#### Mis Displaced Supersymmetry

MASS 2012 Nordita

# Supersymmetry

• Naturalness (a la Wilson)

• Unification (LEP circa 1990)

• Dark Matter (LSP)

#### The LHC

• 2012 - announce the Higgs discovery (?)

• 2012 data - Is the electroweak scale "natural"?

#### Two short talks

- Displaced SUSY (a non-standard pheno) w/ P. Graham, S. Rajendran, P. Saraswat
- Misplaced SUSY (simply unnatural)

w/ N. Arkani-Hamed, A. Gupta, N. Weiner, T. Zorawski

#### Stops for Naturalness

 For a weakly coupled Higgs, what cancels the top loop? Stop - but not too heavy

$$\begin{array}{ccc} & \tilde{t} \\ & \tilde{t}_{h_u} \simeq -\frac{3y_t^2}{8\pi^2}(m_{\tilde{t}_L}^2 + m_{\tilde{t}_R}^2 + A_t^2)\log\frac{M}{m_{\tilde{t}}} \\ & \tilde{t} \\ & \tilde{t}$$

Also for Higgs quartic - but ignore for now

#### State of SUSY



# Allow LSP to Decay

- Lost LSP dark matter (could be plenty of other stable particles)
- Preserve Unification! (?) and Naturalness
- R-parity violation (generally bad for proton decay:  $LQD^{c} + LLE^{c} + U^{c}D^{c}D^{c}$ )

#### Bilinear RPV

- Simplest GUT embedding:
- $W \supset \epsilon \mu L H_u + \epsilon \mu H_{Tu} D^c$  ( $\epsilon \mu \overline{\mathbf{55}}_{\mathbf{H}}$ )
- Doublet-triplet splitting required anyway, thus baryon number violation suppressed (p-decay).
- Bilinear terms naturally dominate if RPV is spontaneous in another sector:  $\langle O \rangle \neq 0$

$$\frac{\mathcal{O}}{\Lambda^{n-1}}LH_u \sim \epsilon \mu LH_u$$

$$\frac{\mathcal{O}}{\Lambda^n} U^c D^c D^c \sim \epsilon \frac{\mu}{\Lambda} U^c D^c D^c$$

#### Bilinear RPV

 $W \supset \epsilon \mu L H_u + \mu H_u H_d$ 

Rotate L and H<sub>d</sub>:

 $W \supset \epsilon y_b L Q_3 D_3^c + \epsilon y_\tau L L_3 E_3^c$ 

Predictive - mostly 3rd generation

(Higgs triplet rotation gives baryon number violating coupling:

 $\epsilon \frac{\mu y}{M_T} U^c D^c D^c$ 

which is safe for GUT-scale triplet and small enough epsilon)

#### Bounds: nu masses



#### Requires roughly: $\epsilon < 10^{-3}$ (Satisfies p-decay bounds too)

# LSP decays

| LSP             | $	ilde{\chi}$                      | $\tilde{\nu}$ | $	ilde{	au}$ | $\tilde{u}_L$ | $\widetilde{b}$ |
|-----------------|------------------------------------|---------------|--------------|---------------|-----------------|
| Dominant Decays | $\nu b \overline{b}, \ \nu \tau l$ | $b\bar{b}$    | $l^{\pm}\nu$ | $l^{\pm}q$    | $b\nu$          |

- Suppressed missing energy
- Additional jets, b's
- possibly leptons

#### LSP decays



- Suppressed missing energy
- Additional jets, b's
- possibly leptons

#### Neutralino LSP



 $\epsilon = 10^{-3}$  $m_{\tilde{q}} = m_{\tilde{\ell}}$  $\tan\beta = 5$ 

#### **Displaced Vertices!**



### **Displaced Vertices!**

| Collider Search                        | Issues Limiting Sensitivity to<br>Displaced BRPV Decays              |
|----------------------------------------|----------------------------------------------------------------------|
| Searches in leptons and <i>b</i> -jets | Displaced tracks prevent reconstruction                              |
| Searches in jets +<br>MET              | Highly suppressed missing<br>energy, CMS jets require<br>good tracks |
| Searches for<br>displaced vertices     | Specific decay topologies not yet searched for                       |

#### Neutralino LSP



# Constraints on squarks and gluinos



#### Constraints, Searches

- All squarks as low as 450 GeV
- Displaced vertex searches only significantly constrain  $\chi \to \nu \mu \tau$
- Discovery: displaced vertex triggers (LHCb only?) and continued jets + MET

### **Displaced Conclusion**

- Bilinear R-parity violation is well-motivated and consistent with low energy constraints
- RPV couplings can naturally be small, giving the LSP a macroscopic decay length
- Such decays greatly relax the constraints from existing searches on supersymmetry and squark mass in particular
- An appropriately designed search can have great discovery potential for these models.

### LHCb is geared up!



### Misplaced SUSY

 MSSM looks challenged if you don't like tuning:



# Higgs mass corrections

Top Yukawa coupling has a significant impact on the effective potential of the Higgs:



Depends on the stop mass logarithmically

# Theory Tuning

We have been tuning for decades in 'theory space' simply in order to avoid tuning the quadratic term in the Higgs potential

(PeV SUSY, Split SUSY, etc...)

# Sfermions vs. Gauginos

 Since the 80's, it has been clear that gauginos 'want' to be much lighter than squarks/ sleptons:

 $X \to \theta^2 F_X$ 

$$\int d^4\theta \frac{X^{\dagger} X Q^{\dagger} Q}{M_{pl}^2} \quad \text{and} \quad \int d^2\theta \frac{X W^{\alpha} W_{\alpha}}{M_{pl}}$$

• X can be anything for the first, must be an exact singlet for the second (hard to come by)

# Anomaly Mediation

 A ubiquitous contribution to the gauginos (and A-terms) was found:



• Since  $m_{3/2} \sim F/M_{pl}$ , gauginos are 1-loop suppressed.

# FCNC and CPV



Scalars could be at ~ 1000 TeV

# Higgsinos

- The mu-term breaks Peccei-Quinn and R symmetries could be small
- Simplest mechanism is Giudice-Masiero

$$\int d^4\theta H_u H_d(\phi^{\dagger}\phi) \to \int d^4\theta H_u H_d(\phi^{\dagger}/\phi)$$
$$\phi = 1 + \theta^2 m_{3/2}$$
$$\mu^2 \sim B\mu \sim m_{3/2}^2$$

#### Simple Spectrum

 $\sim 1000 + scalars, higgsinos$ 

↓ ↓ gauginos

- For gravity mediation, arguable the most *natural* spectrum:
- Natural value for  $\tan \beta \sim \mathcal{O}(1)$  1-10 since:

$$m_{h_u}^2 \sim m_{h_d}^2 \sim \mu^2 \sim B\mu \sim m_{3/2}^2$$

#### Higgs mass wants



#### Higgs mass wants



#### Higgs mass wants



# Flavor wants a split spectrum too!

$$\delta\lambda_{up} \sim \lambda_{top} \left(\frac{\alpha_s}{\pi}\right) \left(\frac{\mu m_{\tilde{g}}}{m_s^2}\right) \sim 10^{-2} \times \left(\frac{\mu m_{\tilde{g}}}{m_s^2}\right)$$







# Why is it tuned?

- Gauginos could have been discovered at 1 GeV!
- A 'downward' pressure exists from the EW scale and CC. Perhaps there are 'upward' pressures too?
- For another talk/project. Simply interested in phenomenology.



#### DM model dependence

- Could be a 'well-tempered' relic lighter okay
- Could be only part of DM (axions) lighter required
- Could be repopulated by moduli decay (at m<sub>3/2</sub>) 100 GeV fine.

# Additional states at m<sub>3/2</sub>

- Vector-like states (5 + 5 s) could appear at m<sub>3/2</sub> via Giudice-Masiero.
- 1-4 'messengers' okay for unification, correct gaugino masses.
- may be part of flavor model at 1000 TeV.

# Gaugino spectra

Splitting always smaller with messengers



#### Add'l mults

Higgs 125 GeV in the following:

| 115                                  | N | $\tan \beta$ | $m_s$ (TeV) | $m_{3/2} ({\rm TeV})$ | $\mu(TeV)$ | $M_1 \; ({\rm GeV})$ | $M_2 \; ({\rm GeV})$ | $M_3 \; ({\rm GeV})$ | ]                              |
|--------------------------------------|---|--------------|-------------|-----------------------|------------|----------------------|----------------------|----------------------|--------------------------------|
| $\alpha_s \sim .115 \longrightarrow$ | 0 | 4.0          | 80          | 80                    | 80         | 802                  | 377                  | 2394                 |                                |
| *                                    | 1 | 2.8          | 300         | 75                    | 300        | 974                  | 773                  | 779 🥆                | gaugino-LSP<br>splitting small |
| $\alpha_s \sim .107$                 | 2 | 3.0          | 100         | 80                    | 100        | 1307                 | 1377                 | 1478                 |                                |
|                                      | 3 | 2.7          | 250         | 50                    | 50         | 945                  | 1113                 | 1951 🗡               |                                |
|                                      | 4 | 2.7          | 250         | 50                    | 50         | 1094                 | 1409                 | 2955                 |                                |
| *                                    | 5 | 2.9          | 150         | 30                    | 30         | 742                  | 1025                 | 2457                 |                                |

More optimistic for LHC discovery!



If tops, a measure of tuning!

Electroweak production/decay



$$\frac{(h^{\dagger}\tilde{W}h)\tilde{B}}{m_{\tilde{h}}}$$

dim 5



 $\frac{(h^{\dagger}D^{\mu}h)\tilde{W}\sigma_{\mu}\tilde{B}}{m_{\tilde{\tau}}^2}$ 

dim 6

Electroweak production/decay



Forbidden decay to Z - BR goes like  $\sim m_Z^2/m_{\tilde{h}}^2$ Could probe higgsinos to 10 TeV!

Very hopeful spectra:



8 b's, 4 W's, missing  $E_T$ , slightly displaced tops

#### Killing naturalness

Rule out stops

#### Searches: t tbar + met



Semi-leptonic tops

stop have a small cross section about 1/6 of Dirac Fermions

#### Searches: t tbar + met



# Suggest: loose 'top tags'

- Look for fully hadronic tops: large BR and no neutrino
- "Top tag"s kill combinatoric background for a very mild cost in signal







- Require MET is isolated
- MET>175 GeV
- Cluster with R=1.2, require 2 fat jets, one passes HEPTopTagger, other btagged.

dominant background:

 $t\bar{t} + nj \rightarrow (bjj)(b\tau_h\nu_\tau) + nj$ 



#### Transverse mass cuts

- m<sub>T2</sub> cut on two fat jets and MET (>200 GeV)
- m<sub>T</sub> cut on each of the two fat jets (>200 GeV)

(helps kill the tau neutrino)



#### Transverse mass cuts

- m<sub>T2</sub> cut on two fat jets and MET (>200 GeV)
- m<sub>T</sub> cut on each of the two fat jets (>200 GeV)

(helps kill the tau neutrino)

Can be done now!



#### Transverse mass cuts

- m<sub>T2</sub> cut on two fat jets and MET (>200 GeV)
- m<sub>T</sub> cut on each of the two fat jets (>200 GeV)

(helps kill the tau neutrino)



### Misplaced conclusion

- Higgs at 125 GeV has us staring naturalness in the face.
- Some can be resolved this year!
- Thank you!!