Pairing from Repulsive Interactions

 in Quantum Hall Physics
Gerardo Ortiz

Department of Physics - Indiana University

NORDITA - August 52013

Collaborators:

Alexander Seidel: Washington University - St. Louis

Zohar Nussinov: Washington University - St. Louis

Jorge Dukelsky: CSIC - Madrid

arXiv:1306.3268

Botiom-Up Approach to QH

Botiom-Up Approach to QH

Motivation for this work

FQH fluids are archetypical examples of interacting systems displaying TQO

We need to deeply understand its excitations if we want to use its supposedly non-Abelian features for fault tolerant topological information processing

Derivation of states with filling fractions other than Laughlin's? Need some organizing principle (parent Hamiltonians?)

How about edge modes?

Main Messages

A deep connection between Pairing and Quantum Hall Physics
The Quantum Hall Hamiltonian is the direct sum of exactlysolvable hyperbolic Richardson-Gaudin models (the most general interaction is a sum of separable potentials)

Second quantization formulation of Quantum Hall which is a "guiding center" language

The most general interaction is a sum of separable potentials

Why Topological Quantum Order?

- New states of matter where the traditional

Spectra

Landau paradigm is not applicable A new quantum vacuum (TQM) (Different from Landau vacua)
 Can we engineer them?

- Topological Quantum Computation: Hardware Fault-tolerance

(b)

(d)

Robustness against local perturbations

Why Topological Quantum Order?

- New states of matter where the traditional

Spectra

Landau paradigm is not applicable A new quantum vacuum (TQM) (Different from Landau vacua) \qquad

- Topological Quantum Computation: Hardware Fault-tolerance
(b)

Robustness against local perturbations Defeating Decoherence

Why Topological Quantum Order?

- Functionalities other than computer hardware:

Quantum Memories
Precision measurements (quantum metrology)?
Background independent "emergent" space?
(Toy Models of Quantum Gravity)

Why Topological Quantum Order?

- How about topological insulators and superconductors?

Why Topological Quantum Order?

- How about topological insulators and superconductors?

Why Topological Quantum Order?

- How about topological insulators and superconductors?

Topological insulators (superconductors) are gapped phases of non-interacting fermionic matter which exhibit parity (or some other symmetry) protected boundary (zero-energy-mode) states

Why Topological Quantum Order?

- How about topological insulators and superconductors?

Topological insulators (superconductors) are gapped phases of non-interacting fermionic matter which exhibit parity (or some other symmetry) protected boundary (zero-energy-mode) states

Given current interests in topological insulators (superconductors) and in building a Quantum computer Is there a unifying theory (such as Landau) for TQM?

Old Examples of TQM

Fractional Quantum Hall Liquids

Kitaev's Toric code model

$$
H=-\sum_{s} A_{s}-\sum_{p} B_{p}
$$

$$
A_{s}=\prod_{j \in \operatorname{star}(s)} \sigma_{j}^{x}
$$

$$
B_{p}=\prod_{j \in \operatorname{boundary}(p)} \sigma_{j}^{z}
$$

Some spin liquids

Old Examples of TQM

Fractional Quantum Hall Liquids

- Kitaev's Toric code model

$$
H=-\sum_{s} A_{s}-\sum_{p} B_{p}
$$

$$
A_{s}=\prod_{j \in \operatorname{star}(s)} \sigma_{j}^{x} \quad B_{p}=\prod_{j \in \operatorname{boundary}(p)} \sigma_{j}^{z}
$$

Some spin liquids

Old Examples of TQM

Fractional Quantum Hall Liquids

- Kitaev's Toric code model

$$
H=-\sum_{s} A_{s}-\sum_{p} B_{p}
$$

$$
A_{s}=\prod_{j \in \operatorname{star}(s)} \sigma_{j}^{x} \quad B_{p}=\prod_{j \in \operatorname{boundary}(p)} \sigma_{j}^{z}
$$

Some spin liquids

Old Examples of TQM

Fractional Quantum Hall Liquids

Kitaev's Toric code model

$$
H=-\sum_{s} A_{s}-\sum_{p} B_{p}
$$

$$
B_{p}=\prod_{j \in \operatorname{boundary}(p)} \sigma_{j}^{z}
$$

Some spin liquids

Old Examples of TQM

Fractional Quantum Hall Liquids

Kitaev's Toric code model

$$
H=-\sum_{s} A_{s}-\sum_{p} B_{p}
$$

$$
B_{p}=\prod_{j \in \operatorname{boundary}(p)} \sigma_{j}^{z}
$$

Some spin liquids

Old Examples of TQM

Fractional Quantum Hall Liquids

Kitaev's Toric code model

$$
H=-\sum_{\cdot}(4)-\sum_{\nu}^{B}
$$

$$
B_{p}=\prod_{j \in \operatorname{boundary}(p)} \sigma_{j}^{z}
$$

Some spin liquids

Outline

Outline

- Setup the QH Hamiltonian in second quantization

Outline

- Setup the QH Hamiltonian in second quantization
- Relate to a Pairing problem

Outline

QH states

- Setup the QH Hamiltonian in second quantization
- Relate to a Pairing problem

QH Hamiltonian

- Study the Ker of the QH problem in terms of the Kers of the Pairing problems

Quantum Hall Physics

An Exercise in Second Quantization

Dimensional Reduction/Holography

The correlation function inequalities are general and not specific to any model. In general they lead to:

- Effective dimensional reduction
- Exact dimensional reduction: Inequalities become equalities

Dimensional Reduction/Holography

The correlation function inequalities are general and not specific to any model. In general they lead to:

- Effective dimensional reduction
- Exact dimensional reduction:

Inequalities become equalities

Duality connecting the two theories

TQO is a property of States not of the Spectrum

TQO is a property of States not of the Spectrum

Kitaev's toric code

 model:$$
A_{s}=\prod_{i j \in s t a r(s)} \sigma_{i j}^{x}
$$

Duality mappings: Non-local (Identical spectra)

$$
H_{K}=-\sum_{s} A_{s}-\sum_{p} B_{p}
$$

$$
B_{p}=\prod_{i j \in \text { boundary }(p)} \sigma_{i j}^{z}
$$

2 Ising chains:

$$
H_{I}=-\sum_{s}^{\circ} \sigma \sigma_{s}^{2} \sigma_{s+1}^{0}-\sum_{p}^{\circ} \sigma_{p}^{2} \sigma_{p+1}^{z}
$$

Wen's plaquette model:

$$
H_{W}=-\sum_{i} \sigma_{i}^{x} \sigma_{i+\hat{e}_{x}}^{y} \sigma_{i+\hat{e}_{x}+\hat{e}_{y}}^{x} \sigma_{i+\hat{e}_{y}}^{y}
$$

TQO is a property of States not of the Spectrum

Kitaev's toric code

 model:$$
A_{s}=\prod_{i j \in s t a r(s)} \sigma_{i j}^{x}
$$

Duality mappings: Non-local (Identical spectra)

$$
H_{K}=-\sum_{s} A_{s}-\sum_{p} B_{p}
$$

$$
B_{p}=\prod_{i j \in \text { boundary }(p)} \sigma_{i j}^{z}
$$

2 Ising chains:

$$
H_{I}=-\sum_{s}^{\circ} \sigma_{s}^{2} \sigma_{s+1}^{0}-\sum_{p}^{0} \sigma_{p}^{2} \sigma_{p+1}^{z}
$$

(Nussinov-Ortiz 2006)

Entanglement is non-local with respect to the local language

Dimensional Reduction - QH Physics

First Quantization

2 D continuous geometries

Dimensional Reduction - QH Physics

First Quantization

Second Quantization

$$
\widehat{H}_{\mathrm{QH}}=\sum_{0<j<L-1} \sum_{k(j), l(j)} V_{j ; k l} c_{j+k}^{\dagger} c_{j-k}^{\dagger} c_{j-l} c_{j+l}
$$

2 D continuous geometries

Second Quantization Counting:

- j takes the $2 L-3$ values:

$$
j_{\min }=\frac{1}{2}, 1, \frac{3}{2}, 2, \ldots, j_{\mathrm{m}}=\frac{L-1}{2}, \ldots, j_{\max }=L-\frac{3}{2}
$$

- Sums over $k(j)$ involve $\mathcal{C}(j)$ active orbital levels:
$\sum_{k(j)}=\sum_{0<k \leq \min (j, L-1-j)}$ with $\mathcal{C}(j)=\min \left(\left[j+\frac{1}{2}\right],\left[L-\frac{1}{2}-j\right]\right)$

This is a guiding center formulation with the geometrical information (dynamical momenta) encoded in the matrix elements $V_{j ; k l}$

Separability of Pseudopotentials

Given an arbitrary spherically symmetric interaction: $V\left(\mathbf{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{j}}\right)=\sum_{m \geq 0} g_{m} V_{m}=\sum_{m \geq 0} g_{m} \sum_{\mathrm{i}<\mathrm{j}} P_{m}(\mathrm{ij})$ with $g_{m} \geq 0$ and P_{m} (ij) a projector onto the subspace of relative angular momentum m of the pair (ij)

Separability of Pseudopotentials

Given an arbitrary spherically symmetric interaction:

$V\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right)=\sum_{m \geq 0} g_{m} V_{m}=\sum_{m \geq 0} g_{m} \sum_{\mathrm{i}<\mathrm{j}} P_{m}(\mathrm{ij})$
with $g_{m} \geq 0$ and P_{m} (ij) a projector onto the subspace of relative angular momentum m of the pair (ij)
We have shown that in second quantization: $\hat{H}_{Q H}=\sum_{m \geq 0} g_{m} \hat{H}_{V_{m}}$

$$
\text { with } \quad \hat{H}_{V_{m}}=\sum_{0<j<L-1} \sum_{k(j), l(j)} \eta_{k} \eta_{l} c_{j+k}^{\dagger} c_{j-k}^{\dagger} c_{j-l} c_{j+l}
$$

For the 1st Haldane pseudopotential or Trugman-Kivelson model:

geometry	$L($ Laughlin $)$	N_{Φ}	η_{k}	$\phi_{r}(z)$
disk	$m N-m+1$	L	$k 2^{-j} \sqrt{\frac{1}{2 \pi j}\binom{2 j}{j+k}}$	
cylinder	$m N-m+1$	L	$\kappa^{3 / 2} k e^{-\kappa^{2} k^{2}}$	$\frac{1}{\sqrt{22^{r} r!}} z^{r} e^{-\frac{1}{4}\|z\|^{2}}$
sphere	$m N-m+1$	$L-1$	$k \frac{N_{\Phi}+1}{4 \sqrt{2 \pi j}} \sqrt{\binom{2 N_{\Phi}}{2 j}^{-1} \frac{\left(6 N_{\Phi}-5\right) N_{\Phi}}{\left(2 N_{\Phi}-1\right)\left(2 N_{\Phi}-2 j\right)}\binom{N_{\Phi}}{j+k}\binom{N_{\Phi}}{j-k}}$	$\sqrt{\frac{N_{\Phi}+1}{4 \pi}\binom{N_{\Phi}}{r}}\left[e^{-i \frac{\varphi}{2}} \sin \left(\frac{\theta}{2}\right)\right]^{r}\left[e^{i \frac{\varphi}{2}} \cos \left(\frac{\theta}{2}\right)\right]^{N_{\Phi}-r}$
torus	$m N$	L	$\kappa^{3 / 2} \sum_{s \in \mathbb{Z}}(k+s L) e^{-\kappa^{2}(k+s L)^{2}}$	$\sum_{s \in \mathbb{Z}} \phi_{r+s L}^{\text {cylinder }}$

- In the case of the cylinder for arbitrary m

$$
\eta_{k}=\frac{e^{-\kappa^{2} k^{2}}}{2 \frac{m}{2}} \sqrt{m!} H_{m}[\sqrt{2} \kappa k] \longrightarrow \text { Hermite poly }
$$

For the 1st Haldane pseudopotential or Trugman-Kivelson model:

geometry	L (Laughlin $)$	N_{Φ}	η_{k}	$\phi_{r}(z)$
disk	$m N-m+1$	L	$k 2^{-j} \sqrt{\frac{1}{2 \pi j}\binom{2 j}{j+k}}$	
cylinder	$m N-m+1$	L	$\kappa^{3 / 2} k e^{-\kappa^{2} k^{2}}$	$\frac{1}{\sqrt{22^{r} r!}} z^{r} e^{-\frac{1}{4}\|z\|^{2}}$
sphere	$m N-m+1$	$L-1$	$k \frac{N_{\Phi}+1}{4 \sqrt{2 \pi j}} \sqrt{\binom{2 N_{\Phi}}{2 j}^{-1} \frac{\left(6 N_{\Phi}-5\right) N_{\Phi}}{\left(2 N_{\Phi}-1\right)\left(2 N_{\Phi}-2 j\right)}\binom{N_{\Phi}}{j+k}\binom{N_{\Phi}}{j-k}}$	$\sqrt{\frac{N_{\Phi}+1}{4 \pi}\binom{N_{\Phi}}{r}}\left[e^{-i \frac{\varphi}{2}} \sin \left(\frac{\theta}{2}\right)\right]^{r}\left[e^{i \frac{\varphi}{2}} \cos \left(\frac{\theta}{2}\right)\right]^{N_{\Phi}-r}$
torus	$m N$	L	$\kappa^{3 / 2} \sum_{s \in \mathbb{Z}}(k+s L) e^{-\kappa^{2}(k+s L)^{2}}$	$\sum_{s \in \mathbb{Z}} \phi_{r+s L}^{\text {cylinder }}$

- In the case of the cylinder for arbitrary m

$$
\eta_{k}=\frac{e^{-\kappa^{2} k^{2}}}{2^{\frac{m}{2}} \sqrt{m!}} H_{m}[\sqrt{2} \kappa k] \longrightarrow \text { Hermite poly }
$$

We have shown that geometries with the sume genus number can be related through similarity transformations

Strongly-Coupled States of Matter

Generalized Gaudin Problems

Generalized Gaudin Algebra

- GGA: $(\kappa=x, y, z$, and $W=X, Y, Z)$
$W_{m \ell}=W\left(\eta_{m}, \eta_{\ell}\right) \in$ antisymmetric $\quad \lim _{\varepsilon \rightarrow 0} \varepsilon W(x, x+\varepsilon)=\mathrm{f}(x)$

Generalized Gaudin Algebra (GGA) + quantum invariants allow derivation of several families of exactly-solvable models including the BCS reduced Hamiltonian

GGA: $(\kappa=x, y, z$, and $W=X, Y, Z)$

$$
\begin{aligned}
& {\left[\mathrm{S}_{m}^{\kappa}, \mathrm{S}_{\ell}^{\kappa}\right]=0,} \\
& {\left[\mathrm{~S}_{m}^{x}, \mathrm{~S}_{\ell}^{y}\right]=i\left(Y_{m \ell} \mathrm{~S}_{m}^{z}-X_{m \ell} \mathrm{~S}_{\ell}^{z}\right) \text {, }} \\
& {\left[\mathrm{S}_{m}^{y}, \mathrm{~S}_{\ell}^{z}\right]=i\left(Z_{m \ell} \mathrm{~S}_{m}^{x}-Y_{m \ell} \mathrm{~S}_{\ell}^{x}\right) \text {, }} \\
& {\left[\mathrm{S}_{m}^{z}, \mathrm{~S}_{\ell}^{x}\right]=i\left(X_{m \ell} \mathrm{~S}_{m}^{y}-Z_{m \ell} \mathrm{~S}_{\ell}^{y}\right),} \\
& \left\{\left[S_{m}^{\kappa}, \mathrm{S}_{m}^{\kappa}\right]=0,\right. \\
& m \rightarrow \ell \\
& \left\{\begin{array}{l}
{\left[\mathrm{S}_{m}^{x}, \mathrm{~S}_{m}^{y}\right]=-i \mathrm{f}\left(\eta_{m}\right) \frac{\partial \mathrm{S}_{m}^{z}}{\eta_{m}},} \\
\left.\mathrm{~S}_{m}^{y}, \mathrm{~S}_{m}^{z}\right]=-i \mathrm{f}\left(\eta_{m}\right) \frac{\partial S_{m}}{\eta_{m}}, \\
{\left[\mathrm{~S}_{m}^{z}, \mathrm{~S}_{m}^{x}\right]=-i \mathrm{f}\left(\eta_{m} \frac{\partial S_{m}}{\partial \eta_{m}},\right.}
\end{array}\right.
\end{aligned}
$$

$W_{m \ell}=W\left(\eta_{m}, \eta_{\ell}\right) \in$ antisymmetric

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon W(x, x+\varepsilon)=f(x)
$$

From Jacobi identities: $\left\{\begin{array}{l}Z_{m \ell} X_{\ell n}+Z_{n m} Y_{\ell n}+X_{n m} Y_{m \ell}=0 \text { Gaudin eqns. } \\ X_{n}\end{array}\right.$

$$
\left\{X_{m \ell}^{2}-Z_{m \ell}^{2}=\Gamma_{1}, X_{m \ell}^{2}-Y_{m \ell}^{2}=\Gamma_{2}\right.
$$

Quantum Invariants: $\left[H_{m}, H_{\ell}\right]=0$

$$
H\left(\eta_{m}\right) \equiv H_{m}=\mathrm{S}_{m}^{x} \mathrm{~S}_{m}^{x}+\mathrm{S}_{m}^{y} \mathrm{~S}_{m}^{y}+\mathrm{S}_{m}^{z} \mathrm{~S}_{m}^{z}=\overrightarrow{\mathrm{S}}_{m} \cdot \overrightarrow{\mathrm{~S}}_{m}
$$

Diagonalizing $X X Z$ invariants: $\quad H_{m}|\Phi\rangle=\omega\left(\eta_{m}\right)|\Phi\rangle$,
$\mathrm{S}_{m}^{-}|0\rangle=0, \quad \mathrm{~S}_{m}^{z}|0\rangle=F\left(\eta_{m}\right)|0\rangle \forall \eta_{m},|0\rangle$ lowest-weight vector

- Bethe ansaatz: $\quad|\Phi\rangle=\prod_{\ell=1}^{M} S_{\ell}^{+}|0\rangle=\prod_{\ell=1}^{M}\left(S_{\ell}^{x}+i S_{\ell}^{y}\right)|0\rangle$,
- Eigenvalue:
$\omega\left(\eta_{m}\right)=F^{2}\left(\eta_{m}\right)-\mathrm{f}\left(\eta_{m}\right) \frac{\partial}{\partial \eta_{m}} F\left(\eta_{m}\right)+\sum_{\ell=1}^{M}\left(\Gamma-2 Z_{m \ell} F\left(\eta_{m}\right)+\sum_{n \neq \emptyset)=1}^{M} Z_{m e} Z_{m n}\right)$
- Bethe equation:

$$
F\left(\eta_{\ell}\right)+\sum_{n(\neq \ell)=1}^{M} Z_{n \ell}=0, \quad \quad \ell=1, \cdots, M
$$

Solutions of the $X X Z$ Gaudin equation:

$$
Z_{m \ell} X_{\ell n}+Z_{n m} X_{\ell n}+X_{n m} X_{m \ell}=0
$$

$$
X_{\ell n}=g \frac{\sqrt{1+s t_{\ell}^{2}} \sqrt{1+s t_{n}^{2}}}{t_{\ell}-t_{n}}, Z_{\ell n}=g \frac{1+s t_{\ell} t_{n}}{t_{\ell}-t_{n}}, \quad \Gamma=s g^{2}, t_{i}=-g / Z_{r i},|s|=0,1
$$

1. Rational: $\Gamma=0, s=0$,

$$
X\left(\eta_{\ell}, \eta_{n}\right)=Z\left(\eta_{\ell}, \eta_{n}\right)=g \frac{1}{\eta_{\ell}-\eta_{n}},
$$

with $t_{i}=\eta_{i}$,
2. Trigonometric: $\Gamma>0, s=+1$,

$$
X\left(\eta_{\ell}, \eta_{n}\right)=g \frac{1}{\sin \left(\eta_{\ell}-\eta_{n}\right)}, Z\left(\eta_{\ell}, \eta_{n}\right)=g \cot \left(\eta_{\ell}-\eta_{n}\right)
$$

with $t_{i}=\tan \left(\eta_{i}\right)$,
3. Hyperbolic: $\Gamma<0, s=-1$,

$$
X\left(\eta_{\ell}, \eta_{n}\right)=g \frac{1}{\sinh \left(\eta_{\ell}-\eta_{n}\right)}, Z\left(\eta_{\ell}, \eta_{n}\right)=g \operatorname{coth}\left(\eta_{\ell}-\eta_{n}\right)
$$

with $t_{i}=\tanh \left(\eta_{i}\right)$.

Exactly-solvable models derived from the GGA:

(I) Find realizations of the algebra: e.g. $\bigoplus_{\mathbf{j}} \operatorname{su}(2)\left\{S_{\mathbf{j}}^{+}, S_{\mathbf{j}}^{-}, S_{\mathbf{j}}^{\tau}\right\}$

$$
S_{m}^{ \pm}=\sum_{\mathbf{j} \in \mathcal{T}} X_{m \mathrm{j}} S_{\mathbf{j}}^{ \pm}, \mathrm{S}_{m}^{z}=-\frac{1}{2} \mathbb{1}-\sum_{\mathbf{j} \in \mathcal{T}} Z_{m \mathbf{j}} S_{\mathbf{j}}^{z}
$$

(II) Rewrite $H_{m}: \quad H_{m}\left[\overrightarrow{\mathrm{~S}}_{m}\right] \rightarrow H_{m}\left[\overrightarrow{\mathrm{~S}}_{\mathrm{j}}\right]$
(III) Use analytic properties of X and $Z: \quad R_{\mathrm{i}}=\frac{1}{\mathrm{f}\left(\eta_{\mathrm{i}}\right)} \oint_{\Gamma_{\mathrm{i}}} \frac{d \eta_{m}}{2 \pi i} H_{m}$ Constants of motion: $\left[R_{\mathrm{i}}, R_{\mathrm{j}}\right]=0$

$$
R_{\mathbf{i}}=S_{\mathbf{i}}^{z}+2 \sum_{\mathbf{j} \in \mathcal{T}(\neq \mathbf{i})}\left(\frac{X_{\mathbf{i j}}}{2}\left(S_{\mathbf{i}}^{+} S_{\mathbf{j}}^{-}+S_{\mathbf{i}}^{-} S_{\mathbf{j}}^{+}\right)+Z_{\mathbf{i j}} S_{\mathbf{i}}^{z} S_{\mathbf{j}}^{z}\right)
$$

(IV) BCS example: $\quad H=\sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} R_{\mathbf{k}}(X, X) \quad\left\{\begin{array}{l}S_{\mathbf{k}}^{+}=c_{\mathbf{k} \uparrow}^{\dagger} c_{-\mathbf{k} \downarrow}^{\dagger}=\left(S_{\mathbf{k}}^{-}\right)^{\dagger} \\ S_{\mathbf{k}}^{z}=\frac{1}{2}\left(n_{\mathbf{k} \uparrow}+n_{-\mathbf{k} \downarrow}-1\right)\end{array}\right.$

Some Examples of exactly-solvable Gaudin models

Gaudin Algebra	Representation	1	Model
XXX	$\bigoplus_{1} s u(2)-\mathrm{F}-\mathrm{P}$	N	BCS Richardson
			Nuclear Pairing
	$\begin{gathered} \oplus_{1} s u(2)-\mathrm{F}-\mathrm{S} \\ \bigoplus_{\mathrm{l}} s u(1,1)-\mathrm{B} \\ \bigoplus_{\mathrm{l}} s u(2) \oplus s u(2) \\ \oplus_{\mathrm{l}} s u(1,1) \oplus s u(1,1) \end{gathered}$		$\operatorname{BCS}(\mathbf{k} \uparrow,-\mathbf{k} \downarrow$)
		N	Particle-hole-like
		N	B BCS
		N	Central Spin
		N	B Central Spin
XXZ	$\begin{aligned} & \bigoplus_{1} s u(2)-\mathrm{F}-\mathrm{P} \\ & \bigoplus_{1} s u(1,1)-\mathrm{B} \end{aligned}$	2	Suhl-Matthias-Walker
			Lipkin-Meshkov-Glick
		2	Interacting Boson (IBM1)
	$\begin{gathered} \oplus_{1} s u(2) \oplus h_{4} \\ \bigoplus_{1} s u(1,1) \oplus h_{4} \\ \oplus_{1} s u(2)-\mathrm{F}-\mathrm{S} \oplus \operatorname{su}(2) \\ \oplus_{1} h_{4} \oplus s u(2) \end{gathered}$		Two-Josephson-coupled BECs
		N	Generalized Dicke, F-atom-molecule
		N	B-atom-molecule
		N	Kondo-like impurity
		N	Special Spin-Boson
XYZ	$\bigoplus_{1} s u(2)$	N	Generalized XYZ Gaudin

Some Examples of exactly-solvable Gaudin models
 $H=\sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} n_{\mathbf{k}}+\frac{G}{V} \sum_{\mathbf{k}, \mathbf{k}^{\prime}} c_{\mathbf{k} \uparrow}^{\dagger} c_{-\mathbf{k} \downarrow}^{\dagger} c_{-\mathbf{k}^{\prime} \downarrow} c_{\mathbf{k}^{\prime} \uparrow}$

Gaudin Algebra	Representation	1	Model
XXX	$\bigoplus_{\mathrm{I}} \mathrm{su}(2)-\mathrm{F}-\mathrm{P}$	N	BCS Richardson
			Nuclear Pairing
	$\begin{gathered} \oplus_{1} s u(2)-\mathrm{F}-\mathrm{S} \\ \bigoplus_{1} s u(1,1)-\mathrm{B} \\ \oplus_{\mathrm{l}} s u(2) \oplus s u(2) \\ \oplus_{\mathrm{I}} s u(1,1) \oplus s u(1,1) \end{gathered}$		BCS ($\mathbf{k} \uparrow$, $-\mathrm{k} \downarrow$)
		N	Particle-hole-like
		N	B BCS
		N	Central Spin
		N	B Central Spin
XXZ	$\begin{aligned} & \oplus_{1} s u(2)-\mathrm{F}-\mathrm{P} \\ & \bigoplus_{1} s u(1,1)-\mathrm{B} \end{aligned}$	2	Suhl-Matthias-Walker
			Lipkin-Meshkov-Glick
		2	Interacting Boson (IBM1)
	$\begin{gathered} \oplus_{1} s u(2) \oplus h_{4} \\ \bigoplus_{1} s u(1,1) \oplus h_{4} \\ \oplus_{1} s u(2)-\mathrm{F}-\mathrm{S} \oplus \operatorname{su}(2) \\ \bigoplus_{1} h_{4} \oplus s u(2) \end{gathered}$		Two-Josephson-coupled BECs
		N	Generalized Dicke, F-atom-molecule
		N	B-atom-molecule
		N	Kondo-like impurity
		N	Special Spin-Boson
XYZ	$\oplus_{\mathbf{1}} s u(2)$	N	Generalized XYZ Gaudin

Some Examples of exactly-solvable Gaudin models

Gaudin Algebra	Representation	1	Model
XXX	$\bigoplus_{1} s u(2)-\mathrm{F}-\mathrm{P}$	N	BCS Richardson
			Nuclear Pairing
	$\begin{gathered} \oplus_{1} s u(2)-\mathrm{F}-\mathrm{S} \\ \bigoplus_{1} s u(1,1)-\mathrm{B} \\ \bigoplus_{1} s u(2) \oplus s u(2) \\ \oplus_{1} s u(1,1) \oplus s u(1,1) \end{gathered}$		BCS ($\mathrm{k} \uparrow$, -k \downarrow)
		N	Particle-hole-like
		N	B BCS
		N	Central Spin
		N	B Central Spin
XXZ	$\begin{aligned} & \oplus_{1} s u(2)-\mathrm{F}-\mathrm{P} \\ & \bigoplus_{1} s u(1,1)-\mathrm{B} \end{aligned}$	2	Suhl-Matthias-Walker
			Lipkin-Meshkov-Glick
		2	Interacting Boson (IBM1)
	$\begin{gathered} \oplus_{1} s u(2) \oplus h_{4} \\ \bigoplus_{1} s u(1,1) \oplus h_{4} \\ \oplus_{1} s u(2)-\mathrm{F}-\mathrm{S} \oplus \operatorname{su}(2) \\ \bigoplus_{1} h_{4} \oplus s u(2) \end{gathered}$		Two-Josephson-coupled BECs
		N	Generalized Dicke, F-atom-molecule
		N	B-atom-molecule
		N	Kondo-like impurity
		N	Special Spin-Boson
XYZ	$\bigoplus_{1} s u(2)$	N	Generalized XYZ Gaudin

$p_{x}+i p_{y}$ Fermionic Superfluid

Hyperbolic Gaudin Hamilionian

A particular realization of the hyperbolic Gaudin model is:

$$
H_{h}=\sum_{k} \eta_{k} S_{k}^{z}-G \sum_{k, k^{\prime}} \sqrt{\eta_{k} \eta_{k^{\prime}}} S_{k}^{+} S_{k^{\prime}}^{-}
$$

with Eigenspectrum:
$\left|\Phi_{M}\right\rangle=\prod_{\alpha=1}^{M}\left(\sum_{k} \frac{\sqrt{\eta_{k}}}{\eta_{k}-E_{\alpha}} S_{k}^{+}\right)|\nu\rangle$

$$
E\left(\Phi_{M}\right)=\langle\nu| H_{h}|\nu\rangle+\sum_{\alpha=1}^{M} E_{\alpha}
$$

and Gaudin (Bethe) equations:

$$
\left(Q=\frac{1}{2 G}-\frac{L}{2}+M-1\right)
$$

$$
\sum_{i} \frac{s_{i}}{\eta_{i}-E_{\alpha}}-\sum_{\alpha^{\prime}, \alpha^{\prime} \neq \alpha} \frac{1}{E_{\alpha^{\prime}}-E_{\alpha}}-\frac{Q}{E_{\alpha}}=0
$$

Hyperbolic Gaudin Hamilionian

A particular realization of the hyperbolic Gaudin model is:

$$
H_{h}=\sum_{k} \eta_{k} S_{k}^{z}-G \sum_{k, k^{\prime}} \sqrt{\eta_{k} \eta_{k^{\prime}}} S_{k}^{+} S_{k^{\prime}}^{-}
$$

with Eigenspectrum:
$\left.\left|\Phi_{M}\right\rangle=\prod_{\alpha=1}^{M}\left(\sum_{k} \frac{\sqrt{\eta_{k}}}{\eta_{k}-E_{\alpha}} S_{k}^{+}\right)|\nu\rangle \quad E\left(\Phi_{M}\right)=\langle\nu| H_{h}|\nu\rangle+\sum_{\alpha=1}^{M} E_{\alpha}\right)$
and Gaudin (Bethe) equations: $\quad\left(Q=\frac{1}{2 G}-\frac{L}{2}+M-1\right)$

$$
\sum_{i} \frac{s_{i}}{\eta_{i}-E_{\alpha}}-\sum_{\alpha^{\prime}, \alpha^{\prime} \neq \alpha} \frac{1}{E_{\alpha^{\prime}}-E_{\alpha}}-\frac{Q}{E_{\alpha} \rightarrow 0}=0 \text { Pairon }
$$

One can choose the SU(2) fermionic representation:

$$
\begin{gathered}
S_{k}^{+}=\frac{k_{x}+i k_{y}}{|k|} c_{k}^{\dagger} c_{-k}^{\dagger} \quad S_{k}^{-}=\frac{k_{x}-i k_{y}}{|k|} c_{-k} c_{k} \\
S_{k}^{\tau}=\frac{1}{2}\left(c_{k}^{\dagger} c_{k}+c_{-k}^{\dagger} c_{-k}-1\right)
\end{gathered}
$$

And by also choosing: $\eta_{k}=k^{2}$

One obtains the $p+i p$ superconducting model:

$$
H_{p_{x}+i p_{y}}=\sum_{k, k_{x}>0} \frac{k^{2}}{2}\left(c_{k}^{\dagger} c_{k}+c_{-k}^{\dagger} c_{-k}\right)-G \sum_{\substack{k, k_{x}>0, k^{\prime}, k_{x}^{\prime}>0}}\left(k_{x}+i k_{y}\right)\left(k_{x}^{\prime}-i k_{y}^{\prime}\right) c_{k}^{\dagger} c_{-k}^{\dagger} c_{-k^{\prime}} c_{k^{\prime}}
$$

Quantum Phase Diagram

The phase diagram can be parametrized in terms of the

 density $\rho=M / L$ and the rescaled coupling $g=G L$

Quantum Phase Diagram

The phase diagram can be pa density $\rho=M / L$ and the resce

Quantum Phase Diagram

The phase diagram can be pa density $\rho=M / L$ and the resci

Quantum Phase Diagram

Quantum Phase Diagram

Gaudin for Quantum Hall

Exactly-Solvable Model: Strong Coupling

Consider the general class of hyperbolic Gaudin models with:

$$
\mathrm{S}^{z}(x)=-\frac{1}{2}-\sum_{k(j)} Z\left(x, \eta_{k}\right) S_{j k}^{z}, \mathrm{~S}^{ \pm}(x)=\sum_{k(j)} X\left(x, \eta_{k}\right) S_{j k}^{ \pm}
$$

In this rep one can define $\mathcal{C}(j)$ constants of motion: (Fix j)

$$
R_{j k}=S_{j k}^{z}-\sum_{l(j), l \neq k} X\left(\eta_{k}, \eta_{l}\right)\left(S_{j k}^{+} S_{j l}^{-}+S_{j k}^{-} S_{j l}^{+}\right)-2 \sum_{l(j), l \neq k} Z\left(\eta_{k}, \eta_{l}\right) S_{j k}^{z} S_{j l}^{z}
$$

And from their linear combination obtain:

$$
H_{G j}=\sum_{k(j)} \epsilon_{k} S_{j k}^{z}-\sum_{k(j), l(j)}\left(\epsilon_{k}-\epsilon_{l}\right) X\left(\eta_{k}, \eta_{l}\right) S_{j k}^{+} S_{j l}^{-}-\sum_{k(j), l(j)}\left(\epsilon_{k}-\epsilon_{l}\right) Z\left(\eta_{k}, \eta_{l}\right) S_{j k}^{z} S_{j l}^{z}
$$

The following parametrization (satisfying Jacobi's relation):

$$
X(x, y)=-\bar{g} \frac{\sqrt{x} \sqrt{y}}{x-y}, \quad Z(x, y)=-\frac{\bar{g}}{2} \frac{x+y}{x-y}
$$

and $\epsilon_{k}=\lambda_{j} \eta_{k}^{2}$ leads to the Hamiltonian:

$$
H_{\mathrm{G} j}=\lambda_{j}\left(1+\bar{g}\left(S_{j}^{z}-1\right)\right) \sum_{k(j)} \eta_{k}^{2} S_{j k}^{z}+\lambda_{j} \bar{g} \sum_{k(j), l(j)} \eta_{k} \eta_{l} S_{j k}^{+} S_{j l}^{-}
$$

where
$\mathbf{S}_{j k}^{2}$ and $\mathbf{S}_{j}=\sum_{k(j)} \mathbf{S}_{j k}$ are good quantum numbers

The following parametrization (satisfying Jacobi's relation):

$$
X(x, y)=-\bar{g} \frac{\sqrt{x} \sqrt{y}}{x-y}, \quad Z(x, y)=-\frac{\bar{g}}{2} \frac{x+y}{x-y}
$$

and $\epsilon_{k}=\lambda_{j} \eta_{k}^{2}$ leads to the Hamiltonian:

$$
H_{\mathrm{G} j}=\lambda_{j}\left(1+\bar{g}\left(S_{j}^{z}-1\right)\right) \sum_{k(j)} \eta_{k}^{2} S_{j k}^{z}+\lambda_{j} \bar{g} \sum_{k(j), l(j)} \eta_{k} \eta_{l} S_{j k}^{+} S_{j l}^{-}
$$

where
$\mathbf{S}_{j k}^{2}$ and $\mathbf{S}_{j}=\sum_{k(j)} \mathbf{S}_{j}$ are good quantum numbers
We want to consider the special case where vanishes

One can choose the SU(2) fermionic representation:

$$
S_{j k}^{+}=c_{j+k}^{\dagger} c_{j-k}^{\dagger}, S_{j k}^{-}=c_{j-k} c_{j+k}, S_{j k}^{z}=\frac{1}{2}\left(n_{j+k}+n_{j-k}-1\right)
$$

such that acting on the vacuum $|\nu(j)\rangle$ containing only unpaired e-

$$
S_{j k}^{-}|\nu(j)\rangle=0 \quad S_{j k}^{z}|\nu(j)\rangle=\frac{1}{2}\left(\left|\nu_{j k}\right|-1\right)|\nu(j)\rangle \equiv-s_{j k}|\nu(j)\rangle
$$

$>_{j+k}-k$

$$
\nu_{j k}=0
$$

$$
\nu_{j k}=-1
$$

$$
\nu_{j k}=+1
$$

$$
\nu_{j k}=0
$$

$$
j+k \quad j-k
$$

$$
N=2 M+N_{\mathrm{b}}+N_{\text {inactive }}
$$

$$
\text { (} L \text { orbitals) }
$$

Paired

One can choose the SU(2) fermionic representation:

$$
S_{j k}^{+}=c_{j+k}^{\dagger} c_{j-k}^{\dagger}, S_{j k}^{-}=c_{j-k} c_{j+k}, S_{j k}^{z}=\frac{1}{2}\left(n_{j+k}+n_{j-k}-1\right)
$$

such that acting on the vacuum $|\nu(j)\rangle$ cantaining only unpaired eseniority

$$
S_{j k}^{-}|\nu(j)\rangle=0 \quad S_{j k}^{z}|\nu(j)\rangle=\frac{1}{2}\left(\left|\nu_{j k}^{\hat{\top}}\right|-1\right)|\nu(j)\rangle \equiv-s_{j k}|\nu(j)\rangle
$$

$\widehat{S i}_{j+k-j}$

$$
\nu_{j k}=-1
$$

$$
\nu_{j k}=+1
$$

$$
\nu_{j k}=0
$$

Paired

$$
N=2 M+N_{\mathrm{b}}+N_{\text {inactive }}
$$

$$
\text { (} L \text { orbitals) }
$$

Additional symmetries become manifest in the fermionic language:

- Pauli blocking (SU(2) gauge symmetry):

$$
\tau_{j k}^{+}=c_{j+k}^{\dagger} c_{j-k}, \tau_{j k}^{-}=c_{j-k}^{\dagger} c_{j+k}, \tau_{j k}^{z}=\frac{1}{2}\left(n_{j+k}-n_{j-k}\right)
$$

- Total angular momentum (global symmetry):

$$
\hat{J}=\sum_{r=0}^{L-1} r n_{r}
$$

$$
\left[\hat{J}, S_{j k}^{ \pm}\right]= \pm 2 j S_{j k}^{ \pm}
$$

pair's angular momentum: $2 j$
One classify eigenstates $\left|\Phi_{M \nu(j)}\right\rangle$ according to \hat{J} and S_{j}^{z}

$$
S_{j}^{z}\left|\Phi_{M \nu(j)}\right\rangle=\left(M-\sum_{k(j)} s_{j k}\right)\left|\Phi_{M \nu(j)}\right\rangle \quad \hat{J}\left|\Phi_{M \nu(j)}\right\rangle=J\left|\Phi_{M \nu(j)}\right\rangle
$$

By choosing: $\quad \bar{g}=-1 /\left(M-\sum_{k(j)} s_{j k}-1\right)$
one obtains: $\left(g=\lambda_{j} \bar{g}\right)$

$$
H_{\mathrm{G} j}=g \sum_{k(j), l(j)} \eta_{k} \eta_{l} c_{j+k}^{\dagger} c_{j-k}^{\dagger} c_{j-l} c_{j+l}=g T_{j 1}^{+} T_{j 1}^{-}
$$

Arbitrary Haldane pseudopotential

This model is exactly solvable for any η_{k}, the QH information is in part in their specific values

By choosing: $\quad \bar{g}=-1 /\left(M-\sum_{k(j)} s_{j k}-1\right)$

one obtains: $\left(g=\lambda_{j} \bar{g}\right)$

$$
H_{\mathrm{G} j}=g \sum_{k(j), l(j)} \eta_{k} \eta_{l} c_{j+k}^{\dagger} c_{j-k}^{\dagger} c_{j-l} c_{j+l}=g T_{j 1}^{+} T_{j 1}^{-}
$$

Arbitrary Haldane pseudopotential

geometry	L (Laughlin $)$	N_{Φ}	η_{k}	$\phi_{r}(z)$
disk	$m N-m+1$	L	$k 2^{-j} \sqrt{\frac{1}{2 \pi j}\binom{2 j}{j+k}}$	$\frac{1}{\sqrt{2 \pi 2^{r} r!}} z^{r} e^{-\frac{1}{4}\|z\|^{2}}$
cylinder	$m N-m+1$	L	$\kappa^{3 / 2} k e^{-\kappa^{2} k^{2}}$	$\sqrt{\kappa} e^{-\frac{1}{2}(x-r \kappa)^{2}+i r \kappa y}$
sphere	$m N-m+1$	$L-1$	$k \frac{N_{\Phi}+1}{4 \sqrt{2 \pi j}} \sqrt{\binom{2 N_{\Phi}}{2 j}^{-1} \frac{\left(6 N_{\Phi}-5\right) N_{\Phi}}{\left(2 N_{\Phi}-1\right)\left(2 N_{\Phi}-2 j\right)}\binom{N_{\Phi}}{j+k}\binom{N_{\Phi}}{j-k}}$	$\sqrt{\frac{N_{\Phi}+1}{4 \pi}\binom{N_{\Phi}}{r}}\left[e^{-i \frac{\varphi}{2}} \sin \left(\frac{\theta}{2}\right)\right]^{r}\left[e^{i \frac{\varphi}{2}} \cos \left(\frac{\theta}{2}\right)\right]^{N_{\Phi}-r}$
torus	$m N$	L	$\kappa^{3 / 2} \sum_{s \in \mathbb{Z}}(k+s L) e^{-\kappa^{2}(k+s L)^{2}}$	$\sum_{s \in \mathbb{Z}} \phi_{r+s L}^{\text {cylinder }}$

What can one learn from its eigenspectrum?

Given N electrons and L orbitals the filling fraction is: $\nu=\frac{N-1}{L-1}$
The dimension of the total Hilbert space:

$$
\operatorname{dim} \mathcal{H}_{L}(N)=\binom{L}{N}=\sum_{J \in \mathcal{J}_{L}(N)} \operatorname{dim} \mathcal{H}_{L}(N, J)
$$

where the set of allowed J
$\mathcal{J}_{L}(N)=\left\{\frac{N(N-1)}{2}, \frac{N(N-1)}{2}+1, \frac{N(N-1)}{2}+2, \cdots, N\left(L-\frac{(N+1)}{2}\right)\right\}$
and $\operatorname{dim} \mathcal{H}_{L}(N, J)$ is determined from the generating function:

$$
\mathcal{Z}(x, z)=\prod_{r=0}^{L-1}\left(1+z x^{r}\right)=\sum_{\bar{J}=0}^{L(L-1) / 2} \sum_{\bar{N}=0}^{L} \operatorname{dim} \mathcal{H}_{L}(\bar{N}, \bar{J}) z^{\bar{N}} x^{\bar{J}}
$$

Eigenvectors:

$$
\left|\Phi_{M \nu(j)}\right\rangle=\prod_{\alpha=1}^{M} \mathrm{~S}_{j}^{+}\left(E_{\alpha}\right)|\nu(j)\rangle, \mathrm{S}_{j}^{\dagger}\left(E_{\alpha}\right)=\sum_{k(j)} \frac{\eta_{k}}{\eta_{k}^{2}-E_{\alpha}} c_{j+k}^{\dagger} c_{j-k}^{\dagger}
$$

There exists two classes of solutions:
All finite pairons: $\quad \mathcal{E}_{M \nu(j)}=0$
One infinite pairon: $\mathcal{E}_{M \nu(j)}=2 g\left(\sum_{k(j)} s_{j k} \eta_{k}^{2}-\sum_{\alpha=1}^{M-1} E_{\alpha}\right)$
The Gaudin (Bethe) equation is:

$$
\sum_{\beta(\neq \alpha)=1}^{M} \frac{E_{\beta}}{E_{\beta}-E_{\alpha}}-\sum_{k(j)} s_{j k} \frac{\eta_{k}^{2}}{\eta_{k}^{2}-E_{\alpha}}=0, \forall \alpha
$$

Spectrum of Gaudin-Quantum Hall

Repulsive case $(g>0)$:

$\operatorname{dim} \mathcal{H}_{L}(N, J)-\operatorname{dim} \mathcal{H}_{L}(N-2, J-2 j) \quad$ (independent of η_{k})
\} \# zeros: Large degeneracy (Null space)

$$
\widetilde{H_{\mathrm{G} j}}
$$

Attractive case $(g<0)$:

$\overbrace{\text { (unique ground state) }}^{\text {Strongly-coupled Supercer }}$

Ground States of the Full Pseudopotential Problem

Frustration-Free Properties

We have shown that in second quantization:

$$
\hat{H}_{\mathrm{QH}}=\sum_{0<j<L-1} \sum_{m \geq 0} H_{\mathrm{G} j}^{m}=\sum_{m \geq 0} g_{m} \hat{H}_{V_{m}}
$$

$\operatorname{Ker}\left(\hat{H}_{\mathrm{QH}}\right)$ is the common null space of all the null spaces $\operatorname{Ker}\left(H_{\mathrm{Gj}}^{m}\right)$
Given N, L, the Hamiltonian $\hat{H}_{V_{1}}$ displays zero energy ground states $\left|\Psi_{\nu}^{J}\right\rangle$, whenever $\nu=\frac{p}{q} \leq \frac{1}{3}$. The zero energy state is unique when $\nu=\frac{1}{3}$, it is in the sector $J=J_{\mathrm{m}}$, and it is the Laughlin state

$\hat{H}_{V_{1}}$ is a frustration-free Hamiltonian for $\nu=\frac{p}{q} \leq \frac{1}{3}$

$$
H_{\mathrm{G}_{j}}\left|\Psi_{\nu}^{J}\right\rangle=0, \text { for all } j, j_{\text {min }} \leq j \leq j_{\text {max }} \Rightarrow T_{j 1}^{-}\left|\Psi_{\nu}^{J}\right\rangle=0
$$

positive semi-definite

Corollary: All zero energy states have zero coefficients, in a Slater determinant expansion, for the basis states with:
$\left(n_{0}=1, n_{1}=1\right),\left(n_{0}=1, n_{2}=1\right),\left(n_{L-3}=1, n_{L-1}=1\right),\left(n_{L-2}=1, n_{L-1}=1\right)$

Conclusions

Exact relation between QH Hamiltonians and Pairing models
We determined the exact spectrum of the QH-Gaudin problem Proved separability of Haldane pseudopotentials (explicit construction)

- Topological equivalence of different geometries sharing the same genus number

Quasi-hole generators in second quantization

Outlook

- String (long-range) order in Second Quantization - Relation between Calogero-Sutherland and Gaudin

How about $\nu=1 / 2$?

- Electromagnetic response

