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Motivation for this work
FQH fluids are archetypical examples of interacting systems 
displaying TQO

We need to deeply understand its excitations if we want to use 
its supposedly non-Abelian features for fault tolerant 
topological information processing

Derivation of states with filling fractions other than Laughlin’s? 
Need some organizing principle (parent Hamiltonians?)

How about edge modes?
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Main Messages
A deep connection between Pairing and Quantum Hall Physics

The Quantum Hall Hamiltonian is the direct sum of exactly-
solvable hyperbolic Richardson-Gaudin models (the most 
general interaction is a sum of separable potentials) 

Second quantization formulation of Quantum Hall which is a 
“guiding center” language

The most general interaction is a sum of separable potentials
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New states of matter where the traditional 
Landau paradigm is not applicable

Topological Quantum Computation:
    Hardware Fault-tolerance

A new quantum vacuum (TQM)

Can we engineer them?

Spectra

Why Topological Quantum Order?

(Different from Landau vacua)

Robustness against local perturbations
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New states of matter where the traditional 
Landau paradigm is not applicable

Topological Quantum Computation:
    Hardware Fault-tolerance

A new quantum vacuum (TQM)

Defeating Decoherence

Can we engineer them?

Spectra

Why Topological Quantum Order?

(Different from Landau vacua)

Robustness against local perturbations
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Precision measurements (quantum metrology)?

Functionalities other than computer hardware:

Quantum Memories

Background independent “emergent” space?
(Toy Models of Quantum Gravity)

Why Topological Quantum Order?
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How about topological insulators and superconductors?

Why Topological Quantum Order?
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How about topological insulators and superconductors?

Why Topological Quantum Order?

Topological insulators (superconductors) are gapped 
phases of non-interacting fermionic matter which 
exhibit parity (or some other symmetry) protected 

boundary (zero-energy-mode) states
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How about topological insulators and superconductors?

Why Topological Quantum Order?

Is there a unifying theory (such as Landau) for TQM?

Given current interests in topological insulators 
(superconductors) and in building a Quantum computer

Topological insulators (superconductors) are gapped 
phases of non-interacting fermionic matter which 
exhibit parity (or some other symmetry) protected 

boundary (zero-energy-mode) states
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Fractional Quantum Hall Liquids

Kitaev’s Toric code model

H = −

∑

s

As −

∑

p

Bp

Bp =

∏

j∈boundary(p)

σ
z
jAs =

∏

j∈star(s)

σ
x
j

Some spin liquids

Old Examples of TQM
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Outline

QH Hamiltonian

QH states
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Outline

QH Hamiltonian

QH states Setup the QH Hamiltonian in 
second quantization
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Outline

QH Hamiltonian

QH states Setup the QH Hamiltonian in 
second quantization

Relate to a Pairing problem
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Outline

QH Hamiltonian

QH states Setup the QH Hamiltonian in 
second quantization

Relate to a Pairing problem

Study the Ker of the QH problem 
in terms of the Kers of the Pairing 
problems
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Quantum Hall Physics
An Exercise in Second Quantization
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Dimensional Reduction/Holography
The correlation function inequalities are general and not 
specific to any model. In general they lead to:

Effective dimensional reduction

Exact dimensional reduction: 
Inequalities become equalities 
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Dimensional Reduction/Holography
The correlation function inequalities are general and not 
specific to any model. In general they lead to:

Effective dimensional reduction

Exact dimensional reduction: 
Inequalities become equalities 

Duality connecting the two theories
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TQO is a property of States not of the Spectrum
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HK = −

∑

s

As −

∑

p

Bp

As =

∏

ij∈star(s)

σ
x
ij

Bp =

∏

ij∈boundary(p)

σ
z
ij

Duality mappings: Non-local

Kitaev’s toric code 
model:

Wen’s plaquette model:2 Ising chains:
(Nussinov-Ortiz 2006)

HI = −

∑

s

σ
z
sσ

z
s+1 −

∑

p

σ
z
pσ

z
p+1

HW = −

∑

i

σ
x
i σ

y
i+êx

σ
x
i+êx+êy

σ
y
i+êy

(Identical spectra)

TQO is a property of States not of the Spectrum
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σ
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σ
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i+êx+êy

σ
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(Identical spectra)

TQO is a property of States not of the Spectrum

Entanglement is non-local with respect to the local language
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Dimensional Reduction - QH Physics
First Quantization

B

B

2D continuous geometries

eN

ν =
N − 1

L− 1

dynamical momenta
HQH =

N�

i=1

Π2
i

2m
+
�

i<j

V (xi − xj)
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Dimensional Reduction - QH Physics
First Quantization Second Quantization

P̂LLLHQHP̂LLL

1D orbital lattices

�HQH =
�

0<j<L−1

�

k(j),l(j)

Vj;kl c
†
j+kc

†
j−kcj−lcj+l

B

B

2D continuous geometries

eN

ν =
N − 1

L− 1

dynamical momenta
HQH =

N�

i=1

Π2
i

2m
+
�

i<j

V (xi − xj)
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Second Quantization Counting:
takes the              values:j 2L− 3

jmin =
1

2
, 1,

3

2
, 2, . . . , jm =

L− 1

2
, . . . , jmax = L− 3

2

Sums over         involve          active orbital levels:k(j) C(j)

�

k(j)

=
�

0<k≤min(j,L−1−j)
C(j) = min([j +

1

2
], [L− 1

2
− j])with

This is a guiding center formulation with the geometrical information 
(dynamical momenta) encoded in the matrix elements    Vj;kl
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Separability of Pseudopotentials
Given an arbitrary spherically symmetric interaction:
V (xi − xj) =

�

m≥0

gm Vm =
�

m≥0

gm
�

i<j

Pm(ij)

with gm ≥ 0 and Pm(ij) a projector onto the subspace of relative
angular momentum      of the pairm (ij)
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Separability of Pseudopotentials
Given an arbitrary spherically symmetric interaction:
V (xi − xj) =

�

m≥0

gm Vm =
�

m≥0

gm
�

i<j

Pm(ij)

with gm ≥ 0 and Pm(ij) a projector onto the subspace of relative
angular momentum      of the pairm (ij)

ĤVm =
�

0<j<L−1

�

k(j),l(j)

ηkηl c
†
j+kc

†
j−kcj−lcj+l

We have shown that in second quantization: ĤQH =
�

m≥0

gm ĤVm

with
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For the 1st Haldane pseudopotential or Trugman-Kivelson model:

In the case of the cylinder for arbitrary m

ηk =
e
−κ2k2

2
m
2

√
m!

Hm[
√
2κk] Hermite poly
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For the 1st Haldane pseudopotential or Trugman-Kivelson model:

In the case of the cylinder for arbitrary m

ηk =
e
−κ2k2

2
m
2

√
m!

Hm[
√
2κk] Hermite poly

We have shown that geometries with the same genus number 
can be related through similarity transformations
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Strongly-Coupled 
States of Matter
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Generalized Gaudin Problems
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Generalized Gaudin Algebra



















[Sκ
m,Sκ

" ] = 0 ,

[Sx
m,S

y
" ] = i(Ym" Sz

m − Xm" Sz
" ) ,

[Sy
m,Sz

" ] = i(Zm" Sx
m − Ym" Sx

" ) ,

[Sz
m,Sx

" ] = i(Xm" Sy
m − Zm" S

y
" ) ,

m → !m != !

From Jacobi identities:
{

Zm!X!n + ZnmY!n + XnmYm! = 0

X2

m!
− Z2

m!
= Γ1 , X2

m!
− Y 2

m!
= Γ2

Gaudin eqns.

lim
ε→0

εW (x, x + ε) = f(x)

GGA: (κ = x, y, z, andW = X, Y, Z)

Wm� = W (ηm, η�) ∈ antisymmetric






[Sκm, Sκm] = 0 ,

[Sxm, Sym] = −i f(ηm)∂S
z
m

∂ηm
,

[Sym, Szm] = −i f(ηm)∂S
x
m

∂ηm
,

[Szm, Sxm] = −i f(ηm)∂S
y
m

∂ηm
,
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Generalized Gaudin Algebra
Generalized Gaudin Algebra (GGA) + quantum invariants allow 

derivation of several families of exactly-solvable models including the 
BCS reduced Hamiltonian
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Quantum Invariants: [Hm, H!] = 0

Diagonalizing              invariants:XXZ

|0〉 lowest-weight vector,

Bethe ansatz: |Φ〉 =
M∏

!=1

S
+
! |0〉 =

M∏

!=1

(Sx
! + iS

y
! )|0〉 ,

Eigenvalue:

Bethe equation:

H(ηm) ≡ Hm = SxmSxm + SymSym + SzmSzm = �Sm · �Sm

Hm|Φ� = ω(ηm)|Φ� ,

S−m|0� = 0 , Szm|0� = F (ηm)|0� ∀ηm

ω(ηm) = F 2(ηm)−f(ηm)
∂

∂ηm
F (ηm)+

M�

�=1



Γ− 2Zm� F (ηm) +
M�

n(�=�)=1

Zm�Zmn





F (η�) +
M�

n(�=�)=1

Zn� = 0 , � = 1, · · · ,M
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Solutions of the            Gaudin equation:XXZ

1. Rational: Γ = 0, s = 0,

X(η�, ηn) = Z(η�, ηn) = g
1

η� − ηn
,

with ti = ηi,

2. Trigonometric: Γ > 0, s = +1,

X(η�, ηn) = g
1

sin(η� − ηn)
, Z(η�, ηn) = g cot(η� − ηn) ,

with ti = tan(ηi),

3. Hyperbolic: Γ < 0, s = −1,

X(η�, ηn) = g
1

sinh(η� − ηn)
, Z(η�, ηn) = g coth(η� − ηn) ,

with ti = tanh(ηi).

Zm!X!n + ZnmX!n + XnmXm! = 0

X!n = g

√

1 + st2
!

√

1 + st2n
t! − tn

, Z!n = g
1 + st!tn

t! − tn
Γ = sg2, ti = −g/Zri, |s| = 0, 1,
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Exactly-solvable models derived from the GGA:

S
±
m

=

∑

j∈T

XmjS
±
j , S

z

m
= −

1

2
1l −

∑

j∈T

ZmjS
z

j

(I) Find realizations of the algebra: e.g.
⊕

j

su(2) {S+

j , S−

j , Sz

j }

(II) Rewrite            :               Hm
Hm[!Sm] → Hm[!Sj]

(III) Use analytic properties of     and      :X Z

Ri = S
z

i + 2
∑

j∈T ("=i)

(

Xij

2
(S+

i S
−
j + S

−
i S

+
j ) + Zij S

z

i S
z

j

)

(IV) BCS example: H =
∑

k

εkRk(X,X)

{

S
+
k

= c
†
k↑c

†
−k↓ = (S−

k
)†

Sz

k
= 1

2
(nk↑ + n−k↓ − 1)

[Ri, Rj] = 0Constants of motion:

Ri =
1

f(ηi)

�

Γi

dηm
2πi

Hm
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Gaudin Algebra Representation l Model
XXX

�
l su(2)-F-P

N
BCS Richardson
Nuclear Pairing
BCS (k ↑,−k ↓)�

l su(2)-F-S N Particle-hole-like�
l su(1, 1)-B N B BCS�

l su(2) ⊕ su(2) N Central Spin�
l su(1, 1) ⊕ su(1, 1) N B Central Spin

XXZ
�

l su(2)-F-P 2 Suhl-Matthias-Walker�
l su(1, 1)-B

2
Lipkin-Meshkov-Glick
Interacting Boson (IBM1)

Two-Josephson-coupled BECs�
l su(2) ⊕ h4 N Generalized Dicke, F-atom-molecule�

l su(1, 1) ⊕ h4 N B-atom-molecule�
l su(2)-F-S ⊕ su(2) N Kondo-like impurity�

l h4 ⊕ su(2) N Special Spin-Boson
XYZ

�
l su(2) N Generalized XYZ Gaudin

Some Examples of exactly-solvable Gaudin models
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�
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H =

∑

k

εk nk +
G

V

∑

k,k′

c†
k↑c

†
−k↓c−k′↓ck′↑ ,

Some Examples of exactly-solvable Gaudin models
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                superconductorp+ ip
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Fermionic Superfluidpx + ipy
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Hyperbolic Gaudin Hamiltonian

Hh =
�

k

ηkS
z
k −G

�

k,k�

√
ηkηk�S

+
k S

−
k�

�

i

si
ηi − Eα

−
�

α�,α� �=α

1

Eα� − Eα
− Q

Eα
= 0

A particular realization of the hyperbolic Gaudin model is:

with Eigenspectrum:

and Gaudin (Bethe) equations:

E(ΦM ) = �ν|Hh|ν�+
M�

α=1

Eα|ΦM � =
M�

α=1

�
�

k

√
ηk

ηk − Eα
S+
k

�
|ν�

(Q =
1

2G
− L

2
+M − 1)
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Hyperbolic Gaudin Hamiltonian

Hh =
�

k

ηkS
z
k −G

�

k,k�

√
ηkηk�S

+
k S

−
k�

�

i

si
ηi − Eα

−
�

α�,α� �=α

1

Eα� − Eα
− Q

Eα
= 0

A particular realization of the hyperbolic Gaudin model is:

with Eigenspectrum:

and Gaudin (Bethe) equations:

E(ΦM ) = �ν|Hh|ν�+
M�

α=1

Eα|ΦM � =
M�

α=1

�
�

k

√
ηk

ηk − Eα
S+
k

�
|ν�

(Q =
1

2G
− L

2
+M − 1)

Pairon
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Sz
k =

1

2

�
c†kck + c†−kc−k − 1

�
S+
k =

kx + iky
|k| c†kc

†
−k S−

k =
kx − iky

|k| c−kck

One can choose the SU(2) fermionic representation: 

And by also choosing: ηk = k2

One obtains the p+ip superconducting model:

Hpx+ipy =
�

k,kx>0

k
2

2

�
c
†
kck + c

†
−kc−k

�
−G

�

k,kx>0,
k�,k�

x>0

(kx+iky)(k
�
x−ik

�
y)c

†
kc

†
−kc−k�ck�
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Quantum Phase Diagram
The phase diagram can be parametrized in terms of the 
density                     and the rescaled coupling    ρ = M/L g = GL
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Gaudin for Quantum Hall
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An Exactly-Solvable Model: Strong Coupling

Sz(x) = −1

2
−

�

k(j)

Z(x, ηk)S
z
jk, S±(x) =

�

k(j)

X(x, ηk)S
±
jk

Rjk = Sz
jk −

�

l(j),l �=k

X(ηk, ηl)
�
S+
jkS

−
jl + S−

jkS
+
jl

�
− 2

�

l(j),l �=k

Z(ηk, ηl)S
z
jkS

z
jl

HGj =
�

k(j)

�kS
z
jk−

�

k(j),l(j)

(�k−�l)X(ηk, ηl)S
+
jkS

−
jl−

�

k(j),l(j)

(�k−�l)Z(ηk, ηl)S
z
jkS

z
jl

Consider the general class of hyperbolic Gaudin models with:

In this rep one can define         constants of motion:C(j)

And from their linear combination obtain:

(Fix     )j
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HGj = λj(1 + ḡ(Sz
j − 1))

�

k(j)

η2kS
z
jk + λj ḡ

�

k(j),l(j)

ηkηlS
+
jkS

−
jl

The following parametrization (satisfying Jacobi’s relation):

X(x, y) = −ḡ

√
x
√
y

x− y
, Z(x, y) = − ḡ

2

x+ y

x− y

and                   leads to the Hamiltonian:�k = λjη
2
k

where
S2
jk Sj =

�

k(j)

Sjk are good quantum numbersand
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HGj = λj(1 + ḡ(Sz
j − 1))

�

k(j)

η2kS
z
jk + λj ḡ

�

k(j),l(j)

ηkηlS
+
jkS

−
jl

The following parametrization (satisfying Jacobi’s relation):

X(x, y) = −ḡ

√
x
√
y

x− y
, Z(x, y) = − ḡ

2

x+ y

x− y

and                   leads to the Hamiltonian:�k = λjη
2
k

where
S2
jk Sj =

�

k(j)

Sjk are good quantum numbersand

We want to consider the special case where      vanishes
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One can choose the SU(2) fermionic representation: 

S+
jk = c†j+kc

†
j−k , S−

jk = cj−kcj+k , Sz
jk =

1

2
(nj+k + nj−k − 1)

S−
jk|ν(j)� = 0

such that acting on the vacuum           containing only unpaired e-|ν(j)�

Sz
jk|ν(j)� =

1

2
(|νjk|− 1)|ν(j)� ≡ −sjk|ν(j)�

j + k j − k

νjk = 0

j + k j − k

νjk = +1

j + k j − k

νjk = −1

j + k j − k

νjk = 0

N = 2M +Nb +Ninactive

Paired Unpaired= Nb =
�

k(j)

|νjk| Inactive levels

L(      orbitals)

Monday, August 5, 2013



One can choose the SU(2) fermionic representation: 

S+
jk = c†j+kc

†
j−k , S−

jk = cj−kcj+k , Sz
jk =

1

2
(nj+k + nj−k − 1)

S−
jk|ν(j)� = 0

such that acting on the vacuum           containing only unpaired e-|ν(j)�

Sz
jk|ν(j)� =

1

2
(|νjk|− 1)|ν(j)� ≡ −sjk|ν(j)�
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Additional symmetries become manifest in the fermionic language:

τ+jk = c†j+kcj−k , τ−jk = c†j−kcj+k , τzjk =
1

2
(nj+k − nj−k)

Total angular momentum (global symmetry):

Ĵ =
L−1�

r=0

r nr [Ĵ , S±
jk] = ±2jS±

jk

Pauli blocking (           gauge symmetry):SU(2)

pair’s angular momentum: 2j

One classify eigenstates                  according to      and |ΦMν(j)� Ĵ Sz
j

Ĵ |ΦMν(j)� = J |ΦMν(j)�Sz
j |ΦMν(j)� = (M −

�

k(j)

sjk) |ΦMν(j)�
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By choosing: ḡ = −1/(M −
�

k(j)

sjk − 1)

one obtains:

Arbitrary Haldane pseudopotential

This model is exactly solvable for any         , the QH information is 
in part in their specific values 

ηk

(g = λj ḡ)

HGj = g

�

k(j),l(j)

ηkηl c
†
j+kc

†
j−kcj−lcj+l = g T

+
j1T

−
j1
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What can one learn from its eigenspectrum?
Given       electrons and       orbitals the filling fraction is:N L ν =

N − 1

L− 1

The dimension of the total Hilbert space:

dimHL(N) =

�
L

N

�
=

�

J∈JL(N)

dimHL(N, J)

where the set of allowed 
JL(N) =

�N(N − 1)

2
,
N(N − 1)

2
+1,

N(N − 1)

2
+2, · · · , N

�
L− (N + 1)

2

��
J

and                         is determined from the generating function:dimHL(N, J)

Z(x, z) =
L−1�

r=0

(1 + zxr) =

L(L−1)/2�

J̄=0

L�

N̄=0

dimHL(N̄ , J̄) zN̄xJ̄
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Eigenvectors:

|ΦMν(j)� =
M�

α=1

S+j (Eα)|ν(j)� , S+j (Eα) =
�

k(j)

ηk
η2k − Eα

c†j+kc
†
j−k

There exists two classes of solutions:

All finite pairons: EMν(j) = 0

One infinite pairon: EMν(j) = 2g




�

k(j)

sjk η
2
k −

M−1�

α=1

Eα





The Gaudin (Bethe) equation is:
M�

β(�=α)=1

Eβ

Eβ − Eα
−

�

k(j)

sjk
η2k

η2k − Eα
= 0, ∀α
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Spectrum of Gaudin-Quantum Hall

dimHL(N, J)− dimHL(N − 2, J − 2j)

}0 # zeros:

HGj

Repulsive case             :(g > 0) jm =
L− 1

2
jm + 1/2 jm + 1jm − 1/2jm − 1

· · ·· · ·

}0
HGj

Attractive case             :(g < 0) Strongly-coupled Superconductor

Large degeneracy

(unique ground state)

(Null space)
(independent of       )ηk
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Ground States of the Full 
Pseudopotential Problem
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Frustration-Free Properties
We have shown that in second quantization: 

is the common null space of all the null spaces Ker(Hm
Gj)Ker(ĤQH)

ĤQH =
�

0<j<L−1

�

m≥0

H
m
Gj =

�

m≥0

gm ĤVm

Given       , the Hamiltonian        displays zero energy ground 
states       ,  whenever                 .  The zero energy state is unique 
when           , it is in the sector            , and it is the Laughlin state

|ΨJ
ν � ν = p

q ≤ 1
3

ν =
1

3
J = Jm

N,L ĤV1
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ν = p
q ≤ 1

3ĤV1 is a frustration-free Hamiltonian for

HGj |ΨJ
ν � = 0, for all j, jmin ≤ j ≤ jmax ⇒ T

−
j1|Ψ

J
ν � = 0

positive semi-definite

Corollary:    All zero energy states have zero coefficients, in a Slater 
determinant expansion, for the basis states with:
(n0 = 1, n1 = 1) , (n0 = 1, n2 = 1) , (nL−3 = 1, nL−1 = 1) , (nL−2 = 1, nL−1 = 1)
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Conclusions
Exact relation between QH Hamiltonians and Pairing models

We determined the exact spectrum of the QH-Gaudin problem

Proved separability of Haldane pseudopotentials (explicit 
construction)

Topological equivalence of different geometries sharing the 
same genus number

Quasi-hole generators in second quantization
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Outlook

String (long-range) order in Second Quantization

Relation between Calogero-Sutherland and Gaudin

How about                   ?

Electromagnetic response

ν = 1/2
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