A general framework for direct detection of Dark Matter

Ami Katz Boston U./Stanford U./SLAC

w/ L. Fitzpatrick, W. Haxton, N. Lubbers, Y. Xu (hep-ph/1203.3542 + to appear)

Problem: Models and experiments live at different scales!

Spin-Independent

$\dagger: \quad \overrightarrow{q} \to -\overrightarrow{q}, \quad \overrightarrow{v} \to \overrightarrow{v} - \overrightarrow{q}/\mu$

$$\dagger: \quad \overrightarrow{q} \to -\overrightarrow{q}, \quad \overrightarrow{v} \to \overrightarrow{v} - \overrightarrow{q}/\mu$$

Hermitian: \overrightarrow{S} , $\overrightarrow{v}^{\perp} \equiv \overrightarrow{v} - \overrightarrow{q}/(2\mu)$

$$\dagger: \quad \overrightarrow{q} \to -\overrightarrow{q}, \quad \overrightarrow{v} \to \overrightarrow{v} - \overrightarrow{q}/\mu$$

Hermitian:
$$\overrightarrow{S}$$
, $i\overrightarrow{q}$, $\overrightarrow{v}^{\perp} \equiv \overrightarrow{v} - \overrightarrow{q}/(2\mu)$

T (or CP): $\overrightarrow{S} \to -\overrightarrow{S}, \ \overrightarrow{v}^{\perp} \to -\overrightarrow{v}^{\perp}, \ \overrightarrow{iq} \to \overrightarrow{iq}$

Assumptions for NR effective theory:

- I. Elastic collision.
- 2. Operators which do not violate CP.
- 3. We will consider operators which arise from an exchange of spin one or less.

1,
$$v^2$$
 $i\overrightarrow{S}_{\chi}\cdot(\overrightarrow{q}\times\overrightarrow{v})$

$$\mathbf{1}, \ v^2 \qquad \qquad i \overrightarrow{S}_{\chi} \cdot (\overrightarrow{q} \times \overrightarrow{v})$$

Parity EVEN, spin-dependent:

$$\overrightarrow{S}_{\chi} \cdot \overrightarrow{S}_{N}, \ (\overrightarrow{S}_{\chi} \cdot \overrightarrow{q})(\overrightarrow{S}_{N} \cdot \overrightarrow{q}) \qquad i \overrightarrow{v} \cdot (\overrightarrow{S}_{N} \times \overrightarrow{q})$$

$$\mathbf{1}, \ v^2 \qquad \qquad i \overrightarrow{S}_{\chi} \cdot (\overrightarrow{q} \times \overrightarrow{v})$$

Parity EVEN, spin-dependent:

$$\vec{S}_{\chi} \cdot \vec{S}_N, \ (\vec{S}_{\chi} \cdot \vec{q})(\vec{S}_N \cdot \vec{q}) \qquad i \vec{v} \cdot (\vec{S}_N \times \vec{q})$$

Parity ODD, spin-independent:

$$\overrightarrow{v}^{\perp} \cdot \overrightarrow{S}_{\chi}$$

$$\mathbf{1}, \ v^2 \qquad \qquad i \overrightarrow{S}_{\chi} \cdot (\overrightarrow{q} \times \overrightarrow{v})$$

Parity EVEN, spin-dependent:

$$\overrightarrow{S}_{\chi} \cdot \overrightarrow{S}_{N}, \ (\overrightarrow{S}_{\chi} \cdot \overrightarrow{q})(\overrightarrow{S}_{N} \cdot \overrightarrow{q}) \qquad i \overrightarrow{v} \cdot (\overrightarrow{S}_{N} \times \overrightarrow{q})$$

Parity ODD, spin-independent:

$$\overrightarrow{v}^{\perp}\cdot\overrightarrow{S}_{\chi}$$

Parity ODD, spin-dependent:

 $\overrightarrow{v}^{\perp} \cdot \overrightarrow{S}_N$

$$i\overrightarrow{S}_{\chi}\cdot(\overrightarrow{S}_N\times\overrightarrow{q})$$

$$\mathbf{1}, \ v^2 \qquad \qquad i \overrightarrow{S}_{\chi} \cdot (\overrightarrow{q} \times \overrightarrow{v})$$

Parity EVEN, spin-dependent:

$$\overrightarrow{S}_{\chi} \cdot \overrightarrow{S}_{N}, \ (\overrightarrow{S}_{\chi} \cdot \overrightarrow{q})(\overrightarrow{S}_{N} \cdot \overrightarrow{q}) \qquad i \overrightarrow{v} \cdot (\overrightarrow{S}_{N} \times \overrightarrow{q})$$

Parity ODD, spin-independent:

$$\overrightarrow{v}^{\perp} \cdot \overrightarrow{S}_{\chi}$$

Parity ODD, spin-dependent:

 $\overrightarrow{v}^{\perp} \cdot \overrightarrow{S}_N \qquad \qquad i \overrightarrow{S}_{\chi} \cdot (\overrightarrow{S}_N \times \overrightarrow{q})$

Any DM model can be described in terms of these ops!

Do any of these operators make a difference?

Do any of these operators make a difference?

DM-nucleon NR Eff.Thy Do any of these operators make a difference?

Do any of these operators make a difference?

Do any of these operators make a difference?

Experiment: Are there new ways to see nuclei?

2. Spin-dependent q-parallel (SDI):

$$(\vec{q} \cdot \vec{S}_{\chi})(\vec{q} \cdot \vec{S}_N) \rightarrow \Sigma_N''(q^2)$$

2. Spin-dependent q-parallel (SDI):

$$(\vec{q} \cdot \vec{S}_{\chi})(\vec{q} \cdot \vec{S}_N) \rightarrow \Sigma_N''(q^2)$$

3. Spin-dependent q-perp (SD2):

$$i\overrightarrow{S}_{\chi}\cdot(\overrightarrow{S}_N\times\overrightarrow{q})\to\Sigma'_N(q^2)$$

2. Spin-dependent q-parallel (SDI):

 $(\vec{q} \cdot \vec{S}_{\chi})(\vec{q} \cdot \vec{S}_N) \rightarrow \Sigma_N''(q^2)$

3. Spin-dependent q-perp (SD2):

$$i\overrightarrow{S}_{\chi}\cdot(\overrightarrow{S}_N\times\overrightarrow{q})\to\Sigma'_N(q^2)$$

$$\overrightarrow{v}^{\perp} \cdot \overrightarrow{S}_{\chi} \quad \rightarrow \quad \left(v^2 - \frac{q^2}{4\mu_T^2} \right) M_N(q^2) + \frac{q^2}{m_N^2} \widetilde{\Delta}_N(q^2)$$

2. Spin-dependent q-parallel (SDI):

 $(\vec{q} \cdot \vec{S}_{\chi})(\vec{q} \cdot \vec{S}_N) \rightarrow \Sigma_N''(q^2)$

3. Spin-dependent q-perp (SD2):

$$i \overrightarrow{S}_{\chi} \cdot (\overrightarrow{S}_N \times \overrightarrow{q}) \to \Sigma'_N(q^2) \sim \langle L_N \rangle^2$$

$$\overrightarrow{v}^{\perp} \cdot \overrightarrow{S}_{\chi} \rightarrow \left(v^2 - \frac{q^2}{4\mu_T^2} \right) M_N(q^2) + \frac{q^2}{m_N^2} \widetilde{\Delta}_N(q^2)$$

2. Spin-dependent q-parallel (SDI):

 $(\vec{q} \cdot \vec{S}_{\chi})(\vec{q} \cdot \vec{S}_N) \rightarrow \Sigma_N''(q^2)$

3. Spin-dependent q-perp (SD2):

$$i\overrightarrow{S}_{\chi}\cdot(\overrightarrow{S}_N\times\overrightarrow{q})\to\Sigma'_N(q^2)$$
 $\sim \langle L_N\rangle^2$

$$\overrightarrow{v}^{\perp} \cdot \overrightarrow{S}_{\chi} \rightarrow \left(v^2 - \frac{q^2}{4\mu_T^2} \right) M_N(q^2) + \frac{q^2}{m_N^2} \widetilde{\Delta}_N(q^2) - \mathcal{A}^2$$

2. Spin-dependent q-parallel (SDI):

 $(\vec{q} \cdot \vec{S}_{\chi})(\vec{q} \cdot \vec{S}_N) \rightarrow \Sigma_N''(q^2)$

3. Spin-dependent q-perp (SD2):

$$i \overrightarrow{S}_{\chi} \cdot (\overrightarrow{S}_N \times \overrightarrow{q}) \to \Sigma'_N(q^2) \sim \langle L_N \rangle^2$$

$$\overrightarrow{v}^{\perp} \cdot \overrightarrow{S}_{\chi} \rightarrow \left(v^2 - \frac{q^2}{4\mu_T^2} \right) M_N(q^2) + \frac{q^2}{m_N^2} \widetilde{\Delta}_N(q^2) \\ \sim \mathbf{A}^2 \qquad \sim \mathbf{A}^2 \qquad \sim \mathbf{A}^2$$

2. Spin-dependent q-parallel (SDI):

 $(\vec{q} \cdot \vec{S}_{\chi})(\vec{q} \cdot \vec{S}_N) \rightarrow \Sigma_N''(q^2)$

3. Spin-dependent q-perp (SD2):

$$i\overrightarrow{S}_{\chi}\cdot(\overrightarrow{S}_N\times\overrightarrow{q})\to\Sigma'_N(q^2)\qquad \sim \langle L_N\rangle^2$$

4. Angular-momentum dependent (LD):

$$\overrightarrow{v}^{\perp} \cdot \overrightarrow{S}_{\chi} \rightarrow \left(v^2 - \frac{q^2}{4\mu_T^2} \right) M_N(q^2) + \frac{q^2}{m_N^2} \widetilde{\Delta}_N(q^2) \\ \sim \mathbf{A}^2 \qquad \sim \mathbf{A}^2 \qquad \sim \mathbf{A}^2$$

5. L-momentum & Spin dependent (LSD):

 $i \overrightarrow{v} \cdot (\overrightarrow{S}_N \times \overrightarrow{q}) \rightarrow \Phi_N''(q^2)$

2. Spin-dependent q-parallel (SDI):

 $(\vec{q} \cdot \vec{S}_{\chi})(\vec{q} \cdot \vec{S}_N) \rightarrow \Sigma_N''(q^2)$

3. Spin-dependent q-perp (SD2):

$$i\overrightarrow{S}_{\chi}\cdot(\overrightarrow{S}_N\times\overrightarrow{q})\to\Sigma'_N(q^2)$$
 $\sim \langle L_N\rangle^2$

4. Angular-momentum dependent (LD):

5. L-momentum & Spin dependent (LSD):

$$i \overrightarrow{v} \cdot (\overrightarrow{S}_N \times \overrightarrow{q}) \rightarrow \Phi_N''(q^2) \sim \langle \overrightarrow{L}_N \cdot \overrightarrow{S}_N \rangle^2$$

$$\begin{split} F_{1,1}^{(N,N')} &= 4\pi F_M^{(N,N')}, \\ F_{3,3}^{(N,N')} &= 4\pi \left(\frac{q^4}{4m_N^2} F_{\bar{\Phi}''}^{(N,N')} + q^2 \left(v^2 - \frac{q^2}{4\mu_T^2} \right) F_{\Sigma'}^{(N,N')} \right), \\ F_{4,4}^{(N,N')} &= \frac{1}{16} 4\pi \left(F_{\Sigma''}^{(N,N')} + F_{\Sigma'}^{(N,N')} \right), \\ F_{5,5}^{(N,N')} &= \frac{1}{4} 4\pi \left(q^2 \left(v^2 - \frac{q^2}{4\mu_T^2} \right) F_M^{(N,N')} + \frac{q^4}{m_N^2} F_{\bar{\Delta}}^{(N,N')} \right), \\ F_{6,6}^{(N,N')} &= \frac{q^4}{16} 4\pi F_{\Sigma''}^{(N,N')}, \\ F_{7,7}^{(N,N')} &= \frac{1}{8} \left(v^2 - \frac{q^2}{4\mu_T^2} \right) 4\pi F_{\Sigma'}^{(N,N')}, \\ F_{8,8}^{(N,N')} &= \frac{1}{4} 4\pi \left(\left(v^2 - \frac{q^2}{4\mu_T^2} \right) F_M^{(N,N')} + \frac{q^2}{m_N^2} F_{\bar{\Delta}}^{(N,N')} \right), \\ F_{9,9}^{(N,N')} &= \frac{q^2}{16} 4\pi F_{\Sigma'}^{(N,N')}, \\ F_{10,10}^{(N,N')} &= \frac{q^2}{4} 4\pi F_{\Sigma''}^{(N,N')}, \\ F_{1,3}^{(N,N')} &= -\frac{q^2}{8m_N} 4\pi F_{\Sigma',\bar{\Delta}}^{(N,N')}, \\ F_{4,6}^{(N,N')} &= \frac{q^2}{16} 4\pi F_{\Sigma'',\bar{\Delta}}^{(N,N')}. \end{split}$$

$F_{1,1}^{(N,N^\prime)}$	=	$4\pi F_M^{(N,N')},$			
$F_{3,3}^{(N,N')}$	=	$4\pi \left(\frac{q^4}{4m_N^2} F^{(N,N')}_{\tilde{\Phi}''} + q^2 \left(v^2 - \frac{q^2}{4\mu_T^2} \right) F^{(N,N')}_{\Sigma'} \right),$			
$F_{4,4}^{(N,N^\prime)}$	=	$\frac{1}{16} 4\pi \left(F^{(N,N')}_{\Sigma''} + F^{(N,N')}_{\Sigma'} \right),$	¹⁹ F:		
$F_{5,5}^{(N,N')}$	=	$rac{1}{4} 4 \pi \left(q^2 \left(v^2 - rac{q^2}{4 \mu_T^2} ight) F_M^{(N,N')} + rac{q^4}{m_N^2} F_{ ilde{\Delta}}^{(N,N')} ight)$	$F_{\Sigma'}{}^{(p,p)}$	=	$e^{-2y}\left(1.81 - 4.85y + 4.88y^2 - 2.18y^3 + 0.364y^4 ight)$
$F_{e,e}^{(N,N')}$	=	$\frac{q^4}{4\pi F_{\Sigma''}^{(N,N')}}$	$F_{\Sigma'}{}^{(p,n)}$	=	$e^{-2y} \left(-0.0331 + 0.0815y - 0.0511y^2 - 0.00142y^3 + 0.00602y^4 ight)$
0,0		16^{-10}	$F_{\Sigma'}{}^{(n,n)}$	=	$e^{-2y} \left(0.000607 - 0.00136y + 0.000266y^2 + 0.000550y^3 + 0.0000997y^3 \right)$
$F_{7,7}^{(N,N')}$	=	$\frac{1}{8}\left(v^2 - \frac{q^2}{4\mu_{\pi}^2}\right) 4\pi F_{\Sigma'}^{(N,N')},$	$F_{\Sigma^{\prime\prime}}{}^{(p,p)}$	=	$e^{-2y} \left(0.903 - 2.37y + 2.35y^2 - 1.05y^3 + 0.175y^4 \right)$
(N N ()		$1 \left(\left(\begin{array}{c} 2 \\ 2 \\ 0 \end{array}\right) \left(\left(\begin{array}{c} 2 \end{array}\right) \left(\left(\begin{array}{c} 2 \\ 0 \end{array}\right) \left(\left(\begin{array}{c} 2 \end{array}\right) \left(\left(\left(\begin{array}{c} 2 \end{array}\right) \left(\left(\left(\begin{array}{c} 2 \end{array}\right) \left(\left(\left(\left(\begin{array}{c} 2 \end{array}\right) \left($	$F_{\Sigma''}{}^{(p,n)}$	=	$e^{-2y} \left(-0.0166 + 0.0509y - 0.0510y^2 + 0.0199y^3 - 0.00237y^4\right)$
$F_{8,8}^{(N,N')}$	=	$\frac{1}{4}4\pi \left(\left(v^2 - \frac{q}{4\mu_T^2} \right) F_M^{(N,N')} + \frac{q}{m_N^2} F_{\tilde{\Delta}}^{(N,N')} \right),$	$F_{\Sigma^{\prime\prime}}{}^{(n,n)}$	=	$e^{-2y} \left(0.000303 - 0.00107y + 0.00114y^2 - 0.000348y^3 + 0.0000320y^4 \right)$
$\mathbf{r}^{(N,N')}$		q^2	$F_{ ilde{\Delta}}^{(p,p)}$	=	$e^{-2y} (0.0251 - 0.0201y + 0.00401y^2)$
$F_{9,9}$	=	$\frac{16}{16} 4\pi F_{\Sigma'},$	$F_{ ilde{\Delta}}^{-^{(p,n)}}$	=	$e^{-2y} \left(-0.0213 + 0.0170y - 0.00341y^2 ight)$
$F_{10,10}^{(N,N')}$	=	$\frac{q^2}{4} 4\pi F_{\Sigma^{\prime\prime}}^{(N,N^{\prime})},$	$F_{ ilde{\Delta}}^{(n,n)}$	=	$e^{-2y} \left(0.0181 - 0.0145y + 0.00290y^2 \right)$
-(N,N')		q^2 , $\pi(N,N')$	$F_{ ilde{\Phi}''}{}^{(p,p)}$	=	$e^{-2y} \left(0.0392 - 0.0314y + 0.00627y^2 \right)$
$F_{11,11}^{(1,1,1)}$	=	$\frac{1}{4}4\pi F_M^{(1,1)}$	$F_{ ilde{\Phi}''}{}^{(p,n)}$	=	$e^{-2y} \left(0.100 - 0.0800y + 0.0160y^2 \right)$
$F_{1,2}^{(N,N')}$	_	$\frac{q^2}{4\pi F^{(N,N')}}$	$F_{ ilde{\Phi}''}^{(n,n)}$	=	$e^{-2y} \left(0.255 - 0.204y + 0.0408y^2 \right)$
- 1,5		$2m_N \stackrel{m}{\longrightarrow} M, \Phi''$	$F_{M\tilde{\Phi}''}^{(p,p)}$	=	$e^{-2y}\left(-1.78+1.77y-0.509y^2+0.0347y^3\right)$
$F_{4,5}^{(N,N^\prime)}$	=	$-rac{q^2}{8m} 4\pi F^{(N,N')}_{\Sigma',\tilde{\Delta}},$	$F_{M,\tilde{\Phi}''}^{(p,n)}$	=	$e^{-2y}\left(-3.26+3.31y-0.998y^2+0.0780y^3 ight)$
(N N')		$a^2 = (N N')$	$F_{M\tilde{\Phi}''}^{(n,n)}$	=	$e^{-2y} \left(-5.05 + 5.39y - 1.78y^2 + 0.172y^3\right)$
$F_{4,6}^{(N,N)}$	=	$\frac{4}{16}4\pi F_{\Sigma''}^{(10,10)},$	$F_{\Sigma',\Delta}^{(p,p)}$	=	$e^{-2y} \left(-0.213 + 0.371y - 0.210y^2 + 0.0382y^3\right)$
$F_{80}^{(N,N')}$	=	$\frac{q^2}{2} 4\pi F_{rr}^{(N,N')}$.	$F_{\Sigma',\Delta}{}^{(p,n)}$	=	$e^{-2y} \left(0.0923 - 0.161y + 0.0892y^2 - 0.0159y^3 \right)$
0,0		$8m_N$ Σ',Δ	$F_{\Sigma',\Delta}^{(n,n)}$	=	$e^{-2y} \left(-0.00331 + 0.00503y - 0.000138y^2 - 0.000537y^3\right)$
			,		

Light DM (3 GeV):

Light DM (3 GeV):

Light DM (3 GeV):

Sodium dominates!

Can this help DAMA?

Can this help DAMA? SI + LSD sector:

Can this help DAMA? SI + LSD sector:

High-E:

<u>SI + LSD sector:</u>

<u>SI + LSD sector:</u>

<u>SI + LSD sector:</u>

LD(SI) + SD sector:

LD(SI) + SD sector:

$$c_{8N} m_N \vec{S}_{\chi} \cdot \vec{v}^{\perp} + c_{9N} i \vec{S}_{\chi} \cdot (\vec{S}_N \times \vec{q})$$

LD(SI) + SD sector:

LD(SI) + SD sector:

 $m_N O_8$ and O_9

I. Elastic scattering - there is a model independent way to discuss all dark matter direct detection experiments in terms of 9 operators (assuming no CP violation). No need to model build :) .

I. Elastic scattering - there is a model independent way to discuss all dark matter direct detection experiments in terms of 9 operators (assuming no CP violation). No need to model build :).

2. These ops lead to 5 different nuclear responses.

I. Elastic scattering - there is a model independent way to discuss all dark matter direct detection experiments in terms of 9 operators (assuming no CP violation). No need to model build :) .

2. These ops lead to 5 different nuclear responses.

3. Some of the responses view nuclei in a different way: new L-dependent and LS-dependent interactions.

I. Elastic scattering - there is a model independent way to discuss all dark matter direct detection experiments in terms of 9 operators (assuming no CP violation). No need to model build :) .

2. These ops lead to 5 different nuclear responses.

3. Some of the responses view nuclei in a different way: new L-dependent and LS-dependent interactions.

4. At least 3 plots are needed to properly convey constraints on effective NR Lagrangian:

- a. SI + LSD sector
- b. LD + SD2 sector
- c. SDI sector

I. Elastic scattering - there is a model independent way to discuss all dark matter direct detection experiments in terms of 9 operators (assuming no CP violation). No need to model build :) .

2. These ops lead to 5 different nuclear responses.

3. Some of the responses view nuclei in a different way: new L-dependent and LS-dependent interactions.

4. At least 3 plots are needed to properly convey constraints on effective NR Lagrangian:

- a. SI + LSD sector
- b. LD + SD2 sector
- c. SDI sector
- 5. Having multiple targets is important!

