

CMS searches for non-SM Higgs

Mario Pelliccioni Istituto Nazionale di Fisica Nucleare on behalf of the CMS Collaboration

Origin of Mass, 11-17 June 2012 - Stockholm

٠

•

٠

٠

- Higgs searches in Supersymmetry scenarios:
 - · Neutral Higgs
 - · Charged Higgs
 - · NMSSM light Higgs
 - SM4
- Fermiophobic Higgs
- H^{++}
- Higgs to long-lived particles

٠

٠

- With this year data, LHC experiments should either discover or exclude the Higgs within the SM scenario
- Both cases could simply not be the end of the story
- If we do find the Higgs
 - · Is it the SM Higgs? Could be MSSM
 - Is there only one Higgs? \rightarrow (N)MSSM
 - If we don't find the Higgs
 - · Has it different couplings?
 - MSSM, Fermiophobic, SM4
 - The Higgs sector has a more sophisticated structure
 - MSSM, Doubly charged Higgs
 - Maybe its mass is lighter?
 - · NMSSM
 - · Or its decays are "hidden" to our experimental setup

INFN

Origin of Mass 2012 - Mario Pelliccioni

MSSM searches

•

•

٠

- In MSSM you end up with two Higgs doublets
- This leads to a more complicated scalar sector:
 - A light neutral CP-even state (h), two charged states (H^{\pm}), a heavy neutral CP-even state (H) and a neutral CP-odd state (A)
- Effectively, one can describe the entire sector with two parameters, usually m_{λ} and the ratio of the vev for the two doublets (tan β)

Neutral MSSM Higgs boson

- b-quark coupling enhanced in MSSM: $g_{b\bar{b}H}^{MSSM} = \tan \beta \cdot g_{b\bar{b}H}^{SM}$
- · Associated production dominates over gluon-gluon fusion

- · Lepton decays have lower BR, but higher sensitivity at LHC
- тт dominates, but µµ cleaner

NFN

CMS PAS HIG-12-011

Search for MSSM $\Phi^0 \rightarrow \mu^+ \mu^-$

- Look for events with two muons and low missing E_{τ} (< 30 GeV)
- Divide events into three (non-overlapping) categories:
 - Cat1: Events with at least 1 b-tagged jet
 - · Cat2: Events with no b-tagged jet but an additional muon
 - Cat3: Events with no b-tagged jet and no muons (g-g fusion)
 - Muon selection:

INFN

- · |η| < 2.1
- · $N_{hits} > 10 (N_{pix} > 0)$
- \cdot p_{T,1} > 30 and p_{T,2} > 20 GeV
- $\cdot \chi^2$ /ndof < 10
- $|d_{xy}| < 0.02$ and $|d_{z}| < 15$ cm
- · Isolation: Sum of momenta and calorimeter energy < 10% of muon p_{τ}

Background contributions

Cat1 : b-tag

Cat2 : no b-tag, +1 muon

Preliminary 2011 Cat.2

Cat3 : no b-tag, no muon

- bbZ irreducible background to the analysis
- tt important for Cat1
- WW for Cat3
- · Other backgrounds considered: Z->2I, WZ, ZZ, W, QCD, single t

•

•

٠

Signal and background parametrization

- Separate parameterization for the three categories
- Signal: shape fitted from MC and fixed in data:

$$F_{sig} = a \cdot F_{BWh^0} + b \cdot F_{BWH^0} + (1 - a - b) \cdot F_{BWA^0}$$

Background: fitted to data

$$F_{bkg} = e^{\lambda x} \left(\frac{f_{BWZ^0}}{N_{norm1}} \cdot \frac{\Gamma_{Z^0}}{(x - M_{Z^0})^2 + \frac{\Gamma_{Z^0}^2}{4}} + \frac{(1 - f_{BWZ^0})}{N_{norm2}} \cdot \frac{1 \text{GeV}/c^2}{x^2} \right)$$

where
$$x = M_{\mu\mu}$$

Main sources of systematics

- Theoretical cross sections (~20%)
- Renormalization and factorization scales (~10%)
- b-tagging efficiency (~4%)
- Luminosity (~2%)

•

- Search in three independent final states: $e_{T_{h}}$, $\mu_{T_{h}}$ and e_{μ} ٠
- Adronically decaying taus reconstructed with particle-flow algorithm ٠ using HPS
- Tau candidates are typically isolated for signal ٠
- Low transverse mass for tau tracks (neutrinos are ~ collinear) ٠
- Split the sample into two categories: ٠
 - **b-Tagged**: at most one jet with $p_{\tau} > 30$ and one b-tagged jet with p₋ > 20 GeV
 - Non b-tagged: at most one jet with $p_{\tau} > 30$ and no b-tagged jet with $p_{\tau} > 20 \text{ GeV}$

Event selection

et channel				
h	MSSM			
Process	Non B-Tag	B-Tag		
$Z \rightarrow \tau \tau$	13115 ± 908	126 ± 8		
Fakes	6482 ± 305	101 ± 9		
W+jets	5441 ± 377	32 ± 2		
$Z \rightarrow ll$	6029 ± 646	26 ± 3		
tĒ	44 ± 7	69 ± 10		
Di-Boson	98 ± 21	1 ± 1		
Total Background	31208 ± 2264	355 ± 35		
$H \rightarrow \tau \tau$	44 ± 4	4 ± 1		
Data	32062	391		

| **N F N**

Signal Efficiency

 $gg \rightarrow \phi$

 $gg \rightarrow bb\phi$

Event selection

- For adronic taus final states:
 - $\cdot \quad p_{_{T,e}} > 20 \text{ or } p_{_{T,\mu}} > 17 \text{ GeV}$
 - Oppositely charged τ_h with $p_T > 20 \text{ GeV}$
- For eµ final state:

$$p_{T,1}$$
 > 20 GeV and $p_{T,2}$ > 10 GeV

Calculate Higgs candidate invariant mass with maximum likelihood technique

٠

٠

• Neutrinos momentum free parameter of the fit

8.22e-05

1.34e-03

- Includes tau decay phase-space and tau transverse momentum probability density
- Resolution of ~ 21% at 130 GeV

9.17e-03

9.75e-03

Sources of background

- Main source is $Z \rightarrow TT$, irreducible
 - Reconstruct from data $Z \to \mu \mu,$ with muons replaced by simulated taus
- Multijet events with one jet misidentified as muon or electron, and another as a Τ_h
- tt pair production
- Z production

NFN

Limits obtained with

- M_{SUSY} = 1 TeV
- Stop mixing parameter $X_t = 2M_{SUSY}$
- Higgsino mass µ = 200 GeV
- Gluino mass M_g = 800 GeV
- Stop and sbottom trilinear couplings $A_{b} = A_{t}$

Main systematic effects:

- Background normalization
- b-tag efficiency
- Luminosity

•

•

CMS PAS HIG-11-019 Submitted to JHEP

Charged Higgs searches

- If $m_{H^+} < m_t m_b^-$, then the main production mechanism at LHC is $pp \rightarrow ttX \rightarrow H^+W^-bb/H^+H^-bb$
- Three different final states: T_h +jets, $e(\mu)T_h$ and $e\mu$

τ_h+jets

- р_{Т,тһ} > 40 GeV
- At least 3 jets with $p_{T} > 30 \text{ GeV}$
- At least one of the jets must be b-tagged .
- Events with $e(\mu)$ with $p_{\tau} > 15$ GeV

rejected

NFN

- Cut on tau polarization to suppress W contamination
- Missing $E_{T} > 50$ GeV and

 $\Delta \phi(p_{\mathrm{T}}^{ au_{\mathrm{h}}}, E_{\mathrm{T}}^{\mathrm{miss}}) < 160^{\circ}$

- τ_,+e(μ)
- р_{Т,тһ} > 20 GeV
- p_{T,e(µ)} > 35 (30) GeV

At least two jets with $p_{T} > 35$ (30)

GeV

- At least one of the jets must be btagged
- Lepton isolation < 10(20)%*p_T
- Missing $E_{\tau} > 45$ (40) GeV

eμ

- р_т > 20 GeV
- At least two jets with $p_{\tau} > 30$ GeV
 - m_{eu} > 12 GeV

•

Lepton isolation < $15\%^*p_{T}$

Expected and observed events

Source	$N_{ m ev}^{ au_{ m h}+ m jets}\pm{ m stat.}\pm{ m syst.}$
HH + WH, $m_{\rm H^+} = 120 {\rm GeV}, {\cal B}({\rm t} \to {\rm H^+b}) = 0.05$	$51\pm4\pm8$
multijets (from data)	$26\pm2\pm1$
EWK+tt τ (from data)	$78\pm3\pm11$
EWK+tt no- τ	$6.0\pm3.0\pm1.2$
residual Z/ $\gamma^* o au au$	$7.0\pm2.0\pm2.1$
residual WW $\rightarrow \tau \nu_{\tau} \tau \nu_{\tau}$	$0.35 \pm 0.23 \pm 0.09$
Total expected background	$119\pm5\pm12$
Data	130

Source	$N_{ m ev}^{ m e\mu}\pm{ m stat.}\pm{ m syst.}$
HH+WH, $m_{\mathrm{H^+}} = 120 \mathrm{GeV}, \mathcal{B}(\mathrm{t} \to \mathrm{H^+b}) = 0.05$	$125\pm9\pm13$
tī dileptons	$3423\pm35\pm405$
other tī	$23\pm3\pm3$
$\mathrm{Z}/\gamma^* o \ell \ell$	$192\pm12\pm19$
W+jets	$14\pm 6\pm 2$
single top quark	$166\pm3\pm18$
diboson	$48\pm2\pm5$
Total expected background	$3866\pm38\pm406$
Data	3875

$N_{\rm ev}^{{\rm et}_{\rm h}} \pm {\rm stat.} \pm {\rm syst.}$	$N_{ m ev}^{\mu au_{ m h}}\pm{ m stat.}\pm{ m syst.}$
$51 \pm 3 \pm 8$	$89\pm4\pm13$
$54\pm 6\pm 8$	$89\pm9\pm11$
$100\pm3\pm14$	$162\pm4\pm23$
$9.0\pm0.9\pm1.8$	$13.0\pm1.2\pm2.5$
$4.8\pm1.8\pm1.3$	$0.7\pm0.7\pm0.7$
$17.0 \pm 3.3 \pm 3.0$	$26.0\pm4.3\pm6.1$
$7.9\pm0.4\pm1.1$	$13.5 \pm 0.5 \pm 1.9$
$1.3\pm0.1\pm0.2$	$2.0\pm0.2\pm0.3$
$194\pm8\pm20$	$306\pm11\pm32$
176	288
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Main background contributions:

- In τ_{h} +jets: multijet events with large missing E_{τ} and jets misidentified as taus or b-jets
- W+jets/Z+jets, diboson
- tt pair production, tW

H⁺ search results

Systematic uncertainties on event yields (%) for $m_{H_{+}} = 120 \text{ GeV}$

INFN

	HH	WH	tī	DY(ℓℓ)	W+jets	Single top	diboson
$JES+JER+E_T^{miss}$	2.1	2.0	2.0	6.0	10.8	4.0	6.5
cross section		$^{+7}_{-10}$		4.3	5.0	7.4	4.0
pileup modeling	4.5	4.5	5.0	5.5	4.0	5.5	5.5
MC stat	5.3	7.9	1.0	6.5	42.9	1.9	4.3
luminosity	2.2						
dilepton selection	2.5						

NMSSM

- Extends MSSM by adding a complex singlet field
- Solve the μ-term problem (when you break the symmetry, you generate an effective μ-term of the electroweak scale)
- You end up with three CP-even scalars (h_1 , h_2 , h_3), two CP-odd scalars (a_1 , a_2) and two charged scalars (H^{\pm})
- It is very natural for a_1 to have a mass of ~ $2m_B^2$
 - · Would allow a CP-even Higgs with SM-like WW/ZZ couplings with a mass below the nominal LEP limits (h \rightarrow aa \rightarrow 4j/4tau)

٠

- · Dimuon channel suppressed, but cleaner
- · Narrow resonance \rightarrow experimental resolution dominates
- Mainly background from continuum
- · Signal σxBR ~ 1-30 pb
 - Avoid the Y region ($\sigma x BR \sim nb$)
- Barrel and endcap considered as two separate channels and then combined into the final result
 - Exploit better resolution in barrel
 - Search for the resonance in two regions: 5.5 9 GeV/c² (Region 1) and 11.5 14 GeV/c² (Region 2)
 - Low p_{τ} muons \rightarrow dedicated dimuon trigger with special cuts optimized for this analysis

- $p_T(\mu) > 5.5 \text{ GeV/c}$, $|\eta|(\mu) < 2.4$
- Number of hits per track > 10 (>0 in pixel)
- Track χ^2 /ndof < 1.8
- Muon isolation < 0.2
- · If more than one candidate is present, choose the highest χ^2 probability

٠

- · We perform a scan of the invariant mass below/above the Ys
- In each step, a gaussian signal peak is centered in the bin of the scan and the sample is refitted
 - Since no significant signal, we put an UL on σxBR

Limits on |cosθa |

Within NMSSM, the mass eigenstate representing the light Higgs is \sim a singlet:

$$a_1 = \cos(\theta_a) a_{MSSM} + \sin(\theta_a) a_S$$

Coupling of a with $\mu\mu$ is proportional to $\cos(\theta_a)\tan\beta$

INFN

SM4

CMS PAS HIG-12-008

Adding a 4th generation to SM changes the gluon-gluon production cross section and the BR of the decays

Ratio of BRs in SM4 and SM using NLO EWK corrections BR(SM4)/BR(SM)

Tables and numbers provided by the LHC Cross Section Working Group

SM4 results

Higgs within SM4 scenario excluded in range 120-600 GeV

Assumes

$$M_{D4} = M_{L4} = 600 \text{ GeV}$$

• $M_{_{U4}} - M_{_{D4}} = [1 + 1/5*ln(M_{_{H}}/115) * 50 \text{ GeV}]$

Given the changes in BRs, at low mass the channel that contributes the most is $H \rightarrow \tau\tau$

Fermiophobic Higgs

•

CMS PAS HIG-12-002 Fermiophobic Higgs searches

- Higgs only coupled to bosons at tree level
- \cdot This enhances the $\gamma\gamma$ BR at low mass by an order of magnitude
- The cross section suppressed (only VBF and associated production)
- · Analysis similar to H \rightarrow $\gamma\gamma,$ H \rightarrow ZZ and H \rightarrow WW within SM, but focus on VBF and VH signatures
 - VBF: Two jets with $E_{T} > 30$ (20) GeV, separation of $\Delta \eta > 3.5$ and $m_{ii} > 350$ GeV
 - VH: Muons/electrons with p_{τ} > 20 GeV and ΔR > 1 with photons. Veto on Z mass for γe
 - All other selection criteria are very similar to SM searches (see Chiara M. talk)

Fermiophobic Higgs results

INFN

Fermiophobic Higgs excluded at 95% CL in range 110-192 GeV

Excess at 125 still present, but too weak to be compatible with fermiophobic Higgs signal

Doubly charged Higgs

H⁺⁺ searches

- Type-II seesaw mechanism generates one triplet scalar field containing a Φ^{++} scalar
- This can be seen at LHC via pair production or associated production

We search these topologies including at most one (two) T_h for the associated (pair) production

Selection criteria

Variable	ее, еµ, µµ	<i>e</i> τ, μτ
$\sum p_{\mathrm{T}}$	$> 1.1 \cdot m_{\Phi^{++}} + 60 \text{GeV}$	$> 0.85 \cdot m_{\Phi^{++}} + 125 { m GeV}$
$ m(\ell^+\ell^-) - m_{Z^0} $	> 80 GeV	> 80 GeV
$\Delta \varphi$	$< m_{\Phi^{++}}/600 \text{GeV} + 1.95$	$< m_{\Phi^{++}}/200 \text{GeV} + 1.15$
$E_{\mathrm{T}}^{\mathrm{miss}}$	none	> 20 GeV
Mass window	$[0.9 \cdot m_{\Phi^{++}}; 1.1 \cdot m_{\Phi^{++}}]$	$[m_{\Phi^{++}}/2; 1.1 \cdot m_{\Phi^{++}}]$

Three leptons final states

Variable	ее, еµ, µµ	ετ, μτ	
$\sum p_{\mathrm{T}}$	$> 0.6 \cdot m_{\Phi^{++}} + 130 \text{GeV}$	$> m_{\Phi^{++}} + 100 \text{GeV} \text{ or} > 400 \text{GeV}$	
$ m(\ell^+\ell^-)-m_{Z^0} $	none	> 10 GeV	
Mass window	$[0.9 \cdot m_{\Phi^{++}}; 1.1 \cdot m_{\Phi^{++}}]$	$[m_{\Phi^{++}}/2; 1.1 \cdot m_{\Phi^{++}}]$	

Four leptons final states

Variable	3τ	4 au
$\sum p_{\mathrm{T}}$	$> m_{\Phi^{++}} - 10 \text{GeV} \text{ or} > 200 \text{GeV}$	$\sum p_T > 120 \text{GeV}$
$ m(\ell^+\ell^-)-m_{Z^0} $	> 50 GeV	> 50 GeV
$\Delta \varphi$	< 2.1	< 2.5
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 40 GeV	none
Mass window	$[m_{\Phi^{++}}/2 - 20; 1.1 \cdot m_{\Phi^{++}}]$	none

Final states with τ_{h}

Search for Higgs to long-lived particles

٠

٠

٠

- Several models predict the existence of massive long-lived particles (split SUSY, weak R-parity violating SUSY, hidden valley models)
- Within these models one can expect the Higgs to decay to these exotic particles, that subsequently have decay vertices very far from the PV
- We search for the possible decay of $H^0 \rightarrow XX$, $X \rightarrow 2I$ (muons or electrons)

CMS PAS EXO-11-004

$H^0 \rightarrow XX \rightarrow 4I$ selection

- p_{τ} > 38 (25) GeV for electrons (muons)
- · $|\eta| < 2$ (efficiency drops at high η for displaced tracks)
- Require PV with at least 4 tracks to reject cosmics
- Transverse impact parameter significance $|d_0/\sigma| > 3$ (2) for electrons (muons)
- Dimuon vertex χ^2 /ndof < 5

NFN

•

- · Reject back-to-back muons
- Dimuon transverse momentum collinear with PV
- \cdot m₁ > 15 GeV to reject J/psi and γ conversions
- · Σp_{τ} in isolation cone < 4 GeV
- Dimuon vertex must be 8 (5) standard deviations from PV for electrons (muons)

Background estimation

Normalization

Fit the transverse decay length significance (cut removed) and extrapolate in the signal region

Shape

Invert the decay length significance cut (mass shape not dependent on those selections)

Results for $H^0 \rightarrow XX \rightarrow 4I$

Results depend on m_{μ} and m_{χ}

Few benchmark points provided

Also valid for Z' decays (acceptance slightly different, so small corrections need to be applied)

- Tracking efficiency is the largest systematic (~20%), estimated using data and MC cosmics for muons
 - Electrons assumed to have similar systematic (discrepancy with muons negligible wrt systematic error)
- Trigger efficiency (~10%)

NFN

٠

•

- CMS has a rich BSM Higgs searches program
 - MSSM, NMSSM, SM4, Fermiophobic Higgs, H⁺⁺
- 2011 data already provided the most stringent constraints to BSM Higgs in the LHC era
 - · In some cases, BSM models ruled out
 - In most searches, these analyses are relevant independently from a possible discovery of SM-like Higgs this year

New results will be coming out very soon

Backup

- · Jets reconstructed with anti- k_{τ} algorithm (R < 0.5)
- \cdot p_{T,jet} > 20 GeV and $|\eta_{jet}| < 2.4$
- · Tracks associated to jets ranked in impact parameters significance
- · Second largest significance taken as discriminator for the jet

Systematics for $\Phi^0 \rightarrow \mu^+ \mu^-$

HLT & <i>μ</i> Rec. Eff. [%]	±0.1	
E_T^{miss} [%]	±1.8	Syst
JES (Cat.1) [%]	$^{+0.3}_{-0.4}$	effici
JES (Cat.2) [%]	$^{+0.02}_{-0.04}$	
JES (Cat.3) [%]	$^{+0.4}_{-0.2}$	
<i>b</i> -tag [%]	±3.6	
μ_{3rd} [%] as in [22]	±1.2	
pile up [%]	±1	
integrated luminosity [%]	±2.2	
PDF and α_s [%]	± 1 to ± 3	
Q-scale [%]	± 5 to ± 13	
$\sigma_{A^0/H^0/h^0}$ [%]		
m_{A^0} and tan β dependent [25]	$^{+16}_{-20}$	
(not for $\sigma \times B.R.$ vs. m_{A^0})		

Systematcs shown as relative error to efficiency

44

Sources of systematic uncertainty	Uncertainty				
Per photon		Barrel	Endcap		
Photon identification efficiency		1.0%	2.6%		
$R_9 > 0.94$ classification (class migrat	tion)	4.0%	6.5%		
Energy resolution ($\Delta \sigma / E_{MC}$)	$R_9 > 0.94$ (low η , high η)	0.22%, 0.61%	0.91%, 0.34%		
	$R_9 < 0.94$ (low η , high η)	0.24%, 0.59%	0.30%, 0.53%		
Energy scale $((E_{data} - E_{MC})/E_{MC})$	$R_9 > 0.94$ (low η , high η)	0.19%, 0.71%	0.88%, 0.19%		
	$R_9 < 0.94$ (low η , high η)	0.13%, 0.51%	0.18%, 0.28%		
Per event					
Integrated luminosity		4.5	5%		
Vertex finding efficiency		0.4%			
Trigger efficiency One or both photons $R_9 < 0.94$ in endcap		0.4%			
Other events		0.1%			
Dijet selection					
Dijet-tagging efficiency	VBF process	10%			
VH leptonic selection					
Charged lepton identification efficie	ency	1.0%			
Inclusive 2D analysis					
2D Signal Model - $\pi_{\rm T}^{\gamma\gamma}$ parametrization		5%			
Production cross sections		Scale	PDF		
Vector boson fusion		+0.5% -0.3%	+2.7% -2.1%		
Associated production with W/Z		1.8%	4.2%		
Decay branching ratio					
$H \rightarrow \gamma \gamma BR$ in the FP model	5%				