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Introduction

Technicolor

A (very) brief introduction to technicolor:

» Techniquarks 1 charged under a new gauge symmetry, which
becomes strong at EW scale.

v

11 plays role of Higgs field.

v

Chiral symmetry of techniquarks breaks spontaneously.

v

(1)) becomes nozero and breaks EW symmetry.

v

Technibaryons can be dark matter.

Francis Bursa, Swansea University Lattice simulations of SU(2) technicolor models



Introduction

Extended technicolor

Technicolor gives masses to W and Z bosons, but not to SM
fermions. Need Extended Technicolor.

» New gauge bosons at a scale Mgr¢ couple SM fermions to
techniquarks. Give mass to SM fermions:

(vy)

~ 2
Merc
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Introduction

Extended technicolor

Technicolor gives masses to W and Z bosons, but not to SM
fermions. Need Extended Technicolor.

» New gauge bosons at a scale Mgr¢ couple SM fermions to
techniquarks. Give mass to SM fermions:

)

2
METC

> Require Mgr¢c ~ 10 TeV to get right SM fermion masses.

» But to avoid flavour-changing neutral currents, need
METC Z, 1000 TeV!
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Introduction

Walking technicolor

(YY) ETC

m ~ o
METC
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Introduction

Walking technicolor

(YY) ETC

m ~ o
METC

But (3%)) is determined at TC scale, and runs to ETC scale:

MegTc
(V) eTe = (V) Tc eXP/A G;L’Y(M)

Can running be enhanced?
> Need () large over a large range of scales.
» Unlike QCD, where ~(u) falls rapidly above Agcp.

» Need “walking”: coupling runs slowly above Ar¢ so y(u) can
be large.
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Lattice methods

Lattice methods

Minimal requirements for a walking technicolor model:

» Chiral symmetry breaking
» Walking

» Large anomalous dimension
Do any such theories exist? If so, what are their properties?

Nonperturbative question.

» Only known way to address it, controlling all systematic
errors, is lattice field theory.
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Lattice methods

Aims of lattice calculations:

v

Determine phase diagram.

v

Search for walking theories.

v

Measure .

» For promising theories: Measure masses, S-parameter, ...

Space of theories:
> N, Ne.
> Representation (can have more than one).
» 4-fermion operators?

This talk: N, = 2.
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Lattice methods

Systematics

To give conclusive answers, need to control all systematic errors on
the lattice. These include:

» Finite mass effects.
» Finite volume effects.

» Discretisation effects.

More subtly, don't know answers, unlike in QCD.
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SU(2) adjoint
SU(2) theories SU(2) fundamental

Phase diagram

Phase diagram:

’ N
Dietrich and Sannino, Phys Rev D 75 (2007) 085018.

» For SU(2), only need to consider adjoint and fundamental
representations.
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SU(2) adjoint
SU(2) theories SU(2) fundamental

Adjoint fermions

SU(2) with Nf = 2 adjoint fermions is " minimal walking
technicolor”.
Many lattice studies of this model.

» Appears to be conformal.

» Evidence from running of Schrodinger Functional coupling and
scaling of spectrum.

» Anomalous dimension also measured.
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SU(2) adjoint
SU(2) theories SU(2) fundamental

Running coupling

The S function has been measured in the Schrédinger Functional

scheme.
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F.B., Del Debbio, Keegan, Pica, Pickup, arXiv: 0910.4535.

» Consistent with similar calculation of Hietanen, Rummukainen
& Tuominen, arXiv:0904.0864.
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SU(2) adjoint
SU(2) theories SU(2) fundamental

Spectrum

Introduce a small techniquark mass my, and measure technihadron
masses while taking m — 0.

1/2 .
» xSB: mps Mg, Meyerything else —7 finite.
1/(1
» Conformal: Meyerything mq/ (1+7),
» In particular, ratios like r%; are useful.

In practice, have to make sure results are not contaminated by
finite-volume or discretisation effects.
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SU(2) adjoint
SU(2) theories SU(2) fundamental

Spectrum

PS meson, glueballs, and string tension:
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F. B, Del Debbio, Henty, Kerrane, Lucini, Patella, Pica, Pickup & Rago,
arXiv:1104.4301.

Very unlike QCD: glueball is lighter than PS.
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SU(2) adjoint
SU(2) theories SU(2) fundamental

Ratios

Ratio of vector and PS masses:
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Looks conformal. . ..
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SU(2) adjoint
SU(2) theories SU(2) fundamental

Anomalous dimension

The anomalous dimension has also been measured, by several
methods:
» Step-scaling of Zp: 0.05 < 7 < 0.56 [arXiv: 0910.4535],
~v = 0.31(6) [arXiv:1102.2843].
» Spectrum: Fits are difficult, v < 1 [arXiv:1011.0607].
> Finite size scaling: v = 0.22(6) [arXiv:1004.3206],
~v = 0.51(16) [arXiv:1201.6262].
» Spectral density of Dirac operator: v = 0.371(20) [A. Patella,
arXiv:1204.4432].
» Monte Carlo renormalisation group: —0.6 < v < 0.6
[arXiv:1108.3794].
Consistently much lower than 1, and anyway looks like no xSB. So
probably this theory is not very useful for model-building.
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SU(2) adjoint
SU(2) theories SU(2) fundamental

Finite volume

Use this theory to learn how to study conformal / near-conformal
theories on the lattice.
E.g. Finite-size errors for PS mass:
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Need mpsL at least 12-14. Worse than QCD, where mpsL =4 —5
is enough.
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SU(2) adjoint
SU(2) theories SU(2) fundamental

Gluonic observables

Glueball masses and string tensions at mps = 1.187(2):
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For my++, need mpsL > 30!
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SU(2) adjoint
SU(2) theories SU(2) fundamental

Gluonic observables

Glueball masses and g 1.187(2):
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SU(2) adjoint
SU(2) theories SU(2) fundamental

SU(2) fundamental

For SU(2) fundamental, lose asymptotic freedom at N¢ = 11.

» Vary Nf to find edge of conformal window, and maybe
walking.

> |s «y large, for any N¢?
> Nf=24,...,10 have been studied.
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SU(2) adjoint
SU(2) theories SU(2) fundamental

Expect Nf = 2 to be QCD-like, with chiral symmetry breaking.

» Studied by Lewis, Pica and Sannino [arXiv:1109.3513].

» See expected pattern of ySB: SU(4) — Sp(4), with five
Goldstone bosons.
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SU(2) adjoint
SU(2) theories SU(2) fundamental

The S function has been measured in the Schrodinger Functional
scheme.

Karavirta, Rantaharju, Rummukainen, & Tuominen, arXiv:1111.4104.

No sign of a fixed point. Presumably still below conformal window.
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SU(2) adjoint
SU(2) theories SU(2) fundamental

Running of the Schrédinger Functional coupling:

01

Karavirta, Rantaharju, Rummukainen, & Tuominen, arXiv:1111.4104.

Running slows down. Fixed point? Walking?

» Also measured by F.B., Del Debbio, Keegan, Pica & Pickup
[arXiv:1007.3067]. Also see slowing down, again inconclusive.
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SU(2) adjoint
SU(2) theories SU(2) fundamental

Anomalous dimension for N = 6

~ has been measured using step-scaling of Zp:

T T T T T T T

09 E

08 g
07F E
061 E
2os E E
04f

il

0.1F

0.0 feec@c
E L L

Bl b b b b b b v b b 1003
00 05 10 15 20 25 3.0 35 40 45 50 55
u

F.B., Del Debbio, Keegan, Pica & Pickup, arXiv:1007.3067.

0.135 < v < 1.03. Depends strongly on location (and existence!)
of fixed point.
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SU(2) adjoint
SU(2) theories SU(2) fundamental

Anomalous dimension for N = 6

However. . .

Karavirta, Rantaharju, Rummukainen, & Tuominen, arXiv:1111.4104.

Much lower than previous result. Because of different continuum
extrapolations?
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SU(2) adjoint
SU(2) theories SU(2) fundamental

Spectrum for Nf = 6

Try to use spectrum to determine if Ny = 6 is conformal.

Nf=6, plqg + wilsonf, beta=2.0
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Yamada et al., talk at SGCT12mini, March 2012.

w

Too early to tell what happens in chiral limit.
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SU(2) theories

Spectrum for Nf = 6

SU(2) adjoint
SU(2) fundamental

Preliminary results for my//mps:

1.08

107

106 )

104 i i
H

1.08

1.02

101

1 . .

005 01 o015 02 025

» Doesn't look conformal:
» Not like QCD either.

no plateau.

» Finite volume effects large again. Need mpsL > 12.
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SU(2) adjoint
SU(2) theories SU(2) fundamental

Only one study: running of coupling, in scheme defined using
Wilson loops.
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Again, still inconclusive. No measurements of v at all.
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SU(2) adjoint
SU(2) theories SU(2) fundamental

Expect Nf = 10 to be conformal, with perturbative fixed point.
Running of the Schrodinger Functional coupling:

0.1

‘e 005

Karavirta, Rantaharju, Rummukainen, & Tuominen, arXiv:1111.4104.

Must be negative at small coupling, so there must be a fixed point.
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Conclusions

Conclusions

Technicolor on the lattice is making good progress.

» SU(2) with two adjoint fermions is probably conformal, and
has small ~ anyway.

» For fundamental fermions, the conformal window starts at
N¢ =6 or Nf = 8. v might be large.

» Finite volume effects often big, and finding a walking theory
needs high accuracy.

» It turns out lattice QCD was easy!

Francis Bursa, Swansea University Lattice simulations of SU(2) technicolor models



Bonus materials

@ confined, <Pus=0

@ @ atice simulation
"L analytc N bound

no spontaneous xSB

asym. freedom lost

analytic N estimate

senfratz 09
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Conclusions

Bonus materials

Anomalous dimension from spectral density:
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