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Legal disclaimer

I assume that the hint for a 125 GeV Higgs is a 125 GeV Higgs

rather than a statistical fluctuation or a superluminal cable

While this is believed to be a correct information, nobody makes any warranty,

express or implied, or assumes any legal liability or responsibility for the accu-

racy, completeness, or usefulness of the information. Reference herein to any

specific experiment does not necessarily constitute or imply its endorsement,

recommendation, or favoring.

By not abandoning the room you accept the above assumption.

Thank you



Is the Higgs standard?

with P.P. Giardino, K. Kannike, M. Raidal



Motivation

Naturalness suggests that light stops or similar new physics affect the Higgs
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Testing the Higgs is a way to test naturalness



Observables

mh = 125 GeV is a favorable mass for LHC; several BR

BR(h→ b̄b) = 58%, BR(h→WW ∗) = 21.6%, BR(h→ τ+τ−) = 6.4%,
BR(h→ ZZ∗) = 2.7%, BR(h→ gg) = 8.5%, BR(h→ γγ) = 0.22%

and production mechanisms

σ(pp→ h) = (15.3± 2.6) pb, σ(pp→ jjh) = 1.2 pb,
σ(pp→Wh) = 0.57 pb, σ(pp→ Zh) = 0.32 pb,

allow to disentangle Higgs couplings and test Higgs properties.

Fit needed: e.g. changing the higgs/bottom coupling also changes all BR.



Fermiophobic searches

We included all data after Moriond2012. In particular these ones are unsafe:

CMS looked for pp→ jjγγ measuring, at mh ≈ 125 GeV:

[(0.03± 0.02)σ(pp→ h) + σ(pp→ jjh)]×BR(h→ γγ) = SM× (3.3± 1.1)

ATLAS looked for pp→ γγ with pTγγ > 40 GeV measuring

[0.3σ(pp→ h) + σ(pp→Wh,Zh, jjh)]×BR(h→ γγ) = SM× (3.3± 1.1)

This format would be perfect for future data releases. So far we have to get

weights of production channels by asking or doing MC simulations and...



Data

Likelihoods not released due to peculiar politics of particle physics. We use:

µ ≈ R95%
observed −R

95%
expected, σ =

R95%
expected

2
,



Higgs data: CMS, ATLAS, CDF, D0
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SM fit is good: χ2 ≈ 17 (15 dof), the average rate is 1.1± 0.2, and

observed rate

SM rate
=


2.1± 0.5 photons
0.5± 0.3 vectors: W and Z
1.3± 0.5 fermions: b and τ

.

New 2012 data will reduce errors by a factor of ∼ 2



Non-standard BR for loop processes
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Non standard best fits
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Fits to Higgs couplings: dysfermiophilia

Latest fermiophobic analyses prefer enhanced h→ γγ obtained for yt ≈ −ySM
t .

0.0 0.5 1.0 1.5 2.0
-2

-1

0

1

2

Higgs coupling to vectors a

H
ig

gs
co

up
lin

g
to

fe
rm

io
ns

c

mh = 125 GeV

SM

FP

68,95% CL

0.0 0.5 1.0 1.5 2.0
-2

-1

0

1

2

Higgs coupling to b and Τ�SM

H
ig

gs
co

up
lin

g
to

t�
SM

mh = 125 GeV

SM

0tFP

68,95% CL



Global fit
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Fitting the Higgs invisible width

( )
A referee believes that this cannot be done:

“Only ratios of couplings can be fitted. I do

not see how the authors can rectify their paper

without a complete change of analysis strategy.

Consequently, a new revised version will be un-

acceptable as well”.

2nd referee says we can go on...



Fitting the Higgs invisible width

Data can test and disfavor an invisi-

ble width because gg → h and h→ gg

are related as well known since Breit-

Wigner

σ(gg → h)
Γ�m'

π2

8mh
Γ(h→ gg)δ(s−m2

h)

Result:

BRinv = 0±25% depending on the fit
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Higgs or radion?

A ‘radion’ particle ϕ coupled to the trace of Tµν can mimic the Higgs:

ϕ

Λ
Tµµ =

ϕ

Λ

∑
f

mf f̄f −M2
ZZ

2
µ − 2M2

WW
2
µ +A


At tree level, it like a Higgs with all couplings rescaled by R =

√
2v/Λ.

The difference arises at quantum level because scale invariance is anomalous:

A = −7
α3

8π
GaµνG

a
µν +

11

3

αem

8π
FµνFµν

So ϕ↔ gg is strongly enhanced and ϕ→ γγ changed.

Fit almost as good as the SM Higgs, best at R = 0.28±0.03 (i.e. Λ ≈ 870 GeV).



From the EW scale

to the Planck scale

With Degrassi, di Vita, Miró, Espinosa, Giudice, Isidori and the SM



Mh =125 GeV. And now?

RGE running can make λ negative or non-perturbative
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For the measured masses both λ and its β-function vanish around MPl!!?

(This would be the main message bla bla quantum gravity bla bla)

NNLO corrections are like a ±3 GeV uncertainty in mh: compute them!



NNLO

3loop RGE + 2 loop potential + 2 loop matching at the weak scale

λ↔Mh at NNLO is the main effect, because g3 and yt get big at low E:

M2
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(
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t

(4π)2
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y4
t

(4π)2

g2
3 + y2

t
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)
v2

Leading terms in M2
h/4M2

t can be obtained from the known 2 loop potential

t tg t th, G0 t bG±
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y4
t g

2
3v

2

(4π)4
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t v

2

(4π)4
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Status now: full g3, yt, λ at NNLO, g, g′ at NLO: −1 GeV shift towards instability



From the EW scale to the Planck scale

λ(Mt) = 0.12577+0.00205
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The SM vacuum is metastable
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Vacuum stability is excluded at 2σ (98% C.L. one sided) for Mh < 126 GeV.

The main uncertainty is Mt, which will soon be measured better.



Implications: Higgs inflation?

A) Criticality allows inflation with a plateau or a second minimum. Needs

adjustments. In practice it predicts λ = βλ = 0 and so...
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B) Inflation with a non-minimal coupling to gravity, |H|2R. Maybe it allows

inflation or maybe the theory is uncontrollable. In practice it predicts λ > 0.



Veltman throat at the Planck scale?
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Tree level stabilization

New physics can easily stabilize the SM potential. Lots of possibilities.

The simplest possibility is a singlet S with a vev (possibly the axion):

V = λH
(
H†H − v2

)2
+ λS

(
S†S − w2

)2
+ 2λHS

(
H†H − v2

) (
S†S − w2

)
Integrating out S at tree level gives a threshold correction that stabilizes V :

λlow energy = λH −
λ2
HS

λS
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Higgs and SUSY

with G. Giudice



125 GeV is in no man’s land

SM is stable up to the Planck scale for mh>∼130 GeV but can go down to 115

MSSM at the weak scale
SM
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MSSM with weak scale SUSY likes mh<∼120 GeV but can go up to 130



SUSY is dead...

... mh ≈ 125 GeV needs quasi-maximal stop mixing or beyond-MSSM...

... naturalness of weak scale SUSY is mostly gone (KFT or light t̃, b̃?)

... g − 2 regions are getting excluded in the CMSSM (or LHC-phobic SUSY...)
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But SUSY is the king of BSM so...



...Long live SUSY!

Time to consider mSUSY �MZ and compute mh(mSUSY, tanβ):

• Split-SUSY (SUSY scalars at mSUSY and SUSY fermions around MZ).

Gives good unification and maybe makes theoretical sense.

• High-Scale-SUSY (all sparticles at mSUSY) aka “Super-Split-SUSY”.

Such a nice joke that its authors forgot to notice that there is one prediction

λ(mSUSY) =
1

4

[
g2

2(mSUSY) +
3

5
g2

1(mSUSY)
]

cos2 2β + loops



λ(mh,mSUSY)
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Full NLO computation

The total result does not depend on the regularization scheme:

One loop thresholds at the weak scale

+

One loop thresholds at the SUSY scale

+

2 loop Split-SUSY RGE between MZ and mSUSY
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pages and pages and pages of RGE in SplitSusy



Uncertain uncertainties at high energy

mSUSY � MZ allows to get analytic expressions for everything, but one loop
thresholds at the SUSY scale depend on unknown heavy sparticle masses:

(4π)2δλ(mSUSY) = −
9

100
g4

1 −
3

10
g2

1g
2
2 − (

3

4
−

cos2 2β

6
)g4

2 +

+3g2
t [g2

t +
1

10
(5g2

2 − g
2
1) cos 2β] ln

m2
Q

m2
SUSY

+ · · ·+ · · ·

In non-minimal SUSY models one can even have tree level corrections, positive
or negative. E.g. in the NMSSM λNNHuHd +MN2/2

δλ = λ2
N sin2 2β

(B − 2A)M +m2 −A2

2(M2 +m2 +BM)

Or neutrino Yukawa couplings in see-saw models.

For example, the theory of everything could be N = 1 SUSY with E6 unification
broken at the Planck scale by 3 fundamentals 27i. The Higgs is one slepton
that remains light due to ant**pic. The Yukawa couplings come from:

W = λijk27i27j27k



Effect of SM uncertainties
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“Central values” for mSUSY and tanβ
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Implications for mSUSY and tanβ
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mSUSY ≈MZ and maximal stop mixing and large tanβ?

mSUSY ≈ (4π)2MZ and moderate tanβ? Maybe M2 ≈ 3 TeV and M3 =?

mSUSY ≈MPl and tanβ = 1? Disfavored, unless extra couplings come in



Conclusions

• SUSY: at the weak scale, or one loop above, or much above.

• mh ≈ 125 GeV means λ small and negative at the Planck scale (98% C.L.).

m2 ≈ 0, λ ≈ 0: Higgs potential is doubly critical. Accident or hint?

• SM Higgs gives a good fit to data. Reduced gg → h and enhanced h→ γγ

improves the fit. Too good fit is just over-fitting fluctuations?

It could be the last particle. Carpe diem.



What next?

Time to look outside the ‘Higgs hierarchy ideology’ lamppost

Split SUSY. Keep DM and unification and SUSY.

Higgs inflation. Does criticality of the Higgs potential allows inflation?

Minimal Dark Matter: DM is one SU(2) multiplet with only gauge couplings.

Maybe a 5, which is accidentally stable like the proton: predict mass and σSI.

g − 2 from fermions? can be produced using only new fermions at the weak

scale, assuming that mµ comes from a see-saw. Predicts a non-standard h→ µµ

Unificaxion: assume that axions give SM unification and predict its coupling.



g – 2 from fermions
Consider models ‘charged see-saw models’ like

L = MLL̄
′L′+MEĒ

′E′+ λLL
′EH∗+ λELE

′H∗+ λ̄LEL̄
′Ē′ H + h.c.

where the muon mass comes out by integrating out heavy fermions L′, E′:

mµ = mH
µ +mHHH

µ = λµv +
λLλ̄LEλE
MLME

v3

Then

∆aµ ' c
mµmHHH

µ

(4πv)2
= 0.82c

mHHH
µ

mµ
×∆aexp

µ ,

where c is a model-dependent order-one number:

c −7
2 −15

2 −11
2 −6 — −7

2

see-saw L′ ⊕ E′ L′ ⊕ Ea L3/2 ⊕ E′ L3/2 ⊕ Ea L′ ⊕N ′ L′ ⊕Na
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Unificaxion

0) Abandon SUSY and naturalness of the weak scale

1) The QCD θ problem is non-ant***opic: axion

2) Realize axion with heavy fermions a la KSVZ

3) Assume that such fermions give unification

4) Predict axion couplings, test assuming axionic DM

(arXiv/1204.5465 with Giudice and Rattazzi)

http://arxiv.org/abs/1204.5465


SU(5) unification

New fermions at MΨ affect RGE running with their β-function coefficients ∆bi:

1

αGUT
=

1

αi(MZ)
−
bSM
i

2π
ln
MGUT

MZ
−

∆bi
2π

ln
MGUT

MΨ
.

The simplest SU(5) fragments are:

SU(5) SU(3)⊗ SU(2)⊗U(1) n3 n̄3 n2 z name ∆b3 ∆b2 ∆b1
5⊕ 5̄ 3 1 1/3 0 1 0 0 D 2/3 0 4/15
5⊕ 5̄ 1 2 1/2 0 0 1 0 L 0 2/3 2/5

10⊕ 10 3 1 −2/3 0 1 0 1 U 2/3 0 16/15
10⊕ 10 1 1 −1 0 0 0 1 E 0 0 4/5
10⊕ 10 3 2 1/6 1 0 1 0 Q 4/3 2 2/15
15⊕ 15 3 2 1/6 = = = = Q = = =
15⊕ 15 1 3 1 0 0 2 0 T 0 8/3 12/5
15⊕ 15 6 1 −2/3 2 0 0 0 S 10/3 0 32/15

24 1 3 0 0 0 2 1 V 0 4/3 0
24 8 1 0 1 1 0 0 G 2 0 0
24 3 2 5/6 0 1 1 0 X 4/3 2 10/3



The SU(5) lattice

Apparently, the ∆bi arising from generic combinations of SU(5) fragments are
a hopeless huge number of possibilities
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The SU(5) lattice

Actually, the ∆bi arising from generic combinations of SU(5) fragments form
a sparse lattice generated by the simplest 5 and 10 rep.s
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GUT collection

Discrete set of values for the GUT scale and for the intermediate scale:
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Green thick dots: favored by gauge/gravity unification αGUT = (1 . . .43)(
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Simplest GUTs

heavy fermions αGUT MGUT MΨ E/N

Q 1/38 2× 1015 GeV 1× 106 GeV 5/3
2Q 1/38 2× 1015 GeV 5× 1010 GeV 5/3
3Q 1/38 2× 1015 GeV 2× 1012 GeV 5/3

2Q⊕D 1/36 8× 1015 GeV 6× 109 GeV 22/15
2Q⊕ U 1/34 5× 1015 GeV 2× 108 GeV 28/15
G⊕ 2V 1/38 5× 1015 GeV 2× 108 GeV 4/3

Q⊕G⊕ V 1/35 9× 1016 GeV 8× 107 GeV 16/15
Q⊕D ⊕ L 1/36 2× 1015 GeV 1× 106 GeV 2
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Proton decay could be around the corner: MGUT >

√
αGUT

1/24
2× 1015 GeV



Axion basics

Assume a PQ symmetry that allows for λAΨ̄Ψ

Ψ→ eiγ5αΨ, A→ e−2iαA,

with equal or comparable λ such that there is one intermediate scale M ∼ λfa.

∗ ∗ ∗

The “initial misalignment” mechanism gives a DM axion density

Ωa ≈ 0.15
(

fa

1012 GeV

)7/6
(
a∗
fa

)2

ΩDM reproduced for fa ∼ 1012 GeV unless the initial axion vev is a∗ � fa.

This favors ma ∼ µeV = 1/20 cm



Axion coupling to photons: theory

The coupling −gaγγ1
4aFµνF̃µν is predicted in terms of model coefficients E/N :

gaγγ =
α ma

2πfπmπ

√
(1 +

md

mu
)(1 +

mu

md
)

[
E

N
−

2

3

4 +mu/md

1 +mu/md

]
≈

2.0 (E/N − 1.92)
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Axion coupling to photons: data

ADMX reached

|gaγγ| <
6
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Unificaxion

Axion coupling predicted in terms of β-functions restricted by unification:

E

N
≡
∑
q2∑
T2

=
∆b2 + 5∆b1/3

∆b3
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[Predict 1 < E/N < 2.5] [+αGUT ∼ 1: E/N > 1.6] [+gauge/gravity: E/N < 2]


