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ABSTRACT

We have investigated the variability of a sample of long and short Fermi/GBM Gamma
ray bursts (GRBs) using a fast wavelet technique to determine the smallest time
scales. The results indicate different variability time scales for long and short bursts
in the source frame and that variabilities on the order of a few milliseconds are not
uncommon. The data also indicate an intriguing relation between the variability scale
and the burst duration.
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1 INTRODUCTION

The prompt emission from Gamma-ray Bursts (GRBs)
shows very complicated time profiles that hitherto elude a
satisfactory explanation. Fenimore & Ramirez-Ruiz (2000)
reported a correlation between variability of GRBs and the
peak isotropic luminosity. The existence of the variability-
luminosity correlation suggests that the prompt emission
light curve is embedded with temporal information related
to the microphysics of GRBs. Several models have been pro-
posed to explain the observed temporal variability of GRB
lightcurves. Leading models such as the internal shock model
(reference) and the photospheric model (reference) link the
rapid variability directly to the activity of the central en-
gine. Others invoke relativistic outflow mechanisms to sug-
gest that local turbulence amplified through Lorentz boost-
ing leads to causally disconnected regions which in turn
act as independent centers for the observed prompt emis-
sion. In more recent models, both Morsony et al. (2010)
and Zhang & Yan (2011) argue that the temporal variabil-
ity may show two different scales depending on the physical
mechanisms generating the prompt emission.

In order to further our understanding of the prompt
emission phase of GRBs and to explicitly test some of the
key ingredients in the various models it is clearly important
to extract the variability for both short and long gamma-
ray bursts in a robust and unbiased manner. It is also clear

⋆ E-mail: maclach@gwu.edu (GAM)

that the chosen methodology should not only be mathemat-
ically rigorous but also be sufficiently flexible to apply to
transient phenomena for multiple temporal resolutions and
a wide dynamic range.

In this paper, we extract variability time scales for
GRBs using a method based on wavelets. The layout of the
paper is as follows: the source of the data is described in
section 2; the main aspects of the wavelet methodology are
outlined in section 3; in section 4 we provide the details of
the data analysis; in section 5 we present and discuss our
main findings; finally, in section 6, we summarize our con-
clusions.

2 DATA

The Gamma-Ray Burst Monitor (GBM) on board Fermi
observes GRBs in the energy range 8 keV to 40 MeV. The
GBM is composed of 12 thallium-activated sodium iodide
(NaI) scintillation detectors (12.7 cm in diameter and by
1.27 cm thick) that are sensitive to energies in the range 8
keV to 1MeV, and two bismuth germinate (BGO) scintil-
lation detectors (12.7 cm diameter by 12.7 cm thick) with
energy coverage between 200 keV to 40 MeV. The GBM de-
tectors are arranged in such a way that they provide a full
view of the sky (Meegan et al. 2009).

In this work, we have extracted light curves for the
GBM NaI detectors over the entire energy range (8 keV
- 1 MeV, also including the overflow beyond 1 MeV). Typ-
ically, the brightest three NaI detectors were chosen for the

http://arxiv.org/abs/1201.4431v1
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Figure 1. GBM GRB080925775. Preburst portion of the light
curve, used for background removal, is shown in gray. The burst
portion, from which a time scale is extracted, is shown in black.

extraction. Lightcurves for both long and short GRBs were
extracted at a time binning of 200 microseconds. The long
GRBs were extracted over a duration starting from about
15-20 seconds before the trigger (pre-burst) and up to about
50 seconds after the T90 for the burst (post-burst) without
any background subtraction. For short GRBs, the pre- and
post-burst regions were chosen to be about 10 seconds each.
The T90 durations were obtained from the GCN circulars
distributed by the GBM team and directly from the litera-
ture.

3 METHODOLOGY

We report on our model-independent statistical investiga-
tion of the variability of Fermi/GBM long and short GRBs.
We extract this information by using a fast wavelet transfor-
mation to encode GRB light curves into a wavelet represen-
tation and a statistical measure of the variance of wavelet
coefficients is computed over multiple time-scales.

3.1 Minimum Variability Time Scales

It is often the case when multiple processes are present that
one process will dominate the others at certain time scales
but those same processes may exchange dominance at other
time scales. A wavelet technique is useful in these situations
because the variances of wavelet coefficients are sensitive to
whichever processes dominate the light curve at a given time
scale. Moreover, the technique can be used to classify those
dominant processes as well as provide a means to determine
the characteristic time scale, τβ , for which the processes ex-
change dominance. Determination of τβ is useful for the de-
velopment of theoretical models and the understanding of
observational data. Indeed, such a transition time scale sets
a lower bound beyond which it is not meaningful to look for
high frequency, small time scale variability.

3.2 Wavelet Transforms

Wavelet transformations have been shown to be a natu-
ral tool for multi-resolution analysis of non-stationary time-

series (Flandrin 1989, 1992; Mallat 1989). Wavelet analysis
is similar to Fourier analysis in many respects but differs
in that wavelet basis functions are well-localized, i.e. have
compact support, while Fourier basis functions are global.
Compact support means that outside some finite range the
amplitude of wavelet basis functions goes to zero or is oth-
erwise negligibly small (Percival 2000).

3.2.1 Discrete Dyadic Wavelet Transforms

In principle, a wavelet expansion forms a faithful representa-
tion of the original data, in that the basis set is orthonormal
and complete. Given the discrete nature of the data, we em-
ploy a discrete wavelet analysis The rescaled-translated na-
ture of the wavelet basis functions make the wavelet trans-
form well-localized in both frequency and time, which re-
sults in an insensitivity to polynomial backgrounds for pho-
ton counts. The level of insensitivity, formally known as the
vanishing moment condition, can be adjusted by choice of
wavelet basis function. By construction, the discrete wavelet
transform is a multi-resolution operation (Mallat 1989).
Such wavelets, denoted ψj,k(t), form a dyadic basis set, i.e.
wavelets in the set have variable widths and variable central
time positions.

The wavelet analysis employed in this study, as with
the fast Fourier transform, begins with a light curve with N
elements,

Xi = {X0 . . . XN−1}, (1)

where N is an integer power of two. The light curve is con-
volved with a scaling function, φj,k(ti), and wavelet func-
tion, ψj,k(ti) which are rescaled and translated versions of
the original scaling and wavelet functions φ(ti) = φ0,0, and
ψ(ti) = ψ0,0. Translation is indexed by k and rescaling is
indexed by j. The rescaling and translation relation is given
by

ψj,k(t) = 2−j/2
ψ(2−j

t− k). (2)

The precise forms of the scaling and wavelet functions
are not unique. The choices are made according to the fea-
tures one wishes to exploit (Percival 2000; Addison 2002).
The scaling function acts as a smoothing filter for the input
time-series and the wavelet function probes the time-series
for detail information at some time scale, ∆t, which is twice
that of the finest binning of the data, Tbin. In the analysis,
the time scale is doubled

∆t→ 2∆t

and the transform is repeated until

∆t = NTbin.

In this analysis we choose the Haar scaling/wavelet ba-
sis because it has the smallest possible support, has one
vanishing moment, and is equivalent to the Allan variance
determination, allowing a straightforward interpretation.

3.2.2 The Haar Wavelet Basis

Convolving X with the scaling functions yields approxima-
tion coefficients,

aj,k = 〈φj,k, X〉. (3)
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Interrogating X with the wavelet basis functions yields
scale and position dependent detail coefficients,

dj,k = 〈ψj,k, X〉, (4)

It is interesting to point out that for the trivial 2 × 2 case
the Haar wavelet transform and the Fourier transform are
identical.

3.3 Logscale Diagrams and Scaling

Logscale diagrams are useful for identifying scaling and noise
regions. Construction of a logscale diagram for each GRB
proceeds from the variance of detail coefficients Flandrin
(1992),

βj =
1

nj

nj−1
∑

k=0

|dj,k|
2
, (5)

where the nj are the number of detail coefficients at a par-
ticular scale, j. A plot of log2 variances versus scale, j, takes
the general form

log2 βj = αj + constant, (6)

and is known as a logscale diagram. A linear regression is
made of each logscale diagram and the slope parameter, α,
(depicting a measure of scaling) is estimated. White-noise
processes appear in logscale diagrams as flat regions while
scaling processes appear as sloped regions with the following
condition on the slope parameter, 1 6 α 6 3, coming about
from the fact that the fractal dimension of the data must
range from one to two.

4 DATA ANALYSIS

4.1 Analysis of Long and Short GRBs

4.1.1 Background Subtraction

Background subtraction in a wavelet-based analysis of time
scale dependent variances should remove noise variability
from the light curve while allowing physical variability aris-
ing from the GRB to remain for further analysis. Back-
ground subtraction for a statistical analysis of variability via
wavelet transforms should proceed in the space variances as
opposed to a traditional flat or linear subtraction of counts.
This owes to the fact that Haar detail coefficients are insen-
sitive to polynomial trends in the signal up to first order.
Subtraction of a flat or linear background from a light curve
is an operation under which the wavelet transform is invari-
ant (as are Fourier transforms) apart from the mean signal
coefficient.

The GRB light curves show power at various variablity
time scales. Most often, there is a region of the logscale di-
agram (log-power verses log-varibility time) with a single
slope, indicating scaling in the power over those variability-
times, and a flat region at the shortest variability times,
indicating the presence of white-noise. Some of this white-
noise may be intrinsic to the GRB. Some may be attributed
to background emissions from the sources not including the
GRB in question. We therefore express the variability of

the burst, βburst
j , at time scales j as comprising of indi-

vidual variances: a scaling component, βscaling ; an intrin-
sic noise component, βnoise; and a background component,
βbackground. The variability of the burst can then be de-
scribed as a linear combination of the component variances
so long as the components have vanishing covariances. In
this event we write,

β
burst
j = β

scaling
j + β

noise
j + β

background
j . (7)

The minimum variability time scale is identified from a
logscale diagram by the octave closest to the intersection of
the flat intrinsic noise domain, βnoise

j , with the sloped scal-

ing domain, βscaling
j . It is at this time scale that a structured

physical process appears to give way to one that is stochastic
and unstructured. Clearly one seeks to remove βbackground

j

from Eq. 7 to arrive at the cleanest possible signal,

β
burst
j → β

clean
j ≡ β

burst
j −βbackground

j = β
scaling
j +βnoise

j .(8)

In order to estimate the variance of the background dur-
ing the burst, we will assume that the variance obtained
from a preburst portion of the light curve can serve as an
acceptable surrogate for the background variance. That is,

β
preburst
j ≡ β

background
j , (9)

and then the background is removed from the signal accord-
ing to the relation,

log2(β
clean
j ) = log2(β

burst
j − β

preburst
j ). (10)

A simple algebraic manipulation of Eq. 10 gives a form,

log2(β
clean
j ) = log2(β

burst
j ) + log2

(

1−
β
preburst
j

βburst
j

)

. (11)

For long GRBs, the preburst is defined relative to a 0 s
trigger time as -20 s to -5 s and for short GRBs the preburst
is defined to be from -15 s to -1 s.

4.2 Simulation

The efficacy of this background subtraction method was
tested using simulated data in the form of fractional Brow-
nian motion (fBm) time series which were first discussed by
Mandelbrot (1968). The fBms were combined with Poisson
noise. The numerical computing environment MATLAB was
used to produce 1000 realizations of fBms with scaling pa-
rameter α randomly chosen from the range 1.0 6 α 6 2.0 by
using a uniform random number generator. The fBms were
combined with a Poisson noise with variance, λ1, randomly
chosen from the range 0.25 6 λ1 6 1.0 by using a uniform
random number generator. This Poisson noise is regarded as
intrinsic to the GRB. The fBms and the Poisson noises thus
produced were combined and stored as ideal light curves,
shown in green on the left panel of Fig. 2. The logscale
diagrams obtained from the ideal light curves are used to
compare against the results of the subtraction procedure.

Another set of Poisson noise with variances, λ2, were
randomly chosen from the range 1.0 6 λ2 6 4.0 by using a
uniform random number generator. These noise signals are
interpreted as external background meant to be removed by
the subtraction procedure and are shown in black on the left
panel of Fig. 2.
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Figure 2. In the left hand panel are simulated lightcurves and
noise processes: an ideal fBm process (green) and a background

Poisson noise (black). The sum of the fBm and Poisson processes
is shown in red and is labeled observed. The observed light curve
(red) is the sum of the fBm and Poisson noise. The right hand
panel shows the results of the background subtraction procedure.
Red and black points show the logscale diagrams for the observed

lightcurve background, respectively. The green data shows the
logscale diagram for the ideal lightcurve and the blue data are
the logscale with background removed. The agreement between
green and blue data demonstrates the merit of the background
removal procedure.

The ideal light curves were then combined with exter-
nal backgrounds resulting in pseudo-observed light curves
shown in red on the left panel of Fig. 2. The pseudo-observed
light curves and the external background noises were trans-
formed into wavelet coefficients and wavelet variances were
computed according to Eq. 5. The variances of the pseudo-
observed light curve (labeled actual) and the background
are plotted in the right panel of Fig. 2 in red and black, re-
spectively. The background was subtracted from the pseudo-
observed light curve as detailed in Eq. 2 and the resulting
corrected variances are plotted in blue in the right panel
of Fig. 2. The corrected variances are to be compared to
the variances of the ideal light curve which are plotted in
green. Notice the close agreement between the background-
subtracted variances and the variances of the ideal light
curve. The pseudo data shown in Fig. 2 is one realization
out of the 1000 that were generated but is representative of
the set.

In summary, 1000 simulated light curves were gener-
ated and background noise was added. The light curves
with background noise were then denoised using the same
algorithm applied to actual GRB data in which preburst
data were used as a surrogate for background. The simu-
lated background subtracted variances were then compared
to the variances of the ideal light curves, i.e., light curves
without external background noise. The results indicate that
the background subtraction method is robust and gives con-
fidence that external background noise can be subtracted
from the GRB light curves with the assumption that pre-
burst data can serve as a surrogate for background noise.
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4.3 Selection Criteria

We began by examining 66 short GRBs and 67 long GRBs
for a first-pass analysis of τβ and the results are shown in
Fig. 3. For the second-pass we require a brightness cut, i.e.,
that the variance of the burst be greater than twice the
variance of the preburst for at least one octave,

βburst
j

β
preburst
j

> 2. (12)

This reduced the sample to 33 short GRBs (Tab. 1) and 66
long GRBs (Tab. 2) for a total of 99 and it is these GRBs
which are used to create Fig. 4 and Fig. 7. For the third-
pass through the data we require the same brightness cut in
Eq. 12 as well as there be a known z and that a source frame
t90 had been tabulated in Gruber et al. (2011). In addition,
we also required that the first order poynomial fits to the
noise region and to the scaling region each had a χ2/d.f.
that was less than 2. This cut further reduced the data set
to 2 short GRBs and 18 long GRBs for a total of 20 GRBs.
These 20 GRBs that meet the selection criteria for the third
and final pass are given in Tab. 3 and were used to created
Fig. 5 and Fig. 6.

4.3.1 Circular Permutation

Spurious artifacts due to incidental symmetries resulting
from accidental misalignment (Percival 2000; Coifman 1995)
of light curves with wavelet basis functions are minimized
by circularly shifting the light curve against the basis func-
tions. Circular shifting is a form of translation invariant de-
noising (Coifman 1995). It is possible a shift will introduce
additional artifacts by moving a different symmetry into a
susceptible location. The best approach is to circulate the
signal through all possible values, or at least a representative
sampling, and then take an average over the cases which do
not show spurious correlations.
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4.3.2 Reverse-Tail Concatenation

Both discrete Fourier and discrete wavelet transformations
imply that the expansion is periodic, with a repeat period
equal to the full time range of the input data. This can
be interpreted to mean that for a series of N elements,
{X0, X1 . . . XN−1} then X0 is made a surrogate for XN and
X1 is made a surrogate for XN+1, and so forth. This as-
sumption may lead to trouble if X0 is much different from
XN−1. In this case, artificially large variances may be com-
puted. Reverse-tail concatenation minimizes this problem
by making a copy of the series which is then reversed and
concatenated onto the end of the original series resulting a
new series with a length twice that of the original. Instead
of matching boundary conditions like,

X0, X1, . . . , XN−1, X0, (13)

we match boundaries as,

X0, X1, . . . XN−1, XN−1, . . . , X1, X0. (14)

Note that the series length has thus artificially been in-
creased to 2N by reversing and doubling of the original se-
ries. Consequently, the wavelet variances at the largest scale
in a logscale diagram reflect this redundancy. This is the rea-
son the wavelet variances at the largest scale are excluded
from least-squares fits of the scaling region.

Another difficulty in wavelet expansions is that the
intialization procedure of the multi-resolution algorithm
may pollute the detail coefficients at the finest scale (see
Strang and Nguyen 1997; Abry et al. 2003). For this reason
we follow the advice of Abry et al. (2003) and discard the
detail coefficients at the finest scale.

5 RESULTS AND DISCUSSION

For a large sample of short and long GBM bursts, we have
used a technique based on wavelets to determine the min-
imum time scale (τβ) at which scaling processes dominate
over random noise processes. The τβ values, along with the
GRB names, luminosities and the known redshifts are listed
in Table 1. The τβ is the intersection of the scaling region
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(red-noise) of the spectrum in the logscale diagram with
that of the flat portion representing the (white-noise) ran-
dom noise component. We interpret this transition as a mea-
sure of some physical process, intrinsic to GRB production,
whose highest frequency is still resolvable from white noise.
Histograms of the extracted τβ values for long and short
GRBs are shown in Fig. 3. We make two observations re-
garding these histograms: There is a clear temporal offset in
the extracted mean τβ values for long and short GRBs. We
believe this is the first clear demonstration of this temporal
difference. Walker et al. (2000), who studied the temporal
variability of long and short bursts using the BATSE data
set did not report a systematic difference between the two
types of bursts. The two histograms are quite broad and very
similar in dispersion. While the difference in the mean τβ is
understandable (a point we discuss further elsewhere) the
similarity of the dispersion is somewhat surprising since the
progenitors and the environment for the two types of bursts
are presumably very different. The comparison is qualitative
at best however because the τβ scale has not been corrected
for redshift (z), an effect that impacts the long bursts more
than the short bursts. In passing we note that the disper-
sion of the τβ histogram (for long bursts) is in agreement
with the results of Ukwatta et al. (2011) who performed a
power density spectral analysis of a large sample of Swift
long GRBs. In that work the authors extracted threshold
frequencies and related them to a variability scale.

In Fig. 4 we show a log-log plot of τβ versus T90 (the
duration of the bursts); long GRBs are indicated by circles,
the short ones by squares and both time scales are with re-
spect to the observer frame. As in the histograms above,
the fact that short GRBs, in general, tend to have smaller
τβ values compared to long GRBs, is evident in this figure.
Also shown in the figure (as a dash line) is the trajectory of
τβ equal to T90. We note that no (long) GRBs exhibits an
τβ longer than T90 although interestingly a few short GRBs
of extremely short duration appear to be approaching the
limit of equality. In addition to establishing a characteristic
time scale for short and long bursts, this figure also hints at
a positive correlation between this time and the duration of
bursts. We note that the τβ scale spans approximately two
decades for both sets of GRBs and that the two groups are
fairly well clustered in the τβ-T90 plane. A closer examina-
tion of the two groups, however, indicates that a correlation
between τβ and T90, if present, is marginal at best. This is
certainly true for the short-GRB group, especially given the
large uncertainties in the T90s for these bursts. The situation
for the long-burst group on the other hand is not immedi-
ately clear. In order to explore this further we cast the τβ
and the T90 time scales into the source frame by applying
the appropriate (1+z) factor to the GRBs for which the z is
known. Unfortunately the z is not available for the majority
of the short GBRs but we note that the correction is the
same for both axes and is, to first order, small for the short
GRBs since the mean z for this group is < 0.5. The cor-
rected results for long-GRBs are shown as a log-log plot in .
We see from this figure the appearance of a very intriguing
feature: A plateau region in which the τβ is essentially inde-
pendent of T90 and a scaling region in which the τβ appears
to increase with T90, with the transition occurring around
T90 approximately equal to 10 seconds.

If one assumes a positive correlation between luminosity

and variability as suggested by a number of authors, then
one might expect smaller τβ values for higher luminosity
bursts compared to those of lower luminosity. To investi-
gate this, the data (in Fig. 5) are re-plotted in Fig. 6 which
the size of each datum symbol has been modulated by the
luminosity of the burst, i.e., a large symbol implies a high
luminosity and a small symbol a low luminosity. We see from
Fig. 6 that such a connection between τβ and luminosity is
not evident.

Under the assumption that the τβ is a measure pro-
portional to the smallest causally-connected structure as-
sociated with a GRB lightcurve, it is then possible to in-
terpret the scaling trend in terms of the internal shock
model in which the basic units of emission are assumed to
be pulses that are produced via the collision of relativis-
tic shells emitted by the central engine. Indeed, we note
that Quilligan et al. (2002) in their study of the brightest
BATSE bursts with T90 > 2 sec explicitly identified and fit-
ted distinct pulses and demonstrated a strong positive corre-
lation between the number of pulses and the duration of the
burst. In our work we have not relied on identifying distinct
pulses but instead have used the multi-resolution capacity of
the wavelet technique to resolve the smallest temporal scale
present in the prompt emission. If the smallest temporal
scale is made from pulse emissions from the smallest struc-
tures, then we can get a measure of the number of pulses in a
given burst through the ratio T90/τβ . In the simple model in
which a pulse is produced every time two shells collide then
the ratio, T90/τβ , should show a correlation with the dura-
tion of the burst. A plot of this ratio versus T90 is shown for
a sample of short and long bursts in Fig. 7. The correlation
is apparent.

It is now widely accepted that the progenitors for the
two classes of GRBs are quite distinct i.e., the merger of
compact objects in the case of short GRBs and the collapse
of rapidly rotating massive stars in the case of the GRBs.
Formation of an accretion disk in the two cases is posed
in a number of models but important factors such as the
size of the disk, the mass of the disk, the strength of the
magnetic field, in addition to the magnitude of the accre-
tion rate during the prompt phase, remain largely uncertain.
With contributions from intrinsic variability of the central
engine or nearby shock-wave interactions within a jet, we
should not be surprised to observe a systematic difference
in the extracted variability time scales for long and short
bursts, since the progenitors have different spatial scales.
Knowing the variability timescales, we can estimate the size
of an assumed emission region. From Fig. 4, we note that
the smallest temporal-variability scale for the short bursts
is approximately 3 ms and that for the long bursts is ap-
proximately 30 ms: These times translate to emission scales
of approximately 108 and 109 cm respectively. Our variabil-
ity times and size scales are generally consistent with the
findings of Walker et al. (2000) although these authors also
reported observing time scales as small as few microseconds.
We find no evidence for variability times as low as a few mi-
croseconds.

Morsony et al. (2010) modeled the behavior of a jet
propagating through the progenitor and the surround-
ing circumstellar material and showed that the resulting
lightcurves exhibited both short-term and longterm variabil-
ity. They attribute the long-term variability, at the scale of
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few seconds, to the interaction of the jet with the progenitor.
The short-term scale, at the level of milliseconds, they at-
tribute to the variation in the activity of the central engine
itself. Alternatively, Zhang & Yan (2011) consider a model
in which the prompt emission is the result of a magnetically
powered outflow which is self-interacting and triggers rapid
turbulent reconnections to power the observed GRBs. This
model also predicts two variability components but interest-
ingly and in contrast to the findings of Morsony et al. (2010)
, it is the slow component that is associated with the activ-
ity of the central engine, and the fast component is linked to
relativistic magnetic turbulence. While we are not in a posi-
tion to distinguish between these two models it is intriguing
nonetheless to note (see Fig. 4) that indeed there do appear
to be two distinct time domains for the τβ: a plateau region
dominated primarily by short bursts although it includes
some long bursts too, and a scaling region (i.e., correlated
with duration) that is comprised solely of long bursts. In
addition, we observe that the time scale in the plateau re-
gion is the order of milliseconds whereas that for the scaling
region is approaching seconds.

There is considerable dispersion in the extracted τβ.
The variation is evident for both short and long-duration
GRBs. The main cause of this dispersion is not fully under-
stood but one factor that may play a significant role is angu-
lar momentum. As Lindner et al. (2010) note, the basic fea-
tures of the prompt emission can be understood in terms of
accretion that results via a simple ballistic infall of material
from a rapidly rotating progenitor. Material with low angu-
lar momentum will radially accrete across the event horizon
whereas the material with sufficient angular momentum will
tend to circularize outside the innermost stable circular orbit
and form an accretion disk. Simulations that go beyond the
simple radial infall model (Lindner et al. 2010, 2011) suggest
that the formation of the disk leads to an accretion shock
that traverses outwards through the infalling material. If one
assumes that the initiation of such an accretion shock and
the subsequent emission of the prompt gamma-rays are as-
sociated with a particular time scale, the variability of this
scale then (as given by the dispersion in τβ for example)
presumably reflects the different dynamics (initial angular
momentum and the mass of the black hole) of each GRB
in our sample. In the case of long GRBs, the mass of the
central black hole can vary by an order of magnitude thus
potentially explaining a large part of the dispersion seen in
the τβ. However a similar dispersion for short bursts is dif-
ficult to reconcile using the same arguments since the mass
range for the central black hole in standard merger models
(at least for NS-NS mergers) is expected to be significantly
smaller.

6 CONCLUSIONS

We have studied the temporal properties of a sample of
prompt-emission ligfhtcurves for short and long-duration
GRBs detected by the Fermi/GBM mission. By using a tech-
nique based on wavelets we have extracted the variability
timescales for these bursts. Our main results are summa-
rized as follows:

a) Both short and long-duration bursts indicate a tem-
poral variability at the level of a few milliseconds. Variability

of this order appears to be a common feature of GRBs. This
finding is consistent with the work of Walker et al. (2000).
However, unlike these authors we do not find evidence of
variability at a time scale of few microseconds.

b) In general the short-duration bursts probe a variabil-
ity time scale that is significantly shorter than long-duration
bursts. In addition, the τβ values seem not to depend in
any obvious way on the luminosity of the bursts. The dis-
persion over different GRBs in the extracted time scale for
short-duration bursts is an order of magnitude within the
smallest variability time, that time being approximately 3
milliseconds. The dispersion for the long-duration bursts is
somewhat larger. The origin of the dispersion in either case
is not known, although we should expect that the size of the
initial angular momentum and the mass of the system play
significant roles.

c) For short-duration bursts, the variability parameter
τβ shows negligible dependence on the duration of the bursts
(characterized by T90). In contrast, the long-duration bursts
indicate evidence for two variability time scales: a plateau
region (at the shortest time scale) which is essentially inde-
pendent of burst duration and a scaling region (at the higher
time scale) that shows a positive correlation with burst dura-
tion. The transition between the two regions occurs around
T90 of approximately 10 seconds in the source frame.
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Table 1. Analyzed Short GRBs

GRB T90[sec] τβ [sec]

080723913 0.192 0.0307
080802386 0.576 0.0039
080815917 0.832 0.0532
080831053 0.864 0.0000
080905499 0.960 0.0067

080919790 0.896 0.0006
081012045 1.216 0.0052
081024245 0.960 0.0224
081102365 1.728 0.0258
081105614 1.280 0.0306
081107321 1.664 0.0504
081115891 0.320 0.0009
081119184 0.128 0.0592
081209981 0.192 0.0057
081213173 0.256 0.0138
081216531 0.768 0.0138
081226044 0.832 0.0936
081230871 0.512 0.0256
090108020 0.704 0.0241
090120627 1.856 0.1081
090126245 0.960 0.0025
090206620 0.320 0.0143
090227772 1.280 0.0053
090228204 0.448 0.0028
090303542 0.512 0.0007
090308734 1.664 0.0120
090331681 0.832 0.0114
090427644 1.024 0.0022
090429753 0.640 0.0285
090510016 1.199 0.0049
090520832 0.768 0.0868
090531775 0.768 0.0653
090927422 0.995 0.0175
100117879 0.326 0.0331



Minimum Variability Time Scales of Long and Short GRBs 9

Table 2. Analyzed Long GRBs

GRB T90[sec] τβ [sec] GRB T90[sec] τβ [sec] GRB T90[sec] τβ [sec] GRB T90[sec] τβ [sec]

80723557 105 0.044 81007224 10 0.0026 90323002 132.1 0.1598 90810659 230 0.7319
80723985 60 0.1894 81008832 144.4 1.029 90328401 90 0.0682 90814950 120 0.0787
80724401 75 0.074 81009140 49.3 0.1095 90411991 18.7 0.0673 90829672 85 0.0678
80727964 79.7 0.0035 81009690 50 0.5603 90419997 90 0.3728 90831317 69.1 0.0266
80804972 19.6 0.4306 81101532 8 0.0948 90423330 10.1 0.808 90902462 21 0.0223

80806896 60 0.4189 81125496 15 0.2182 90424592 48 0.0249 90926181 20 0.0435
80807993 80 0.0232 81129161 59 0.0912 90425377 72 0.1346 90926914 109.7 0.5373
80810549 106 0.1353 81207680 153 1.002 90516137 140 0.4938 91003191 20.7 0.03
80816503 70 0.1067 81215784 7.7 0.0319 90516353 221.8 0.7992 91020900 39.4 0.5226
80817161 70 0.1919 81221681 34 0.2701 90519881 52.2 0.0369 91024372 109.8 0.4988
80825593 22 0.0775 81222204 24 0.1956 90528516 68 0.1314 91127976 7.1 0.0395
80905705 128 2.5761 81224887 50 0.2055 90618353 113.2 0.2631 91208410 14.9 0.0621
80906212 5 0.1011 81231140 29 0.1124 90620400 16.5 0.1667 100414097 22.3 0.0418
80916009 66 0.2266 90102122 30 0.0347 90626189 70 0.0498 100814160 174.5 0.5908
80916406 60 0.6995 90117632 86 0.2674 90717034 70 0.1881 100816026 2 0.1082
80925775 29 0.1748 90131090 36.4 0.0733 90718762 28 0.1621 100906576 114.4 0.192
80928628 46.9 0.1141 90202347 66 0.1444 90809978 15 0.2436
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Table 3. Analyzed Final GRBs. GCN Circ. 8100, GCN Circ. 9057, GCN Circ. 9415, GCN Circ. 9406, GCN Circ. 10204, GCN Circ. 10595, GCN Circ. 111245

Number T90[sec] δT90[sec] τβ [sec] τ
−

β
[sec] τ

+

β
[sec] logLum logLum− logLum+

0808049721 6.120 0.560 0.1344 0.0470 0.3843 52.5539 52.4768 52.6401
0808105492 13.750 1.100 0.0311 0.0049 0.1966 52.9818 52.9196 53.0362
0809160093 18.370 2.130 0.0424 0.0169 0.1064 54.0170 53.9786 54.0523
0812222041 5.780 0.480 0.0519 0.0211 0.1275 53.1004 53.0755 53.1206
0901021225 10.560 0.270 0.0136 0.0046 0.0407 52.9395 52.9106 52.9666
0903230021 28.910 0.130 0.0350 0.0142 0.0861 53.837 52.5051 53.8642
0903284012 31.740 0.580 0.0393 0.0206 0.0750 52.2529 52.217 52.279
0904245923 10.100 0.390 0.0161 0.0111 0.0235 52.2095 52.1987 52.2227
0905100165 0.630 0.110 0.0026 0.0014 0.0047 52.42 52.3282 52.5694
0906183533 72.660 0.450 0.1709 0.0897 0.3253 51.9279 51.8633 51.945
0909024625 6.800 0.110 0.0079 0.0056 0.0112 53.7701 53.7629 53.7772
0909261815 4.440 0.060 0.0140 0.0092 0.0214 53.8692 53.8606 53.8777
0910031911 10.910 0.160 0.0158 0.0093 0.0269 52.6561 52.619 52.7147
0911279762 5.370 0.200 0.0265 0.0168 0.0418 51.5682 51.5517 51.5805
0912084101 5.820 0.190 0.0301 0.0114 0.0793 52.1614 52.1146 52.2541
1001178791 0.170 0.070 0.0173 0.0047 0.0629 53.2504 53.2475 53.2533
1004140972 9.420 0.210 0.0177 0.0102 0.0306 53 52.9253 53.0318
1008141603 60.250 0.900 0.2421 0.0585 1.0024 51.9175 51.8537 51.9523
1008160262 1.110 0.110 0.0600 0.0258 0.1391 51.8555 51.8301 51.8862



Minimum Variability Time Scales of Long and Short GRBs 11

REFERENCES

Abry, P., et al. 2003, Self-similarity and long-range depen-

dence through the wavelet lens, Theory and Applications
of Long-Range Dependence, Boston: Birkhauser, 527-556

Addison P. S. 2002, Fractals and Chaos: An Illustrated
Course, Institute of Physics Publishing

Coifman R. R. and Donoho D. L. 1995, Translation-
invariant de-noising, Springer-Verlag, 125–150

Fenimore, E. E., & Ramirez-Ruiz, E. 2000,
arXiv:astro-ph/0004176

Flandrin P. 1989, IEEE, Transactions on Information The-
ory, 11, 674–693

Flandrin P. 1992, IEEE, Transactions on Information The-
ory, 38, 910–917

Gruber, D. et al. 2011, arXiv:1104.5495 [astro-ph.HE].
Lindner, C. C., Milosavljevic, M., Couch, S. M., & Kumar,
P. 2010 ApJ., 713, 800

Lindner, C. C., Milosavljevic, M., Shen, R., & Kumar, P.
2011, arXiv:1108.1415v1 [astro-ph.HE]

Mallat S. G. 1992, IEEE, Transactions on Pattern Analysis
and Machine Intelligence, 11, 674–693

Mandelbrot, B. B. and Van Ness, J. W. 1968, SIAM Re-
view, 10, 422-437

Meegan, C. et al. 2009, ApJ., 702, 791
Morsony, B. J., Lazzati, D., & Begelman, M. C. 2010,
arXiv:1002.0361

Percival, D. B. and Walden, A. T. 2002, Wavelet Methods
for Time Series Analysis, Cambridge University Press

Quilligan, F., et al. 2002, A.& A., 385, 377
Strang, G. and Nguyen, T. 1997, Wavelets and filter banks,
Wellesley-Cambridge Press

Ukwatta, T. et al. 2011, MNRAS, 412, 875
Walker, K. C., et al. 2000 ApJ., 537, 264
Zhang, B., & Yan, H. 2011, ApJ, 726, 90

http://arxiv.org/abs/astro-ph/0004176
http://arxiv.org/abs/1104.5495
http://arxiv.org/abs/1108.1415
http://arxiv.org/abs/1002.0361

	1 Introduction
	2 
	3 
	3.1 Minimum Variability Time Scales
	3.2 
	3.3 Logscale Diagrams and Scaling

	4 
	4.1 Analysis of Long and Short GRBs
	4.2 Simulation
	4.3 Selection Criteria

	5 RESULTS and DISCUSSION
	6 CONCLUSIONS

