite lattice spacing result is the one prevailing all the way to the

continuum. A good check of the procedure would be the reproduction of the 2-loop β -function for

small renormalized coupling, carefully extrapolated to the continuum.

As a cross-check it would be helpful if the running coupling would be calculated in a different

non-perturbatively well-defined scheme. Reproducing the 2-loop β -function for small coupling is

always a good test for any scheme. For larger coupling two schemes can disagree on the value of

the coupling but if a fixed point exist for one scheme a fixed point should exist for the other scheme

too.

2.2 Thermodynamics

Another way of addressing the infrared behavior of the model is studying it at finite tempera-

ture. If chiral symmetry is broken at T = 0 one expects a chiral symmetry restoration temperature

Tc. If the model is conformal in the infrared then as far as chiral symmetry is concerned there

is no phase transition at all for T > 0. Lattice investigations of thermodynamical properties are

complicated by the fact that the lattice system at finite lattice spacing typically has a rich phase

4

(DeGrand et al.)

IRFP re-appearing? 

- No inconsistency with        in Nf=2 SU(3) sextet model 

- We find inconsistency with conformal symmetry in all tests 

- The effective anomalous dimension is inconsistent and large γ is in 1-2 range 

- Kogut and Sinclair: looking for finite temperature        phase transition

!SB

!SB

Kieran Holland

DeGrand et al.,arXiv:1201.0935,1006.0707

define renormalized coupling g2(L)

particular scheme: Schrodinger Functional

at scale L

change lattice size e.g. L to 2L
discrete beta function

vary lattice action and operator

IR fixed point existence varies with method

also find small value γ < 0.45

Nordita June 13 2012



12-flavor SU(3) fund Fodor et al. arXiv:1205.1878,1104.3124

simulation details:
staggered fermion discretization - fast, remnant chiral symmetry
but flavor symmetry broken
partial fix - improved fermion and gauge lattice action

bare parameter choice: set fermion mass and lattice spacing

largest lattice size 48
3
× 96 lightest fermion mass

several lattice volumes, fermion masses, 1 lattice spacing

each simulation: 1-2 thousand gauge configurations - expensive

Kieran Holland

1/(mπa) ≈ 6

Nordita June 13 2012



spectrum

Table 1: Measured masses and Fπ with the three largest volumes in the m = 0.01− 0.02 range and the largest volume for m > 0.02. Asterisks indicate Ls = 32 when
different from the spatial volume of the second column. Mpnuc is the mass of the nucleon’s parity partner.

mass lattice Mπ Fπ Mi5 Msc Mi j Mnuc Mpnuc MHiggs Mrho MA1

0.0100 483 × 96 0.1647(23) 0.02474(49) 0.1650(13) 0.16437(95) 0.1657(10) 0.3066(69) 0.3051(81) 0.247(13) 0.1992(28) 0.2569(83)
0.0100 403 × 80 0.1819(28) 0.02382(39) 0.1842(29) 0.1835(35) 0.1844(44) 0.3553(93) 0.352(16) 0.2143(81) 0.2166(73) 0.237(12)
0.0100 323 × 64 0.2195(35) 0.02234(46) 0.2171(31) 0.194(10) 0.195(11) 0.386(16) 0.387(22) 0.2162(53) 0.239(19) 0.246(21)
0.0150 483 × 96 0.2140(14) 0.03153(51) 0.2167(16) 0.2165(17) 0.2185(18) 0.3902(67) 0.3881(84) 0.296(13) 0.2506(33) 0.3245(87)
0.0150 403 × 80 0.2200(23) 0.03167(53) 0.2210(21) 0.2218(30) 0.2239(34) 0.4095(84) 0.411(10) 0.291(11) 0.2574(36) 0.327(14)
0.0150 323 × 64 0.2322(34) 0.03168(64) 0.2319(11) 0.2318(17) 0.2341(16) 0.4387(60) 0.4333(84) 0.2847(33) 0.2699(41) 0.324(16)
0.0200 403 × 80 0.2615(17) 0.03934(56) 0.2736(22)∗ 0.2651(8) 0.2766(42)∗ 0.4673(62) 0.4699(66) 0.330(17) 0.3049(28) 0.361(32)
0.0250 323 × 64 0.3098(18) 0.04762(53) 0.3179(17) 0.3183(18) 0.3231(20) 0.563(12) 0.563(14) 0.4137(88) 0.3683(19) 0.469(14)
0.0275 243 × 48 0.3348(29) 0.05218(85) 0.3430(18) 0.3425(25) 0.3471(26) 0.609(21) 0.628(23) 0.460(16) 0.4050(69) 0.523(34)
0.0300 243 × 48 0.3576(15) 0.0561(11) 0.3578(15)∗ 0.3726(29) 0.3790(40) 0.640(12)∗ 0.633(16)∗ 0.470(15) 0.4160(26)∗ 0.5222(90)∗

0.0325 243 × 48 0.3699(66) 0.0588(15) 0.3790(34) 0.3814(62) 0.3879(62) 0.680(18) 0.686(26) 0.500(21) 0.4481(39) 0.548(31)
0.0350 243 × 48 0.3927(17) 0.06422(57) 0.4065(18) 0.4074(19) 0.4149(26) 0.703(28) 0.741(20) 0.538(30) 0.4725(64) 0.669(65)
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Figure 1: The Goldstone pion and Fπ from chiral symmetry breaking are shown with the fitting procedure described in the text. A representative finite volume fit is
also shown. The infinite volume limit of Mπ was used in fits to Fπ and other composite hadron states, like the nucleon.
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Figure 2: The non-Goldstone pion spectrum is shown. The composite left plot displays the i5Pion data and fit together with fits to the Goldstone pion (magenta),
i5Pion (solid blue), scPion (black), and ijPion (cyan).

The MπLs > 4 lore for volume independence is clearly not ap-
plicable in the model. We need MπLs > 8 to reach volume in-
dependence. The infinite volume limits of Mπ and Fπ for each
m were determined self-consistently from the fitting procedure
using Eqs. (1,2) based on a set of Ls values with representative
fit results shown in Figures 1 and 4. In the higher m range fi-
nite volume effects were hard to detect and even for the lowest
m values sometimes volume dependence was not detectable for
the largest lattice sizes.

Non-Goldstone pion spectra, quite different from those found
in QCD, are shown in Figure 2 using standard notation. They
are not used in our global analysis. The three states we desig-
nate as i5Pion, ijPion and scPion do not show any noticeable

taste breaking or residual mass in the m → 0 chiral limit. The
scPion is degenerate with the i5Pion and both are somewhat
split from the true Goldstone pion. The ijPion state is further
split as expected but the overall taste breaking is very small
across the four pion states. This is a fairly strong indication
that the coupling constant β = 2.2 where all runs are performed
is close to the continuum limit. A very small residual mass at
m = 0 is not excluded for some non-Goldstone pion states de-
pending on the details of the fitting procedure.

The staggered meson and baryon states and correlators we
use are defined in [61]. For example, what we call the scPion
and the f0 meson are identified in correlator I of Table 1 in [61].
Similarly, the i5Pion is from correlator VII, the ijPion is from

3

Kieran Holland

chiPT-like fits of data reasonable Fpi steep variation with mass
already expected due to large Nf

to actually reach chiPT regime (small corrections) very hard
Nordita June 13 2012
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Figure 4: Nucleon and its parity partner are fitted to the constant plus linear form which are the leading contributions of the chiral Lagrangian. The blue points in
the middle plot are the replotted nucleon data from the left to show the degeneracy of the two states. The plot on the right shows a representative finite volume fit.

Table 2: The chiral condensate �ψψ� and �ψψ� − m · χcon, defined in the text
and directly measured from zero momentum sum rules and independently from
functions of the inverse staggered fermion matrix, are tabulated and used in the
fits of Figure 3.

mass lattice �ψψ� �ψψ� − m · χcon

0.0100 483 × 96 0.134896(47) 0.006305(73)
0.0150 483 × 96 0.200647(31) 0.012685(56)
0.0200 403 × 80 0.266151(72) 0.022069(76)
0.0250 323 × 64 0.33147(10) 0.03462(12)
0.0275 243 × 48 0.36372(40) 0.04133(59)
0.0300 323 × 32 0.396526(84) 0.04974(13)
0.0325 243 × 48 0.42879(33) 0.05781(45)
0.0350 243 × 48 0.46187(27) 0.06807(40)

with higher accuracy and better control on the systematics, the
evidence is quite suggestive for a small non-vanishing chiral
condensate in the chiral limit.

2.3. Composite hadron spectrum in the chiral limit
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Figure 5: The Higgs ( f0) state and its splitting from the scPion state are shown.
The linear fit on the right works well for the Higgs ( f0) state with little change
when a quadratic term is included on the left. The blue scPion data points on
the right and the dashed magenta fit show the fit to the scPion state. The Higgs
will become a resonance in the chiral limit, the missing disconnected part also
contributing, so that Higgs predictions will be challenging in future work.

It is important to investigate the chiral limit of other com-
posite hadron states. They further test the mass splittings be-
tween physical states as the fermion mass m is varied and the
measured hadron masses are subjected to chiral analysis in the
m → 0 limit for important residual mass gaps above the vac-
uum after infinite volume extrapolation. Hadron masses also
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Figure 6: Rho meson and its splitting from the A1 meson are shown. On the
right side the magenta points reproduce the data of the rho meson from the left
together with its linear fit. The fit parameters on the right show the linear fit to
the A1 meson.

provide useful information on parity splits in several channels.
One composite state of great interest is the Higgs particle, if
there is a chiral condensate close to the conformal window. We
will briefly review new results on the nucleon state with its par-
ity partner, the isospin partner of the Higgs ( f0) state, and the
ρ − A1 splitting.

The fermion mass dependence of the nucleon and its parity
partner is shown in Figure 4 with finite volume analysis at one
selected fermion mass m = 0.015. The same finite volume fit
is applied as described earlier for the pion state. The leading
chiral linear term in the fermion mass m extrapolates to a non-
vanishing chiral limit. The parity partner is practically degen-
erate but this is not a surprise. Already with four flavors a near
degeneracy was reported before by the Columbia group [66].

Figure 5 shows the fermion mass dependence of the Higgs
particle without including the disconnected part of the relevant
correlator. Strictly speaking, therefore, the state is the f0 meson
with non-zero isospin. Disconnected contributions in the cor-
relator might shift the Higgs mass, an important issue left for
future clarifications. Both the linear and the quadratic fits are
shown together with the non-Goldstone scPion which is split
down from the Higgs ( f0) state. The two states would be de-
generate in the chiral limit with unbroken symmetry. The Higgs
( f0) state extrapolates to a nonvanishing mass in the chiral limit
with an MH( f0)/F ratio between 10 and 15.

Finally, Figure 6 shows the ρ-meson and its A1 parity partner.
Both states extrapolate to non-vanishing mass in the chiral limit.
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Table 2: The chiral condensate �ψψ� and �ψψ� − m · χcon, defined in the text
and directly measured from zero momentum sum rules and independently from
functions of the inverse staggered fermion matrix, are tabulated and used in the
fits of Figure 3.

mass lattice �ψψ� �ψψ� − m · χcon

0.0100 483 × 96 0.134896(47) 0.006305(73)
0.0150 483 × 96 0.200647(31) 0.012685(56)
0.0200 403 × 80 0.266151(72) 0.022069(76)
0.0250 323 × 64 0.33147(10) 0.03462(12)
0.0275 243 × 48 0.36372(40) 0.04133(59)
0.0300 323 × 32 0.396526(84) 0.04974(13)
0.0325 243 × 48 0.42879(33) 0.05781(45)
0.0350 243 × 48 0.46187(27) 0.06807(40)

with higher accuracy and better control on the systematics, the
evidence is quite suggestive for a small non-vanishing chiral
condensate in the chiral limit.

2.3. Composite hadron spectrum in the chiral limit
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will become a resonance in the chiral limit, the missing disconnected part also
contributing, so that Higgs predictions will be challenging in future work.

It is important to investigate the chiral limit of other com-
posite hadron states. They further test the mass splittings be-
tween physical states as the fermion mass m is varied and the
measured hadron masses are subjected to chiral analysis in the
m → 0 limit for important residual mass gaps above the vac-
uum after infinite volume extrapolation. Hadron masses also

0 0.01 0.02 0.03 0.04
0

0.1

0.2

0.3

0.4

0.5

 m

 M
rh

o

m fit range:  0.01  0.035

2 sum = 13

Mrho = M0 + c1 m

M0=  0.0849 ! 0.0080

c1=  11.18 ! 0.31
2/dof= 2.16

Rho meson linear fit

0 0.01 0.02 0.03 0.04
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 m

 M
A1

m fit range:  0.01  0.035

2 sum = 4.54

MA1 = M0 + c1 m
M0=  0.1196 ! 0.0071
c1=  13.68 ! 0.46

2/dof= 0.76

Rho meson linear fit and A1 meson

Figure 6: Rho meson and its splitting from the A1 meson are shown. On the
right side the magenta points reproduce the data of the rho meson from the left
together with its linear fit. The fit parameters on the right show the linear fit to
the A1 meson.

provide useful information on parity splits in several channels.
One composite state of great interest is the Higgs particle, if
there is a chiral condensate close to the conformal window. We
will briefly review new results on the nucleon state with its par-
ity partner, the isospin partner of the Higgs ( f0) state, and the
ρ − A1 splitting.

The fermion mass dependence of the nucleon and its parity
partner is shown in Figure 4 with finite volume analysis at one
selected fermion mass m = 0.015. The same finite volume fit
is applied as described earlier for the pion state. The leading
chiral linear term in the fermion mass m extrapolates to a non-
vanishing chiral limit. The parity partner is practically degen-
erate but this is not a surprise. Already with four flavors a near
degeneracy was reported before by the Columbia group [66].

Figure 5 shows the fermion mass dependence of the Higgs
particle without including the disconnected part of the relevant
correlator. Strictly speaking, therefore, the state is the f0 meson
with non-zero isospin. Disconnected contributions in the cor-
relator might shift the Higgs mass, an important issue left for
future clarifications. Both the linear and the quadratic fits are
shown together with the non-Goldstone scPion which is split
down from the Higgs ( f0) state. The two states would be de-
generate in the chiral limit with unbroken symmetry. The Higgs
( f0) state extrapolates to a nonvanishing mass in the chiral limit
with an MH( f0)/F ratio between 10 and 15.

Finally, Figure 6 shows the ρ-meson and its A1 parity partner.
Both states extrapolate to non-vanishing mass in the chiral limit.
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Table 2: The chiral condensate �ψψ� and �ψψ� − m · χcon, defined in the text
and directly measured from zero momentum sum rules and independently from
functions of the inverse staggered fermion matrix, are tabulated and used in the
fits of Figure 3.

mass lattice �ψψ� �ψψ� − m · χcon

0.0100 483 × 96 0.134896(47) 0.006305(73)
0.0150 483 × 96 0.200647(31) 0.012685(56)
0.0200 403 × 80 0.266151(72) 0.022069(76)
0.0250 323 × 64 0.33147(10) 0.03462(12)
0.0275 243 × 48 0.36372(40) 0.04133(59)
0.0300 323 × 32 0.396526(84) 0.04974(13)
0.0325 243 × 48 0.42879(33) 0.05781(45)
0.0350 243 × 48 0.46187(27) 0.06807(40)

with higher accuracy and better control on the systematics, the
evidence is quite suggestive for a small non-vanishing chiral
condensate in the chiral limit.
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contributing, so that Higgs predictions will be challenging in future work.

It is important to investigate the chiral limit of other com-
posite hadron states. They further test the mass splittings be-
tween physical states as the fermion mass m is varied and the
measured hadron masses are subjected to chiral analysis in the
m → 0 limit for important residual mass gaps above the vac-
uum after infinite volume extrapolation. Hadron masses also
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provide useful information on parity splits in several channels.
One composite state of great interest is the Higgs particle, if
there is a chiral condensate close to the conformal window. We
will briefly review new results on the nucleon state with its par-
ity partner, the isospin partner of the Higgs ( f0) state, and the
ρ − A1 splitting.

The fermion mass dependence of the nucleon and its parity
partner is shown in Figure 4 with finite volume analysis at one
selected fermion mass m = 0.015. The same finite volume fit
is applied as described earlier for the pion state. The leading
chiral linear term in the fermion mass m extrapolates to a non-
vanishing chiral limit. The parity partner is practically degen-
erate but this is not a surprise. Already with four flavors a near
degeneracy was reported before by the Columbia group [66].

Figure 5 shows the fermion mass dependence of the Higgs
particle without including the disconnected part of the relevant
correlator. Strictly speaking, therefore, the state is the f0 meson
with non-zero isospin. Disconnected contributions in the cor-
relator might shift the Higgs mass, an important issue left for
future clarifications. Both the linear and the quadratic fits are
shown together with the non-Goldstone scPion which is split
down from the Higgs ( f0) state. The two states would be de-
generate in the chiral limit with unbroken symmetry. The Higgs
( f0) state extrapolates to a nonvanishing mass in the chiral limit
with an MH( f0)/F ratio between 10 and 15.

Finally, Figure 6 shows the ρ-meson and its A1 parity partner.
Both states extrapolate to non-vanishing mass in the chiral limit.
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Table 2: The chiral condensate �ψψ� and �ψψ� − m · χcon, defined in the text
and directly measured from zero momentum sum rules and independently from
functions of the inverse staggered fermion matrix, are tabulated and used in the
fits of Figure 3.

mass lattice �ψψ� �ψψ� − m · χcon

0.0100 483 × 96 0.134896(47) 0.006305(73)
0.0150 483 × 96 0.200647(31) 0.012685(56)
0.0200 403 × 80 0.266151(72) 0.022069(76)
0.0250 323 × 64 0.33147(10) 0.03462(12)
0.0275 243 × 48 0.36372(40) 0.04133(59)
0.0300 323 × 32 0.396526(84) 0.04974(13)
0.0325 243 × 48 0.42879(33) 0.05781(45)
0.0350 243 × 48 0.46187(27) 0.06807(40)

with higher accuracy and better control on the systematics, the
evidence is quite suggestive for a small non-vanishing chiral
condensate in the chiral limit.

2.3. Composite hadron spectrum in the chiral limit
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contributing, so that Higgs predictions will be challenging in future work.

It is important to investigate the chiral limit of other com-
posite hadron states. They further test the mass splittings be-
tween physical states as the fermion mass m is varied and the
measured hadron masses are subjected to chiral analysis in the
m → 0 limit for important residual mass gaps above the vac-
uum after infinite volume extrapolation. Hadron masses also
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provide useful information on parity splits in several channels.
One composite state of great interest is the Higgs particle, if
there is a chiral condensate close to the conformal window. We
will briefly review new results on the nucleon state with its par-
ity partner, the isospin partner of the Higgs ( f0) state, and the
ρ − A1 splitting.

The fermion mass dependence of the nucleon and its parity
partner is shown in Figure 4 with finite volume analysis at one
selected fermion mass m = 0.015. The same finite volume fit
is applied as described earlier for the pion state. The leading
chiral linear term in the fermion mass m extrapolates to a non-
vanishing chiral limit. The parity partner is practically degen-
erate but this is not a surprise. Already with four flavors a near
degeneracy was reported before by the Columbia group [66].

Figure 5 shows the fermion mass dependence of the Higgs
particle without including the disconnected part of the relevant
correlator. Strictly speaking, therefore, the state is the f0 meson
with non-zero isospin. Disconnected contributions in the cor-
relator might shift the Higgs mass, an important issue left for
future clarifications. Both the linear and the quadratic fits are
shown together with the non-Goldstone scPion which is split
down from the Higgs ( f0) state. The two states would be de-
generate in the chiral limit with unbroken symmetry. The Higgs
( f0) state extrapolates to a nonvanishing mass in the chiral limit
with an MH( f0)/F ratio between 10 and 15.

Finally, Figure 6 shows the ρ-meson and its A1 parity partner.
Both states extrapolate to non-vanishing mass in the chiral limit.
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Figure 2: The second order polynomial fit to the chiral condensate is shown on the left plot in subtracted form as

explained in [21]. The middle plot is the quadratic fit to �ψψ�−m · χcon directly measured from zero momentum sum

rules and independently from functions of the inverse staggered fermion matrix. The right side plot shows the thermal

history of the subtracted form of the condensate at the lowest fermion mass on the largest lattice.

�ψψ� = 2F2B with the measured low value of F and the value of B from logarithmic fit to the

Goldstone pion. The deficit between the two sides of the GMOR relation is sensitive to the fitting

procedure and uncertainties in the determination of B. Trying to identify chiral logs is beyond the

scope of our simulation range. For independent determination, we studied the subtracted chiral

condensate operator defined with the help of the connected part χcon of the chiral susceptibility χ
as defined in [21]. The removal of the derivative term significantly reduces the dominant linear

part of the �ψψ� condensate. Although the two independent determinations give consistent non-

vanishing results in the chiral limit, we cannot consider the results definitive. The drop of the chiral

limit intercepts after extended runs is noted in comparison with earlier results [21].

2.3 Finite temperature transition

We present some preliminary results from our extended studies of the finite temperature tran-

sition. If the ground state of the model has χSB, a phase transition is expected at some finite

temperature to restore the chiral symmetry in the limit of massless fermions. Based on universality

arguments [69] the transition would be expected to be of first order. This is not entirely clear and

warrants further investigations. On our largest 48
3 ×NT lattices, at fixed m = 0.01 and β = 2.2,

the temperature was varied through an NT sequence while the scatter plot of the Polyakov loop

was monitored along the euclidean time (inverse temperature) direction in each run. The chiral

condensate �ψψ� was also monitored in the runs. As the temperature is increased a clear sudden

transition is observed in the NT = 6−10 region where the Polyakov loop distribution jumps from

the origin to a scatter plot with non-vanishing real part. It would be difficult to reconcile this jump,

as shown in Figure 3, with conformal behavior in the zero temperature bulk phase.

Although we have results for temperature scans at multiple gauge couplings, fermion masses,

and spatial volumes, all consistent with a finite temperature transition, caution is necessary before

firm conclusions can be reached. Confirming the existence of the χSB phase transition will require

the m → 0 limits of �ψψ� and the Polyakov loop distribution. The chiral condensate is a good

order parameter for the transition. The Polyakov loop, like in QCD, could detect deconfinement

in the transition with unsettled interpretation as order parameter. The behavior of the renormalized
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Figure 4: Conformal FSS fits in four different quantum number channels. The fits are performed in each
channel separately. Since the γ values vary considerably from channel to channel, a simultaneous global fit
to the combined channels with the same γ exponent, as required by conformal FSS theory, is bound to fail.

ansatz f (x) = c0 + cαxα for x < xcut (a more general polynomial function in the small x region
is not expected to change the conclusions from the fits). From the fit to the PCAC Goldstone
pion channel the parameter cπ = c1 was determined and used as input in the exponential terms of
the other channels with exp(−cπL). The critical exponent γ was included among the five fitting
parameters, in addition to c0, c1, cexp, and xcut .

The composite particle masses in several quantum number channels can be reasonably fitted
with conformal scaling functions f (x) as shown in Figure 4 but the values of the critical exponent
γ are incompatible across different channels. The required global conformal FSS fit will fail with
a single exponent γ across all quantum numbers. In the fits for Fπ in the PCAC pion channel
we only kept four parameters because the asymptotic form with exponentially small correction
was zero within error. Actually, the data of Fπ did not allow a successful conformal fit with any
shape chosen for its scaling function f (x) which looks very different from the scaling functions of
composite particle masses. The unexpectedly curious behavior of the Fπ data set against conformal
FSS remains unresolved.
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alternative: conformal?Twelve fundamental and two sextet fermion flavors J. Kuti and C. Schroeder
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Figure 4: Conformal FSS fits in four different quantum number channels. The fits are performed in each
channel separately. Since the γ values vary considerably from channel to channel, a simultaneous global fit
to the combined channels with the same γ exponent, as required by conformal FSS theory, is bound to fail.

ansatz f (x) = c0 + cαxα for x < xcut (a more general polynomial function in the small x region
is not expected to change the conclusions from the fits). From the fit to the PCAC Goldstone
pion channel the parameter cπ = c1 was determined and used as input in the exponential terms of
the other channels with exp(−cπL). The critical exponent γ was included among the five fitting
parameters, in addition to c0, c1, cexp, and xcut .

The composite particle masses in several quantum number channels can be reasonably fitted
with conformal scaling functions f (x) as shown in Figure 4 but the values of the critical exponent
γ are incompatible across different channels. The required global conformal FSS fit will fail with
a single exponent γ across all quantum numbers. In the fits for Fπ in the PCAC pion channel
we only kept four parameters because the asymptotic form with exponentially small correction
was zero within error. Actually, the data of Fπ did not allow a successful conformal fit with any
shape chosen for its scaling function f (x) which looks very different from the scaling functions of
composite particle masses. The unexpectedly curious behavior of the Fπ data set against conformal
FSS remains unresolved.
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add more states: situation worse

data appears not to allow
universal value of exponent

conformal description of data 
appears worse than chiSB form

need accurate data to test this
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running coupling
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FIG. 4: Measured values g2(L) versus β, Nf = 12. The interpolating curves shown represent the

best fit to the data, using the functional form of Eq. (25).
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FIG. 5: Step-scaling function Σ(2, u, a/L) at various u, for each of the three steps L/a = 6→ 12,

8→ 16, 10→ 20 used in the Nf = 12 analysis. Note that Σ(2, u, a/L)→ u as the starting coupling

u approaches the fixed point value.
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FIG. 6: Continuum running for Nf = 12. Results shown for running from below the infrared fixed

point (purple triangles) are based on g2(L0) ≡ 1.6. Also shown is continuum backwards running

from above the fixed point (light blue squares), based on g2(L0) ≡ 9.0. Error bars are again purely

statistical, although strongly correlated due to the underlying interpolating functions. Two-loop

and three-loop perturbation theory curves are shown for comparison.

small enough not to trigger a bulk phase transition. Since we use a constant extrapolation,

this procedure can be taken to define, within our errors, a g2(L) at a small but finite a/L.

The step-scaling procedure then leads to the continuum running from above to the fixed

point, also shown in Fig. 6. The statistical-error band is derived as in the approach from

below.

Finally we note that the exponent γ governing the approach to the infrared fixed point

in the SF scheme can also be extracted from the simulation data. Taking the log of Eq. (6),

we see that the quantity log [g2
� − g2(L)] should have a linear dependence on L with slope

−γ near the fixed point. Computing this quantity from our data, running from either above

or below the fixed point, we find γ = 0.13± 0.03, somewhat smaller than the three-loop SF

perturbative estimate of 0.286.
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Appelquist,Fleming,Neil,arXiv:0901.3766

Kieran Holland

renormalized coupling as function of lattice size L g2(L)

run coupling by varying lattice size e.g. L to 2L

repeat at various lattice spacings, find continuum limit a/L → 0

coupling flows to IR fixed point - conformal

constant extrapolation

slow running
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static quark potential Fodor et al. arXiv:1104.3124

Table 3: V(R) tabulated at fermion masses m = 0.010 and m = 0.015 for lattice volume 483 × 96, and at m = 0.020 for lattice volume 403 × 80.
m\R 4 5 6 7 8 9 10 11 12 13 14
0.010 0.20005(49) 0.22686(84) 0.24638(12) 0.26000(28) 0.27059(55) 0.27957(82) 0.2872(10) 0.2933(21) 0.2979(42) 0.30771(31) 0.31250(82)
0.015 0.20439(21) 0.23332(35) 0.25270(39) 0.26737(85) 0.2789(17) 0.2892(28) 0.30214(36) 0.3129(11) 0.3220(31) 0.3289(12) 0.33576(43)
0.020 0.20819(39) 0.2372(16) 0.25961(99) 0.27727(55) 0.29132(74) 0.3040(11) 0.31718(24) 0.32862(31) 0.33973(78) 0.34921(77) 0.3543(55)
m\R 15 16 17 18 19 20 21 22 23 24
0.010 0.31755(43) 0.32186(78) 0.3263(19) 0.3308(23) 0.3339(40) 0.3364(47) 0.3417(27) 0.3453(29) 0.3466(62) 0.3554(25)
0.015 0.34295(46) 0.35050(37) 0.35863(78) 0.36506(45) 0.36928(69) 0.3708(31) 0.3741(55) 0.3817(59) 0.3897(71)
0.020 0.3625(58) 0.3768(24) 0.3939(107) 0.3946(10) 0.4026(13) 0.4085(30)
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Figure 7: V(R) data and fit for m = 0.01 is plotted on the left and comparison with perturbation theory is shown in the middle plot. The right side plot shows the
string tension measured in nucleon mass units at m = 0.01, 0.015, 0.02 and extrapolated to the chiral limit. The finite nucleon mass gap in the chiral limit implies a
finite string tension at m = 0.

The split remains significant for all fermion masses and in the
chiral limit.

2.4. String tension and running coupling from the static force
There are several ways to define a renormalized gauge cou-

pling, for example, the Schrödinger Functional scheme or from
square Wilson loops. We take the renormalized coupling as
defined via the quark-antiquark potential V(R), extracted from
R×T Wilson loops where the time extent T can be large. From
the potential, one defines the force F(R) and coupling αqq(R) as

F(R) =
dV
dR
= CF

αqq(R)
R2 , αqq(R) =

g2
qq(R)
4π
. (5)

The coupling is defined at the scale R of the quark-antiquark
separation, in the infinite-volume limit L → ∞. This is differ-
ent from the scheme using square Wilson loops, where one has
αW (R, L) and one can choose finite R with L → ∞, or finite
L and fixed R/L ratio. In the former case, these schemes are
related via

αqq(R) = αW (R)[1 + 0.31551αW (R) + O(αW (R)2)]. (6)

The β function in the qq scheme is known to 3-loops. For SU(3)
gauge theory with Nf = 12 fundamental flavors, the location of
the infrared fixed point to 3-loop order is α∗qq = 0.3714... This
is about 50% of the scheme-independent 2-loop value of α∗,
indicating that higher order corrections beyond 3-loop might
not be negligible.

A range of lattice spacings, volumes and quark masses are
studied in the running coupling project, we show results for the
largest volume 483 × 96 at β = 2.2 and quark masses m = 0.01
and 0.015 and for the 403 × 80 run at m = 0.02. To improve the

measurement of V(R), we use different levels of APE-smearing
to produce a correlation matrix of Wilson loops, the lowest en-
ergy is extracted using the generalized eigenvalue method. We
also improve the lattice force, which is naively discretized as
F(R + 1/2) = V(R + 1) − V(R). For the Symanzik gauge ac-
tion, the improvement is a relatively small effect, for example
the naive value R + 1/2 = 4.5 is shifted to 4.457866...

In Figure 7 on the left we show the measured V(R) fitted to
the form

V(R) = V0 +
α

R
+ σR. (7)

for m = 0.01. The m = 0.015 and m = 0.02 runs are shown on
the right of Figure 7. For all three masses, the resulting fits are
good, with a clear signal of linear dependence and an effective
string tension σ. The string tension decreases with the quark
mass, its behavior in conjunction with the mass spectrum in the
chiral limit is under investigation and the first result is shown
in the figure. The finite nucleon mass gap in the chiral limit
implies a finite string tension at m = 0.

Table 4: mnuc/
√
σ.

m σ χ2/dof mnuc/
√
σ

0.01 0.002530(81) 17.1/18 6.34(43)
0.015 0.005147(109) 43.6/17 5.50(23)
0.02 0.007189(77) 6.8/14 5.54(19)

The renormalized coupling αqq(R) is a derivative of the po-
tential V(R) and hence more difficult to numerically measure
via simulations. The most accurate comparison between lattice
simulations and perturbation theory is directly of the potential

6
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Figure 7: V(R) data and fit for m = 0.01 is plotted on the left and comparison with perturbation theory is shown in the middle plot. The right side plot shows the
string tension measured in nucleon mass units at m = 0.01, 0.015, 0.02 and extrapolated to the chiral limit. The finite nucleon mass gap in the chiral limit implies a
finite string tension at m = 0.

The split remains significant for all fermion masses and in the
chiral limit.

2.4. String tension and running coupling from the static force
There are several ways to define a renormalized gauge cou-

pling, for example, the Schrödinger Functional scheme or from
square Wilson loops. We take the renormalized coupling as
defined via the quark-antiquark potential V(R), extracted from
R×T Wilson loops where the time extent T can be large. From
the potential, one defines the force F(R) and coupling αqq(R) as

F(R) =
dV
dR
= CF

αqq(R)
R2 , αqq(R) =

g2
qq(R)
4π
. (5)

The coupling is defined at the scale R of the quark-antiquark
separation, in the infinite-volume limit L → ∞. This is differ-
ent from the scheme using square Wilson loops, where one has
αW (R, L) and one can choose finite R with L → ∞, or finite
L and fixed R/L ratio. In the former case, these schemes are
related via

αqq(R) = αW (R)[1 + 0.31551αW (R) + O(αW (R)2)]. (6)

The β function in the qq scheme is known to 3-loops. For SU(3)
gauge theory with Nf = 12 fundamental flavors, the location of
the infrared fixed point to 3-loop order is α∗qq = 0.3714... This
is about 50% of the scheme-independent 2-loop value of α∗,
indicating that higher order corrections beyond 3-loop might
not be negligible.

A range of lattice spacings, volumes and quark masses are
studied in the running coupling project, we show results for the
largest volume 483 × 96 at β = 2.2 and quark masses m = 0.01
and 0.015 and for the 403 × 80 run at m = 0.02. To improve the

measurement of V(R), we use different levels of APE-smearing
to produce a correlation matrix of Wilson loops, the lowest en-
ergy is extracted using the generalized eigenvalue method. We
also improve the lattice force, which is naively discretized as
F(R + 1/2) = V(R + 1) − V(R). For the Symanzik gauge ac-
tion, the improvement is a relatively small effect, for example
the naive value R + 1/2 = 4.5 is shifted to 4.457866...

In Figure 7 on the left we show the measured V(R) fitted to
the form

V(R) = V0 +
α

R
+ σR. (7)

for m = 0.01. The m = 0.015 and m = 0.02 runs are shown on
the right of Figure 7. For all three masses, the resulting fits are
good, with a clear signal of linear dependence and an effective
string tension σ. The string tension decreases with the quark
mass, its behavior in conjunction with the mass spectrum in the
chiral limit is under investigation and the first result is shown
in the figure. The finite nucleon mass gap in the chiral limit
implies a finite string tension at m = 0.

Table 4: mnuc/
√
σ.

m σ χ2/dof mnuc/
√
σ

0.01 0.002530(81) 17.1/18 6.34(43)
0.015 0.005147(109) 43.6/17 5.50(23)
0.02 0.007189(77) 6.8/14 5.54(19)

The renormalized coupling αqq(R) is a derivative of the po-
tential V(R) and hence more difficult to numerically measure
via simulations. The most accurate comparison between lattice
simulations and perturbation theory is directly of the potential
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measure quark potential on same simulations for particle spectrum

potential has confining linear behavior at intermediate separation 

Mnucleon/
√

σ appears non-zero in chiral limit, as does nucleon mass

consistent with chiSB in spectrum, inconsistent with IRFP
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the story so far

lattice methods and machines can be applied to new models

very important to have many signals,discretizations,people

2-flavor sextet theory looks non-conformal, but remaining issues

12-flavor fundamental is difficult - many puzzles

many more studies done on fundamental rep - learning phase

given high cost, may wish to focus resources on sextet model

Kieran Holland Nordita June 13 2012
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12-flavor chiral condensate

Kieran Holland

Twelve fundamental and two sextet fermion flavors J. Kuti and C. Schroeder
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Figure 2: The second order polynomial fit to the chiral condensate is shown on the left plot in subtracted form as

explained in [21]. The middle plot is the quadratic fit to �ψψ�−m · χcon directly measured from zero momentum sum

rules and independently from functions of the inverse staggered fermion matrix. The right side plot shows the thermal

history of the subtracted form of the condensate at the lowest fermion mass on the largest lattice.

�ψψ� = 2F2B with the measured low value of F and the value of B from logarithmic fit to the

Goldstone pion. The deficit between the two sides of the GMOR relation is sensitive to the fitting

procedure and uncertainties in the determination of B. Trying to identify chiral logs is beyond the

scope of our simulation range. For independent determination, we studied the subtracted chiral

condensate operator defined with the help of the connected part χcon of the chiral susceptibility χ
as defined in [21]. The removal of the derivative term significantly reduces the dominant linear

part of the �ψψ� condensate. Although the two independent determinations give consistent non-

vanishing results in the chiral limit, we cannot consider the results definitive. The drop of the chiral

limit intercepts after extended runs is noted in comparison with earlier results [21].

2.3 Finite temperature transition

We present some preliminary results from our extended studies of the finite temperature tran-

sition. If the ground state of the model has χSB, a phase transition is expected at some finite

temperature to restore the chiral symmetry in the limit of massless fermions. Based on universality

arguments [69] the transition would be expected to be of first order. This is not entirely clear and

warrants further investigations. On our largest 48
3 ×NT lattices, at fixed m = 0.01 and β = 2.2,

the temperature was varied through an NT sequence while the scatter plot of the Polyakov loop

was monitored along the euclidean time (inverse temperature) direction in each run. The chiral

condensate �ψψ� was also monitored in the runs. As the temperature is increased a clear sudden

transition is observed in the NT = 6−10 region where the Polyakov loop distribution jumps from

the origin to a scatter plot with non-vanishing real part. It would be difficult to reconcile this jump,

as shown in Figure 3, with conformal behavior in the zero temperature bulk phase.

Although we have results for temperature scans at multiple gauge couplings, fermion masses,

and spatial volumes, all consistent with a finite temperature transition, caution is necessary before

firm conclusions can be reached. Confirming the existence of the χSB phase transition will require

the m → 0 limits of �ψψ� and the Polyakov loop distribution. The chiral condensate is a good

order parameter for the transition. The Polyakov loop, like in QCD, could detect deconfinement

in the transition with unsettled interpretation as order parameter. The behavior of the renormalized

5

2 independent observables give consistent
condensate in chiral limit

but not as clear as sextet case 
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FIG. 10: Lattice-spacing dependence of the step-scaling function (SSF) in weak, intermediate and strong coupling regimes
(from the top). The horizontal lines indicate the central values of the input reference u.
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FIG. 12: rσ(u) from the central procedure.
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FIG. 13: Plots for rσ(u) obtained from our procedures for estimating systematic errors. Top left: rσ(u) from simple
polynomial interpolation in β, Eq. (39). Top right: rσ(u) by performing the continuum extrapolation using quadratic
function in (a/L)2. The rest is the same as the central procedure. Bottom left: rσ(u) by performing the continuum
extrapolation using linear function in (a/L)2, with L/a = 7, 8, 10. Bottom right: rσ(u) by performing the continuum
extrapolation using linear function in (a/L)2, with L/a = 6, 7, 8, 10.

large statistical errors. In addition to the quadratic fit, we also carry out the two linear continuum extrapolations
discussed in Sec. VD,

L/a = (7, 8, 10) −→ 2L/a = (14, 16, 20), (50)

L/a = (6, 7, 8, 10) −→ 2L/a = (12, 14, 16, 20).

The result from the first these procedures is presented in the bottom-left panel of Fig. 13, while that from the

Lin et al.,arXiv:1205.6076

Kieran Holland

Polyakov loop correlator scheme g2(L)

again, run coupling by varying lattice size e.g. L to 2L

lattice artifacts require continuum limit a/L → 0

indication of IR fixed point, systematics issues Nordita June 13 2012



static quark potential

Table 3: V(R) tabulated at fermion masses m = 0.010 and m = 0.015 for lattice volume 483 × 96, and at m = 0.020 for lattice volume 403 × 80.
m\R 4 5 6 7 8 9 10 11 12 13 14
0.010 0.20005(49) 0.22686(84) 0.24638(12) 0.26000(28) 0.27059(55) 0.27957(82) 0.2872(10) 0.2933(21) 0.2979(42) 0.30771(31) 0.31250(82)
0.015 0.20439(21) 0.23332(35) 0.25270(39) 0.26737(85) 0.2789(17) 0.2892(28) 0.30214(36) 0.3129(11) 0.3220(31) 0.3289(12) 0.33576(43)
0.020 0.20819(39) 0.2372(16) 0.25961(99) 0.27727(55) 0.29132(74) 0.3040(11) 0.31718(24) 0.32862(31) 0.33973(78) 0.34921(77) 0.3543(55)
m\R 15 16 17 18 19 20 21 22 23 24
0.010 0.31755(43) 0.32186(78) 0.3263(19) 0.3308(23) 0.3339(40) 0.3364(47) 0.3417(27) 0.3453(29) 0.3466(62) 0.3554(25)
0.015 0.34295(46) 0.35050(37) 0.35863(78) 0.36506(45) 0.36928(69) 0.3708(31) 0.3741(55) 0.3817(59) 0.3897(71)
0.020 0.3625(58) 0.3768(24) 0.3939(107) 0.3946(10) 0.4026(13) 0.4085(30)
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Figure 7: V(R) data and fit for m = 0.01 is plotted on the left and comparison with perturbation theory is shown in the middle plot. The right side plot shows the
string tension measured in nucleon mass units at m = 0.01, 0.015, 0.02 and extrapolated to the chiral limit. The finite nucleon mass gap in the chiral limit implies a
finite string tension at m = 0.

The split remains significant for all fermion masses and in the
chiral limit.

2.4. String tension and running coupling from the static force
There are several ways to define a renormalized gauge cou-

pling, for example, the Schrödinger Functional scheme or from
square Wilson loops. We take the renormalized coupling as
defined via the quark-antiquark potential V(R), extracted from
R×T Wilson loops where the time extent T can be large. From
the potential, one defines the force F(R) and coupling αqq(R) as

F(R) =
dV
dR
= CF

αqq(R)
R2 , αqq(R) =

g2
qq(R)
4π
. (5)

The coupling is defined at the scale R of the quark-antiquark
separation, in the infinite-volume limit L → ∞. This is differ-
ent from the scheme using square Wilson loops, where one has
αW (R, L) and one can choose finite R with L → ∞, or finite
L and fixed R/L ratio. In the former case, these schemes are
related via

αqq(R) = αW (R)[1 + 0.31551αW (R) + O(αW (R)2)]. (6)

The β function in the qq scheme is known to 3-loops. For SU(3)
gauge theory with Nf = 12 fundamental flavors, the location of
the infrared fixed point to 3-loop order is α∗qq = 0.3714... This
is about 50% of the scheme-independent 2-loop value of α∗,
indicating that higher order corrections beyond 3-loop might
not be negligible.

A range of lattice spacings, volumes and quark masses are
studied in the running coupling project, we show results for the
largest volume 483 × 96 at β = 2.2 and quark masses m = 0.01
and 0.015 and for the 403 × 80 run at m = 0.02. To improve the

measurement of V(R), we use different levels of APE-smearing
to produce a correlation matrix of Wilson loops, the lowest en-
ergy is extracted using the generalized eigenvalue method. We
also improve the lattice force, which is naively discretized as
F(R + 1/2) = V(R + 1) − V(R). For the Symanzik gauge ac-
tion, the improvement is a relatively small effect, for example
the naive value R + 1/2 = 4.5 is shifted to 4.457866...

In Figure 7 on the left we show the measured V(R) fitted to
the form

V(R) = V0 +
α

R
+ σR. (7)

for m = 0.01. The m = 0.015 and m = 0.02 runs are shown on
the right of Figure 7. For all three masses, the resulting fits are
good, with a clear signal of linear dependence and an effective
string tension σ. The string tension decreases with the quark
mass, its behavior in conjunction with the mass spectrum in the
chiral limit is under investigation and the first result is shown
in the figure. The finite nucleon mass gap in the chiral limit
implies a finite string tension at m = 0.

Table 4: mnuc/
√
σ.

m σ χ2/dof mnuc/
√
σ

0.01 0.002530(81) 17.1/18 6.34(43)
0.015 0.005147(109) 43.6/17 5.50(23)
0.02 0.007189(77) 6.8/14 5.54(19)

The renormalized coupling αqq(R) is a derivative of the po-
tential V(R) and hence more difficult to numerically measure
via simulations. The most accurate comparison between lattice
simulations and perturbation theory is directly of the potential

6

Fodor et al. arXiv:1104.3124

Kieran Holland

quark potential runs faster than perturbation theory

inconsistent with existence of IR fixed point

V (R)− V (R0) = CF

∫ R

R0

αqq(R′)

R′2
dR

′ predict RHS with n-loop pert thy
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near-conformal TC

walking technicolor

gauge theory asymptotically free - what if coupling runs slowly?Strong Electroweak Gauge Sector: running couplings

Julius Kuti, University of California at San Diego USQCD Collaboration Meeting, Jefferson Laboratory, April 4 - 5, 2008, 17/22

if beta function near zero, 
almost fixed point: 
near-conformal

can generate separation of scales
ameliorate FCNC’s
quark masses natural (Top?)

conformal models (“unparticles”) also getting popular

ΛTC,ΛETC

near-zero of beta function 
gauge coupling walks, not runs
separate scales - useful phenomenology


