Current status of Standard Model Higgs boson searches from ATLAS

on behalf of the ATLAS collaboration

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

Jonas Strandberg

Introduction

- For 50 years now, particle phycisists have been searching for a particle called the Higgs boson.
 - Postulated to exist in the 1960's to solve problems in the theory of elementary particles.
- This talk will review the latest public results for the Standard Model Higgs boson searches from ATLAS.
 - Non-SM Higgs searches from ATLAS are covered by Trevor on Thursday morning.
 - The results from CMS will be covered by Chiara (SM Higgs) tomorrow and by Mario (non-SM Higgs) on Wednesday.

ROYAL INSTITUTE

The Large Hadron Collider

The LHC

- The LHC is the latest in the series of energy frontier colliders, taking over from the Tevatron and LEP before it.
 - LHC collides two beams of protons at a center of mass energy of 7 TeV (in 2011) or 8 TeV (in 2012).
 - In comparison, the Tevatron was a $p\bar{p}$ collider at 2 TeV, and LEP an e⁺e⁻ collider at around 200 GeV collision energy.
- The idea of the LHC is to explore the physics at the electroweak scale and to search for any new physics beyond the SM.
 - To close the book on the question of the Higgs boson existance in the full mass range up to 1 TeV.
 - To investigate whether there are new particles from for example Supersymmetry, where the WIMP miracle favors a DM particle to have a mass of the order of 100 GeVs.

TECHNOLOGY

The Data Sample

The "amount" of collision data is measured in integrated luminosity. Dimensions of inverse cross section:

$$N = \sigma \cdot \int L \, dt$$

• Only the data from 2011 (7 TeV) has been analysed so far!

The ATLAS Detector

- ATLAS is, together with CMS, one of the general purpose detectors at the LHC. Designed to be able to do any kind of physics analysis to high precision.
 - The ATLAS collaboration consists of about 3,000 members from 174 universities in 38 countries.
- To achieve the physics goals, ATLAS needs to be able to measure the decay products from the rapidly decaying new particles produced with high precision.

ROYAL INSTITUTE OF TECHNOLOGY

Higgs Production at the LHC

- Total cross section, σ , at the LHC is roughly 10¹¹ pb.
 - A Higgs boson is produced in 1 out of 10^{10} collisions.

Higgs Boson Decays

- ROYAL INSTITUTE OF TECHNOLOGY
 - Depending on the mass of the Higgs boson, it tends to decay to the heaviest available pair of particles.

Search Channels

ROYAL INSTITUTE OF TECHNOLOGY

- H→γγ and H→ZZ→4l channels at low Higgs mass with great mass resolution.
- H→WW→lvlv, H→ττ (II, Ih, hh) and VH, H→bb channels at low mass with limited mass resolution.
- $H \rightarrow ZZ \rightarrow IIvv, H \rightarrow ZZ \rightarrow IIjj$ and $H \rightarrow WW \rightarrow Ivjj$ for high masses.

Channel	m _H range (GeV)	Backgrounds	L (fb-1)	Reference
Н→үү	110-150	γγ, γj, jj	4.9	arXiv:1202.1414
H→ZZ→4I	110-600	ZZ, Z+jets, $t\bar{t}$	4.8	arXiv:1202.1415
H→WW→lvlv	110-600	WW, tt, W/Z+jets	4.7	arXiv:1206.0756
Η→ττ (ll, lh, hh)	100-150	Ζ→ττ, $t\bar{t}$	4.7	CONF-2012-014
VH, H→bb	110-130	W/Z+jets, $t\bar{t}$	4.7	CONF-2012-015
H→ZZ→llvv	200-600	VV, $t\bar{t}$, Z+jets	4.7	arXiv:1205.6744
H→ZZ→lljj	200-600	Z+jets, $t\bar{t}$, VV	4.7	CONF-2012-017
H→WW→lvjj	300-600	W+jets, $t\bar{t}$, QCD	4.7	CONF-2012-018

Object Uncertainties

ROYAL INSTITUTE OF TECHNOLOGY

Physics Object	Source	Uncertainty on signal yield	Most affected search channels
Photons	Efficiency	11%	γγ
Electrons	Efficiency Energy Scale Energy Resolution	< 3% < 1% < 0.5%	4-lepton
Muons	Efficiency Momentum Res	< 1% < 1%	4-lepton
Jets	Energy Scale Energy Resolution	Up to 12% Up to 20%	ττ, bb, lljj, lvjj lvjj
b-tagging	Efficiency	Up to 15%	bb
τ-jet	Efficiency	Up to 8%	ττ
	Luminosity	3.9%	

High Higgs Boson Mass Searches

 $H \rightarrow ZZ \rightarrow IIvv$

- 4 sub-channels: (ee, μμ)
 * (low-, high-pileup).
- $|m_z m_{\parallel}| < 15$ GeV.
- Different selections for m_H < 280 GeV & m_H > 280 GeV.
- Cuts on MET, opening angle between the leptons and opening angle between MET and other leptons and jets.
- Use m_T distribution for the limit setting.

H→ZZ→lljj

- 2 sub-channels: (btag, untag).
- 83 < m_{II} < 99 GeV, 70 < m_{ii} <105 GeV.
- Cuts on MET, opening angle between the jets.
- For m_H > 300 GeV, cut on opening lepton angle.
- angle between MET and Use m_{IIjj} distribution for the limit setting.

H→WW→lvjj

- 6 sub-channels: (e, μ) *
 (0, 1, 2 jets).
- 71 < m_{ii} < 91 GeV.
- Cut on MET.
- Require m_{lv}=m_W.
- For 2-jet channel, require m_{jj} and jet opening angle cuts.
- Use m_{Ivjj} distribution for the limit setting.

The $H \rightarrow ZZ \rightarrow IIvv$ Channel

ROYAL INSTITUTE OF TECHNOLOGY

- Most sensitive channel in the high mass region.
 - Expected exclusion 280-497 GeV.
 - Observed exclusion 319-558 GeV.

The H→ZZ→lljj Channel

ROYAL INSTITUTE OF TECHNOLOGY

- Background extraction of Z+jets from m_{jj} sidebands and the $t\overline{t}$ background from m_{ll} sidebands.
 - Expected exclusion: 360-400 GeV.
 - Observed exclusion: 300-310, 360-400GeV.

ECHNOLOGY

- Invariant mass of the Higgs boson candidate reconstruction by means of the m(lv) = m(W) mass constraint.
- Background modeled directly from the fit to the m_{ii} spectrum.

Searches in the Low Mass Region

ROYAL INSTITUTE OF TECHNOLOGY

H→ZZ→4I

- 4 sub-channels: (4e, 4μ, 2e2μ, 2μ2e)
- Use 4l invariant mass spectra for the limit setting.

Η→γγ

- 9 sub-categories: (p_T^{thrust}, η, conversion)
- Use the γγ invariant mass spectra for the limit setting.

$H \rightarrow WW \rightarrow IvIv$

- 9 sub-channels: (ee, eµ, µµ) * (0, 1, 2 jets reconstructed).
- Use m_T shape for the limit setting.

H→ττ (II, lh, hh)

- · / · · · (... , ... , ... , ...)
- 12 sub-channels (different jet bins considered).
- Use m_{eff} or m_{ττ} distributions for limit setting.

VH, H→bb

- 11 sub-channels, depending on p_T of the W/Z boson and MET.
- Use m_{bb} distribution for the limit setting.

CHNOLOGY

The H \rightarrow ZZ \rightarrow 4l Channel

- High mass resolution (at 130 GeV: around 1.5-2%). Above Higgs boson masses of 350 GeV the natural width dominates.
- Reducible background estimation largely done from the data:

CHNOLOGY

$H \rightarrow ZZ \rightarrow 4I$ Results

- The invariant mass distribution shows excesses at three different masses.
 - Expected limit: 137-157, 184-400 GeV.
 - Observed limit: 134-156, 182-233, 256-265, 268-415 GeV.

TECHNOLOGY

$H \rightarrow ZZ \rightarrow 4I$ Results

- The invariant mass distribution shows excesses at three different masses.
 - Expected limit: 137-157, 184-400 GeV.
 - Observed limit: 134-156, 182-233, 256-265, 268-415 GeV.

The $H \rightarrow \gamma \gamma$ Channel

- ROYAL INSTITUTE OF TECHNOLOGY
 - Require two isolated photons above 40 and 25 GeV.
 - Powerful γ/jet separation necessary.
 - Relies on being able to see the signal due to the excellent γγ resolution.

$H \rightarrow \gamma \gamma$ Results

ROYAL INSTITUTE OF TECHNOLOGY

- Background fitted with exponential.
 - Largest excess at a mass of 126 GeV.

Jonas Strandberg

CHNOLOGY

- Observed exclusion: 113-115 GeV, 134.5-136 GeV.
- Significance: 2.8σ local, 1.5σ global (entire range)

TECHNOLOGY

The H→WW→lvlv Channel

- Most sensitive channel in a broad mass range 120-180 GeV.
- Select two leptons and large MET, then look in the 0-, 1- and 2-jet multiplicity bins separately.

CHNOLOGY

H→WW→lvlv Results

- Apply further selections that exploit the spin-0 nature of the Higgs boson, correlations in the lepton opening angles.
- Two neutrinos in the final state, no invariant mass peak. Use the transverse mass distribution to determine the limit.

- The limit is derived from a fit to the transverse mass spectra:
 - Expected exclusion: 127-233 GeV.
 - Observed exclusion: 133-261 GeV.

NOLOGY

The (W/Z)H, $H \rightarrow bb$ Channels

• Selection requires exactly two b-tagged jets, and identifies the leptonic decay products from the W or Z boson.

OF TECHNOLOGY

The H→ττ (II, Ih, hh) Channels

- Mass reconstruction possible due to assuming collinearity of the decay products from the tau leptons.
- Sub-channels separated into different jet categories (0-, 1-jet, 2-jet VH, 2-jet VBF).

Results from All Channels

ROYAL INSTITUTE OF TECHNOLOGY

Combination

ROYAL INSTITUTE OF TECHNOLOGY

HNOLOGY

Combined Exclusion Limit

- Expected exclusion at 95% CL: 120-555 GeV.
 - Observed exclusion at 95% CL: 110-117.5, 118.5-122.5 and 129-539 GeV. Observed exclusion at 99% CL: 130-486 GeV.

The Low Mass Exclusion

- Expected exclusion at 95% CL: 120-555 GeV.
 - Observed exclusion at 95% CL: 110-117.5, 118.5-122.5 and 129-539 GeV. Observed exclusion at 99% CL: 130-486 GeV.

OF TECHNOLOGY

ROYA

NSTITUTE

Looking at the Excess

The Excess at Low Mass

ROYAL INSTITUTE OF TECHNOLOGY

- Observed local significance 2.5σ (expected 2.9σ).
- Best-fit signal strength at 126 GeV = $0.9^{+0.4}_{-0.3}$.

The Excess by Channel

ROYAL INSTITUTE OF TECHNOLOGY

Excess is mainly observed in two high-resolution channels.

Conclusions

- 2011 was a fantastic year in terms of LHC data taking.
 - Excellent ATLAS performance, from detector to physics (116 papers submitted or published).
- Allowed SM Higgs boson mass has been squeezed into a tiny region: 117.5-118.5 GeV or 122.5-129 GeV.
- In the low-mass region no exclusion was possible due to an excess of observed events compared to the expectation.
- The excess is compatible with the Standard Model Higgs boson hypothesis with m_H around 126 GeV. Statistical significance not large enough to draw definite conclusions.

Stay tuned for the analysis of the data from this year!