Pairing from Repulsive Interactions in Quantum Hall Physics

Gerardo Ortiz Department of Physics - Indiana University

NORDITA - August 5 2013

Collaborators:

Alexander Seidel: Washington University - St. Louis

Zohar Nussinov: Washington University - St. Louis

Jorge Dukelsky: CSIC - Madrid

Tuesday, August 6, 2013

Bottom-Up Approach to QH

Motivation for this work

- FQH fluids are archetypical examples of interacting systems displaying TQO
- We need to deeply understand its excitations if we want to use its supposedly non-Abelian features for fault tolerant topological information processing
- Derivation of states with filling fractions other than Laughlin's? Need some organizing principle (parent Hamiltonians?)

How about edge modes?

Main Messages

- A deep connection between Pairing and Quantum Hall Physics
 - The Quantum Hall Hamiltonian is the direct sum of exactlysolvable hyperbolic Richardson-Gaudin models (the most general interaction is a sum of separable potentials)
 - Second quantization formulation of Quantum Hall which is a "guiding center" language
- [The most general interaction is a sum of separable potentials

New states of matter where the traditional Landau paradigm is not applicable A new quantum vacuum (TQM) (Different from Landau vacua) Can we engineer them?

 Topological Quantum Computation: Hardware Fault-tolerance Robustness against local perturbations

New states of matter where the traditional Landau paradigm is not applicable A new quantum vacuum (TQM) (Different from Landau vacua) Can we engineer them?

 Topological Quantum Computation: Hardware Fault-tolerance Robustness against local perturbations Defeating Decoherence

Functionalities other than computer hardware:

Quantum Memories Precision measurements (quantum metrology)? Background independent "emergent" space? (Toy Models of Quantum Gravity)

How about topological insulators and superconductors?

How about topological insulators and superconductors?

How about topological insulators and superconductors?

Topological insulators (superconductors) are gapped phases of non-interacting fermionic matter which exhibit parity (or some other symmetry) protected boundary (zero-energy-mode) states

How about topological insulators and superconductors?

Topological insulators (superconductors) are gapped phases of non-interacting fermionic matter which exhibit parity (or some other symmetry) protected boundary (zero-energy-mode) states

Given current interests in topological insulators (superconductors) and in building a Quantum computer

Is there a unifying theory (such as Landau) for TQM?

- Fractional Quantum Hall Liquids
- Kitaev's Toric code model

$$H = -\sum_{s} A_s - \sum_{p} B_p$$

$$A_s = \prod_{j \in \operatorname{star}(s)} \sigma_j^x$$

$$B_p = \prod_{j \in \text{boundary}(p)} \sigma_j^z$$

- Fractional Quantum Hall Liquids
- Kitaev's Toric code model

 $H = -\sum_{s} A_s - \sum_{p} B_p$

$$A_s = \prod_{j \in \operatorname{star}(s)} \sigma_j^x$$

$$B_p = \prod_{j \in \text{boundary}(p)} \sigma_j^z$$

- Fractional Quantum Hall Liquids
- Kitaev's Toric code model

$$H = -\sum_{s} A_s - \sum_{p} B_p$$

$$A_s = \prod_{j \in \operatorname{star}(s)} \sigma_j^a$$

$$B_p = \prod_{j \in \text{boundary}(p)} \sigma_j^z$$

 C'_2

 C_1

 $B_p =$

- Fractional Quantum Hall Liquids
- Kitaev's Toric code model

$$H = -\sum_{s} A_s - \sum_{p} B_p$$

$$A_s = \prod_{j \in \operatorname{star}(s)} \sigma_j^x$$

12

 $ec{\sigma}_{ij}$

 C'_2

 C_1

 A_s

- Fractional Quantum Hall Liquids
- Kitaev's Toric code model

$$H = -\sum_{s} A_s - \sum_{p} B_p$$

$$A_s = \prod_{j \in \text{star}(s)} \sigma_j^x$$

 $B_p = \prod_{j \in \text{boundary}(p)} \sigma_j^z$

- Fractional Quantum Hall Liquids
- Kitaev's Toric code model

$$H = -\sum_{s} A_{s} - \sum_{p} B_{p}$$

 σ_j^z $B_p =$ $j \in \text{boundary}(p)$

Some spin liquids

QH states
QH Hamiltonian

Setup the QH Hamiltonian in second quantization

Setup the QH Hamiltonian in second quantization

• Relate to a Pairing problem

• Setup the QH Hamiltonian in second quantization

• Relate to a Pairing problem

 Study the Ker of the QH problem in terms of the Kers of the Pairing problems

Quantum Hall Physics An Exercise in Second Quantization

Dimensional Reduction/Holography

The correlation function inequalities are general and not specific to any model. In general they lead to:

- Effective dimensional reduction
- Exact dimensional reduction:
 Inequalities become equalities

Dimensional Reduction/Holography

The correlation function inequalities are general and not specific to any model. In general they lead to:

- Effective dimensional reduction
- Exact dimensional reduction: Inequalities become equalities

Duality connecting the two theories

TQO is a property of States not of the Spectrum

Dimensional Reduction - QH Physics

First Quantization

2D continuous geometries

Tuesday, August 6, 2013

Dimensional Reduction - QH Physics Second Quantization First Quantization $\nu = \frac{N-1}{L-1}$ $\hat{P}_{\text{LLL}}H_{\text{QH}}\hat{P}_{\text{LLL}}$ amical momenta $H_{\text{QH}} = \sum_{i=1}^{N} \frac{\prod_{j=1}^{2}}{2m} + \sum_{i < i} V(\mathbf{x}_{i} - \mathbf{x}_{j}) \qquad \qquad \widehat{H}_{\text{QH}} = \sum_{0 < j < L-1} \sum_{k(j), l(j)} V_{j;kl} c_{j+k}^{\dagger} c_{j-k}^{\dagger} c_{j-l} c_{j+l}$ **1D orbital lattices 2D** continuous geometries

Tuesday, August 6, 2013

Second Quantization Counting:

• *j* takes the 2L - 3 values: $j_{\min} = \frac{1}{2}, 1, \frac{3}{2}, 2, \dots, j_{m} = \frac{L-1}{2}, \dots, j_{\max} = L - \frac{3}{2}$ • Sums over k(j) involve C(j) active orbital levels: $\sum_{k(j)} = \sum_{0 < k \le \min(j, L-1-j)} \text{ with } C(j) = \min([j + \frac{1}{2}], [L - \frac{1}{2} - j])$

This is a guiding center formulation with the geometrical information (dynamical momenta) encoded in the matrix elements $V_{j;kl}$

Separability of Pseudopotentials

Given an arbitrary spherically symmetric interaction:

 $V(\mathbf{x}_{i} - \mathbf{x}_{j}) = \sum_{m \ge 0} g_{m} V_{m} = \sum_{m \ge 0} g_{m} \sum_{i < j} P_{m}(ij)$ with $g_{m} \ge 0$ and $P_{m}(ij)$ a projector onto the subspace of relative angular momentum m of the pair (ij)

Separability of Pseudopotentials

Given an arbitrary spherically symmetric interaction:

$$\begin{split} V(\mathbf{x}_{i} - \mathbf{x}_{j}) &= \sum_{m \geq 0} g_{m} V_{m} = \sum_{m \geq 0} g_{m} \sum_{i < j} P_{m}(ij) \\ \text{with } g_{m} \geq 0 \text{ and } P_{m}(ij) \text{ a projector onto the subspace of relative} \\ \text{angular momentum } m \text{ of the pair } (ij) \end{split}$$

We have shown that in second quantization: $\hat{H}_{QH} = \sum_{m \ge 0} g_m \ \hat{H}_{V_m}$ with $\hat{H}_{V_m} = \sum_{0 < j < L-1} \sum_{k(j), l(j)} \eta_k \eta_l \ c_{j+k}^{\dagger} c_{j-k}^{\dagger} c_{j-l} c_{j+l}$

For the 1st Haldane pseudopotential or Trugman-Kivelson model:

geometry	L (Laughlin)	N_{Φ}	η_k	$\phi_r(z)$
disk	mN - m + 1	L	$k 2^{-j} \sqrt{\frac{1}{2\pi j} \binom{2j}{j+k}}$	$\frac{1}{\sqrt{2\pi 2^r r!}} z^r e^{-rac{1}{4} z ^2}$
cylinder	mN - m + 1	L	$\kappa^{3/2} k e^{-\kappa^2 k^2}$	$\sqrt{\kappa} e^{-\frac{1}{2}(x-r\kappa)^2 + ir\kappa y}$
sphere	mN - m + 1	L-1	$k \frac{N_{\Phi}+1}{4\sqrt{2\pi j}} \sqrt{\binom{2N_{\Phi}}{2j}^{-1} \frac{(6N_{\Phi}-5)N_{\Phi}}{(2N_{\Phi}-1)(2N_{\Phi}-2j)} \binom{N_{\Phi}}{j+k} \binom{N_{\Phi}}{j-k}}$	$\sqrt{\frac{N_{\Phi}+1}{4\pi}\binom{N_{\Phi}}{r}} [e^{-i\frac{\varphi}{2}}\sin(\frac{\theta}{2})]^r [e^{i\frac{\varphi}{2}}\cos(\frac{\theta}{2})]^{N_{\Phi}-r}$
torus	mN	L	$\kappa^{3/2} \sum_{s \in \mathbb{Z}} (k+sL) e^{-\kappa^2 (k+sL)^2}$	$\sum_{s \in \mathbb{Z}} \phi_{r+sL}^{\text{cylinder}}$

• In the case of the cylinder for arbitrary m

$$\eta_k = \frac{e^{-\kappa^2 k^2}}{2^{\frac{m}{2}} \sqrt{m!}} H_m[\sqrt{2} \kappa k] \longrightarrow \text{Hermite poly}$$

For the 1st Haldane pseudopotential or Trugman-Kivelson model:

geometry	L (Laughlin)	N_{Φ}	η_k	$\phi_r(z)$
disk	mN - m + 1	L	$k 2^{-j} \sqrt{\frac{1}{2\pi j} \binom{2j}{j+k}}$	$\frac{1}{\sqrt{2\pi 2^r r!}} z^r e^{-rac{1}{4} z ^2}$
cylinder	mN - m + 1	L	$\kappa^{3/2} k e^{-\kappa^2 k^2}$	$\sqrt{\kappa} e^{-\frac{1}{2}(x-r\kappa)^2 + ir\kappa y}$
sphere	mN - m + 1	L-1	$k \frac{N_{\Phi}+1}{4\sqrt{2\pi j}} \sqrt{\binom{2N_{\Phi}}{2j}^{-1} \frac{(6N_{\Phi}-5)N_{\Phi}}{(2N_{\Phi}-1)(2N_{\Phi}-2j)} \binom{N_{\Phi}}{j+k} \binom{N_{\Phi}}{j-k}}$	$\sqrt{\frac{N_{\Phi}+1}{4\pi}\binom{N_{\Phi}}{r}} [e^{-i\frac{\varphi}{2}}\sin(\frac{\theta}{2})]^r [e^{i\frac{\varphi}{2}}\cos(\frac{\theta}{2})]^{N_{\Phi}-r}$
torus	mN	L	$\kappa^{3/2} \sum_{s \in \mathbb{Z}} (k+sL) e^{-\kappa^2 (k+sL)^2}$	$\sum_{s \in \mathbb{Z}} \phi_{r+sL}^{\text{cylinder}}$

• In the case of the cylinder for arbitrary m

$$\eta_k = \frac{e^{-\kappa^2 k^2}}{2^{\frac{m}{2}} \sqrt{m!}} H_m[\sqrt{2} \kappa k] \longrightarrow \text{Hermite poly}$$

We have shown that geometries with the same genus number can be related through similarity transformations

Strongly-Coupled States of Matter

Generalized Gaudin Problems

Uj

Generalized Gaudin Algebra

GGA:
$$(\kappa = x, y, z, \text{ and } W = X, Y, Z)$$

$$m \neq \ell \begin{cases} [\mathsf{S}_{m}^{\kappa},\mathsf{S}_{\ell}^{\kappa}] = 0 , \\ [\mathsf{S}_{m}^{x},\mathsf{S}_{\ell}^{y}] = i(Y_{m\ell}\,\mathsf{S}_{m}^{z} - X_{m\ell}\,\mathsf{S}_{\ell}^{z}) , \\ [\mathsf{S}_{m}^{x},\mathsf{S}_{\ell}^{y}] = i(Z_{m\ell}\,\mathsf{S}_{m}^{x} - Y_{m\ell}\,\mathsf{S}_{\ell}^{x}) , \\ [\mathsf{S}_{m}^{x},\mathsf{S}_{m}^{z}] = -i\,\mathsf{f}(\eta_{m})\frac{\partial\mathsf{S}_{m}^{x}}{\partial\eta_{m}} , \\ [\mathsf{S}_{m}^{z},\mathsf{S}_{m}^{z}] = -i\,\mathsf{f}(\eta_{m})\frac{\partial\mathsf{S}_{m}^{x}}{\partial\eta_{m}} , \\ [\mathsf{S}_{m}^{z},\mathsf{S}_{m}^{z}] = -i\,\mathsf{f}(\eta_{m})\frac{\partial\mathsf{S}_{m}^{x}}{\partial\eta_{m}} , \end{cases}$$

 $W_{m\ell} = W(\eta_m, \eta_\ell) \in \text{antisymmetric} \quad \lim_{\varepsilon \to 0} \varepsilon W(x, x + \varepsilon) = f(x)$

From Jacobi identities:

Generalized Gaudin Algebra (GGA) + quantum invariants allow derivation of several families of exactly-solvable models including the BCS reduced Hamiltonian

GGA:
$$(\kappa = x, y, z, \text{ and } W = X, Y, Z)$$

$$m \neq \ell \begin{cases} [\mathsf{S}_{m}^{\kappa},\mathsf{S}_{\ell}^{\kappa}] = 0 , \\ [\mathsf{S}_{m}^{x},\mathsf{S}_{\ell}^{y}] = i(Y_{m\ell}\,\mathsf{S}_{m}^{z} - X_{m\ell}\,\mathsf{S}_{\ell}^{z}) , \\ [\mathsf{S}_{m}^{x},\mathsf{S}_{\ell}^{y}] = i(Z_{m\ell}\,\mathsf{S}_{m}^{x} - Y_{m\ell}\,\mathsf{S}_{\ell}^{x}) , \\ [\mathsf{S}_{m}^{y},\mathsf{S}_{\ell}^{z}] = i(Z_{m\ell}\,\mathsf{S}_{m}^{x} - Y_{m\ell}\,\mathsf{S}_{\ell}^{x}) , \\ [\mathsf{S}_{m}^{z},\mathsf{S}_{m}^{z}] = -i\,\mathsf{f}(\eta_{m})\frac{\partial\mathsf{S}_{m}^{z}}{\partial\eta_{m}} , \\ [\mathsf{S}_{m}^{z},\mathsf{S}_{m}^{z}] = -i\,\mathsf{f}(\eta_{m})\frac{\partial\mathsf{S}_{m}^{y}}{\partial\eta_{m}} , \\ [\mathsf{S}_{m}^{z},\mathsf{S}_{m}^{z}] = -i\,\mathsf{f}(\eta_{m})\frac{\partial\mathsf{S}_{m}^{y}}{\partial\eta_{m}} , \end{cases}$$

 $W_{m\ell} = W(\eta_m, \eta_\ell) \in \text{antisymmetric} \quad \lim_{\varepsilon \to 0} \varepsilon W(x, x + \varepsilon) = f(x)$

From Jacobi identities:

$$\begin{cases} Z_{m\ell} X_{\ell n} + Z_{nm} Y_{\ell n} + X_{nm} Y_{m\ell} = 0 & \text{Gaudin eqns.} \\ X_{m\ell}^2 - Z_{m\ell}^2 = \Gamma_1 , \ X_{m\ell}^2 - Y_{m\ell}^2 = \Gamma_2 \end{cases}$$

• Quantum Invariants:
$$[H_m, H_\ell] = 0$$

 $H(\eta_m) \equiv H_m = S_m^x S_m^x + S_m^y S_m^y + S_m^z S_m^z = \vec{S}_m \cdot \vec{S}_m$
Diagonalizing XXZ invariants: $H_m |\Phi\rangle = \omega(\eta_m) |\Phi\rangle$,
 $S_m^- |0\rangle = 0$, $S_m^z |0\rangle = F(\eta_m) |0\rangle$ $\forall \eta_m$, $|0\rangle$ lowest-weight vector
• Bethe ansatz: $|\Phi\rangle = \prod_{\ell=1}^M S_\ell^+ |0\rangle = \prod_{\ell=1}^M (S_\ell^x + iS_\ell^y) |0\rangle$,
• Eigenvalue:
 $\omega(\eta_m) = F^2(\eta_m) - f(\eta_m) \frac{\partial}{\partial \eta_m} F(\eta_m) + \sum_{\ell=1}^M \left(\Gamma - 2Z_{m\ell} F(\eta_m) + \sum_{n(\neq \ell)=1}^M Z_{m\ell} Z_{mn} \right)$
• Bethe equation:
 $F(\eta_\ell) + \sum_{n(\neq \ell)=1}^M Z_{n\ell} = 0$, $\ell = 1, \cdots, M$

TT

Π

Solutions of the X X Z Gaudin equation:

$$Z_{m\ell}X_{\ell n} + Z_{nm}X_{\ell n} + X_{nm}X_{m\ell} = 0$$

$$X_{\ell n} = g \frac{\sqrt{1 + st_{\ell}^{2}}\sqrt{1 + st_{n}^{2}}}{t_{\ell} - t_{n}}, \quad Z_{\ell n} = g \frac{1 + st_{\ell}t_{n}}{t_{\ell} - t_{n}}, \quad \Gamma = sg^{2}, \ t_{i} = -g/Z_{ri}, \ |s| = 0, 1$$
1. Rational: $\Gamma = 0, s = 0,$

$$X(\eta_{\ell}, \eta_{n}) = Z(\eta_{\ell}, \eta_{n}) = g \frac{1}{\eta_{\ell} - \eta_{n}},$$
with $t_{i} = \eta_{i}$.
2. Trigonometric: $\Gamma > 0, s = +1,$

$$X(\eta_{\ell}, \eta_{n}) = g \frac{1}{\sin(\eta_{\ell} - \eta_{n})}, \ Z(\eta_{\ell}, \eta_{n}) = g \cot(\eta_{\ell} - \eta_{n}),$$
with $t_{i} = \tan(\eta_{i}),$
3. Hyperbolic: $\Gamma < 0, s = -1,$

$$X(\eta_{\ell}, \eta_{n}) = g \frac{1}{\sinh(\eta_{\ell} - \eta_{n})}, \ Z(\eta_{\ell}, \eta_{n}) = g \coth(\eta_{\ell} - \eta_{n}),$$
with $t_{i} = \tanh(\eta_{i}).$

Exactly-solvable models derived from the GGA: (I) Find realizations of the algebra: e.g. $\bigoplus su(2) \{S_{\mathbf{j}}^+, S_{\mathbf{j}}^-, S_{\mathbf{j}}^z\}$ $\mathsf{S}_{m}^{\pm} = \sum_{\mathbf{j}\in\mathcal{T}} X_{m\mathbf{j}} S_{\mathbf{j}}^{\pm} , \ \mathsf{S}_{m}^{z} = -\frac{1}{2} \mathbb{1} - \sum_{\mathbf{j}\in\mathcal{T}} Z_{m\mathbf{j}} S_{\mathbf{j}}^{z}$ (II) Rewrite H_m : $H_m[\vec{S}_m] \rightarrow H_m[\vec{S}_i]$ (III) Use analytic properties of X and Z: $R_i = \frac{1}{f(\eta_i)} \oint_{\Gamma} \frac{d\eta_m}{2\pi i} H_m$ **Constants of motion:** $[R_i, R_j] = 0$ $R_{\mathbf{i}} = S_{\mathbf{i}}^{z} + 2\sum_{\mathbf{j}\in\mathcal{T}(\neq\mathbf{i})} \left(\frac{X_{\mathbf{ij}}}{2} (S_{\mathbf{i}}^{+}S_{\mathbf{j}}^{-} + S_{\mathbf{i}}^{-}S_{\mathbf{j}}^{+}) + Z_{\mathbf{ij}} S_{\mathbf{i}}^{z}S_{\mathbf{j}}^{z} \right)$ (IV) BCS example: $H = \sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} R_{\mathbf{k}}(\mathbf{X}, \mathbf{X}) \qquad \begin{cases} S_{\mathbf{k}}^{+} = c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger} = (S_{\mathbf{k}}^{-})^{\dagger} \\ S_{\mathbf{k}}^{z} = \frac{1}{2}(n_{\mathbf{k}\uparrow} + n_{-\mathbf{k}\downarrow} - 1) \end{cases}$

Some Examples of exactly-solvable Gaudin models

Gaudin Algebra	Representation	1	Model
XXX	$\bigoplus_{l} su(2)$ -F-P		BCS Richardson
		N	Nuclear Pairing
			$\textbf{BCS}\;(\textbf{k}\uparrow,-\textbf{k}\downarrow)$
	$\bigoplus_{\mathbf{l}} su(2)$ -F-S	N	Particle-hole-like
	$\bigoplus_{\mathbf{l}} su(1,1)$ -B	N	B BCS
	$\bigoplus_{\mathbf{l}} su(2) \oplus su(2)$	N	Central Spin
	$\bigoplus_{\mathbf{l}} su(1,1) \oplus su(1,1)$	N	B Central Spin
XXZ	$\bigoplus_{\mathbf{l}} su(2)$ -F-P	2	Suhl-Matthias-Walker
	$\bigoplus_{\mathbf{l}} su(1,1)$ -B		Lipkin-Meshkov-Glick
		2	Interacting Boson (IBM1)
			Two-Josephson-coupled BECs
	$\bigoplus_{\mathbf{l}} su(2) \oplus h_4$	N	Generalized Dicke, F-atom-molecule
	$\bigoplus_{\mathbf{l}} su(1,1) \oplus h_4$	N	B-atom-molecule
	$\bigoplus_{\mathbf{l}} su(2)$ -F-S $\oplus su(2)$	N	Kondo-like impurity
	$\bigoplus_{\mathbf{l}} h_4 \oplus su(2)$	N	Special Spin-Boson
XYZ	$\bigoplus_{\mathbf{l}} su(2)$	N	Generalized XYZ Gaudin

Some Examples of exactly-solvable Gaudin models

 $H = \sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} n_{\mathbf{k}} + \frac{G}{V} \sum_{\mathbf{k},\mathbf{k}'} c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow} c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow}$

Gaudin Algebra	Representation	1	Model		
XXX	$\bigoplus_{\mathbf{l}} su(2)$ -F-P		BCS Richardson		
		N	Nuclear Pairing		
			$\operatorname{BCS}\left(\mathbf{k}\uparrow,-\mathbf{k}\downarrow\right)$		
	$\bigoplus_{\mathbf{l}} su(2)$ -F-S	N	Particle-hole-like		
	$\bigoplus_{\mathbf{l}} su(1,1)$ -B	N	B BCS		
	$\bigoplus_{\mathbf{l}} su(2) \oplus su(2)$	N	Central Spin		
	$\bigoplus_{\mathbf{l}} su(1,1) \oplus su(1,1)$	N	B Central Spin		
XXZ	$\bigoplus_{\mathbf{l}} su(2)$ -F-P	2	Suhl-Matthias-Walker		
	$\bigoplus_{\mathbf{l}} su(1,1)$ -B		Lipkin-Meshkov-Glick		
		2	Interacting Boson (IBM1)		
			Two-Josephson-coupled BECs		
	$\bigoplus_{\mathbf{l}} su(2) \oplus h_4$	N	Generalized Dicke, F-atom-molecule		
	$igoplus_{\mathbf{l}} su(1,1) \oplus h_4$	N	B-atom-molecule		
	$\bigoplus_{\mathbf{l}} su(2)$ -F-S $\oplus su(2)$	N	Kondo-like impurity		
	$igoplus_{\mathbf{l}} h_4 \oplus su(2)$	N	Special Spin-Boson		
XYZ	$\bigoplus_{\mathbf{l}} su(2)$	N	Generalized XYZ Gaudin		

Some Examples of exactly-solvable Gaudin models

 $H = \sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} n_{\mathbf{k}} + \frac{G}{V} \sum_{\mathbf{k}, \mathbf{k}'} c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow} c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow}$

Gaudin Algebra	Representation	1	Model		
XXX	$\bigoplus_{\mathbf{l}} su(2)$ -F-P		BCS Richardson		
	_	N	Nuclear Pairing		
			$\mathrm{BCS}\;(\mathbf{k}\uparrow,-\mathbf{k}\downarrow)$		
	$\bigoplus_{\mathbf{l}} su(2)$ -F-S	N	Particle-hole-like		
	$\bigoplus_{\mathbf{l}} su(1,1)$ -B	N	B BCS		
	$\bigoplus_{\mathbf{l}} su(2) \oplus su(2)$	N	Central Spin		
	$\bigoplus_{\mathbf{l}} su(1,1) \oplus su(1,1)$	N	B Central Spin		
XXZ	$\bigoplus_{l} su(2)$ -F-P	2	Suhl-Matthias-Walker		
	$\bigoplus_{\mathbf{l}} su(1,1)$ -B		Lipkin-Meshkov-Glick		
		2	Interacting Boson (IBM1)		
			Two-Josephson-coupled BECs		
	$\bigoplus_{\mathbf{l}} su(2) \oplus h_4$	N	Generalized Dicke, F-atom-molecule		
	$igoplus_{\mathbf{l}} su(1,1) \oplus h_4$	N	B-atom-molecule		
	$\bigoplus_{\mathbf{l}} su(2)$ -F-S $\oplus su(2)$	N	Kondo-like impurity		
	$igoplus_{\mathbf{l}} h_4 \oplus su(2)$	N	Special Spin-Boson		
XYZ	$\bigoplus_{\mathbf{l}} su(2)$	N	Generalized XYZ Gaudin		

$p_x + i p_y$ Fermionic Superfluid

Uj

Hyperbolic Gaudin Hamiltonian

A particular realization of the hyperbolic Gaudin model is:

$$H_h = \sum_k \eta_k S_k^z - G \sum_{k,k'} \sqrt{\eta_k \eta_{k'}} S_k^+ S_{k'}^-$$
 with Eigenspectrum:

$$|\Phi_M\rangle = \prod_{\alpha=1}^M \left(\sum_k \frac{\sqrt{\eta_k}}{\eta_k - E_\alpha} S_k^+\right) |\nu\rangle$$

and Gaudin (Bethe) equations:

$$\sum_{i} \frac{s_i}{\eta_i - E_\alpha} - \sum_{\alpha', \alpha' \neq \alpha} \frac{1}{E_{\alpha'} - E_\alpha} - \frac{Q}{E_\alpha} = 0$$

 $\alpha = 1$

 $E(\Phi_M) = \langle \nu | H_h | \nu \rangle + \sum_{\alpha=1}^{M} E_{\alpha}$

 $(Q = \frac{1}{2G} - \frac{L}{2} + M - 1)$

Hyperbolic Gaudin Hamiltonian

A particular realization of the hyperbolic Gaudin model is:

$$H_h = \sum_k \eta_k S_k^z - G \sum_{k,k'} \sqrt{\eta_k \eta_{k'}} S_k^+ S_{k'}^-$$
 with Eigenspectrum:

$$|\Phi_{M}\rangle = \prod_{\alpha=1}^{M} \left(\sum_{k} \frac{\sqrt{\eta_{k}}}{\eta_{k} - E_{\alpha}} S_{k}^{+} \right) |\nu\rangle \qquad E(\Phi_{M}) = \langle \nu | H_{h} | \nu \rangle + \sum_{\alpha=1}^{M} E_{\alpha}$$

and Gaudin (Bethe) equations:
$$(Q = \frac{1}{2G} - \frac{L}{2} + M - 1)$$
$$\sum_{i} \frac{S_{i}}{\eta_{i} - E_{\alpha}} - \sum_{\alpha', \alpha' \neq \alpha} \frac{1}{E_{\alpha'} - E_{\alpha}} - \frac{Q}{E_{\alpha}} = 0$$
Pairon

One can choose the SU(2) fermionic representation:

$$S_{k}^{+} = \frac{k_{x} + ik_{y}}{|k|} c_{k}^{\dagger} c_{-k}^{\dagger} \qquad S_{k}^{-} = \frac{k_{x} - ik_{y}}{|k|} c_{-k} c_{k}$$
$$S_{k}^{z} = \frac{1}{2} \left(c_{k}^{\dagger} c_{k} + c_{-k}^{\dagger} c_{-k} - 1 \right)$$

And by also choosing: $\eta_k = k^2$

One obtains the p+ip superconducting model:

$$H_{p_x+ip_y} = \sum_{k,k_x>0} \frac{k^2}{2} \left(c_k^{\dagger} c_k + c_{-k}^{\dagger} c_{-k} \right) - G \sum_{\substack{k,k_x>0, \\ k',k'_x>0}} (k_x + ik_y) (k'_x - ik'_y) c_k^{\dagger} c_{-k}^{\dagger} c_{-k'} c_{k'} d_{-k'} d_{$$

The phase diagram can be parametrized in terms of the density $\rho = M/L$ and the rescaled coupling g = GL

The phase diagram can be pa density ho = M/L and the resco

0.02

0.00

g=0.5

nk

Gaudin for Quantum Hall

Uj

Exactly-Solvable Model: Strong Coupling

Consider the general class of hyperbolic Gaudin models with:

$$S^{z}(x) = -\frac{1}{2} - \sum_{k(j)} Z(x, \eta_{k}) S^{z}_{jk}, \ S^{\pm}(x) = \sum_{k(j)} X(x, \eta_{k}) S^{\pm}_{jk}$$

In this rep one can define $C(j)$ constants of motion: (Fix j)
$$R_{jk} = S^{z}_{jk} - \sum_{l(j), l \neq k} X(\eta_{k}, \eta_{l}) \left(S^{+}_{jk}S^{-}_{jl} + S^{-}_{jk}S^{+}_{jl}\right) - 2 \sum_{l(j), l \neq k} Z(\eta_{k}, \eta_{l}) S^{z}_{jk}S^{z}_{jl}$$

And from their linear combination obtain:

$$H_{\mathsf{G}j} = \sum_{k(j)} \epsilon_k S_{jk}^z - \sum_{k(j), l(j)} (\epsilon_k - \epsilon_l) X(\eta_k, \eta_l) S_{jk}^+ S_{jl}^- - \sum_{k(j), l(j)} (\epsilon_k - \epsilon_l) Z(\eta_k, \eta_l) S_{jk}^z S_{jl}^z$$

The following parametrization (satisfying Jacobi's relation):

$$X(x,y) = -\bar{g}\frac{\sqrt{x}\sqrt{y}}{x-y}, \quad Z(x,y) = -\frac{\bar{g}}{2}\frac{x+y}{x-y}$$

and $\epsilon_k = \lambda_j \eta_k^2$ leads to the Hamiltonian:

$$H_{Gj} = \lambda_j (1 + \bar{g}(S_j^z - 1)) \sum_{k(j)} \eta_k^2 S_{jk}^z + \lambda_j \bar{g} \sum_{k(j), l(j)} \eta_k \eta_l S_{jk}^+ S_{jl}^-$$

where

$$\mathbf{S}_{jk}^2$$
 and $\mathbf{S}_j = \sum_{k(j)} \mathbf{S}_{jk}$ are good quantum numbers

The following parametrization (satisfying Jacobi's relation):

$$X(x,y) = -\bar{g}\frac{\sqrt{x}\sqrt{y}}{x-y}, \quad Z(x,y) = -\frac{\bar{g}}{2}\frac{x+y}{x-y}$$

and $\epsilon_k = \lambda_j \eta_k^2$ leads to the Hamiltonian:

$$H_{\mathsf{G}j} = \lambda_j (1 + \bar{g}(S_j^z - 1)) \sum_{k(j)} \eta_k^2 S_{jk}^z + \lambda_j \bar{g} \sum_{k(j), l(j)} \eta_k \eta_l S_{jk}^+ S_{jl}^-$$

where

$$\mathbf{S}_{jk}^2$$
 and $\mathbf{S}_j = \sum_{k(j)} \mathbf{S}_{jk}$ are good quantum numbers

We want to consider the special case where vanishes

One can choose the SU(2) fermionic representation: $S_{jk}^{+} = c_{j+k}^{\dagger} c_{j-k}^{\dagger}, \ S_{jk}^{-} = c_{j-k} c_{j+k}, \ S_{jk}^{z} = \frac{1}{2} (n_{j+k} + n_{j-k} - 1)$ such that acting on the vacuum $|\nu(j)\rangle$ containing only unpaired e- $S_{jk}^{z}|\nu(j)\rangle = \frac{1}{2}(|\nu_{jk}|-1)|\nu(j)\rangle \equiv -s_{jk}|\nu(j)\rangle$ $S_{jk}^{-}|\nu(j)\rangle = 0$ j+k j-k j+k j-k j+k j-kj+k j-k $\nu_{jk} = -1$ $\nu_{jk} = +1$ $\nu_{jk} = 0$ $\nu_{jk} = 0$ (*L* orbitals) $N = 2M + N_{\rm b} + N_{\rm inactive}$ Unpaired = $N_{\rm b} = \sum |\nu_{jk}|$ Paired Inactive levels k(j)

One can choose the SU(2) fermionic representation: $S_{jk}^{+} = c_{j+k}^{\dagger} c_{j-k}^{\dagger}, \ S_{jk}^{-} = c_{j-k} c_{j+k}, \ S_{jk}^{z} = \frac{1}{2} (n_{j+k} + n_{j-k} - 1)$ such that acting on the vacuum $|\nu(j)\rangle$ containing only unpaired e-Seniority $S_{jk}^{-}|\nu(j)\rangle = 0 \qquad S_{jk}^{z}|\nu(j)\rangle = \frac{1}{2} (|\nu_{jk}| - 1)|\nu(j)\rangle \equiv -s_{jk}|\nu(j)\rangle$

$$j+k \quad j-k \qquad j+k \quad j-k \qquad j+k \quad j-k \qquad j+k \quad j-k$$

$$\nu_{jk} = 0 \qquad \nu_{jk} = +1 \qquad \nu_{jk} = -1 \qquad \nu_{jk} = 0$$

$$N = 2M + N_{b} + N_{inactive} \qquad (L \text{ orbitals})$$

Unpaired = $N_{\rm b} = \sum |\nu_{jk}|$

k(j)

Paired

Additional symmetries become manifest in the fermionic language:

• Pauli blocking (SU(2) gauge symmetry):

$$\tau_{jk}^{+} = c_{j+k}^{\dagger} c_{j-k} , \ \tau_{jk}^{-} = c_{j-k}^{\dagger} c_{j+k} , \ \tau_{jk}^{z} = \frac{1}{2} (n_{j+k} - n_{j-k})$$

Total angular momentum (global symmetry): $\hat{J} = \sum r n_r \quad \Longrightarrow \quad [\hat{J}, S_{jk}^{\pm}] = \pm 2j S_{jk}^{\pm}$ r=0pair's angular momentum: 2j One classify eigenstates $|\Phi_{M
u(j)}
angle$ according to \hat{J} and S_j^z $S_j^z |\Phi_{M\nu(j)}\rangle = (M - \sum s_{jk}) |\Phi_{M\nu(j)}\rangle \qquad \hat{J} |\Phi_{M\nu(j)}\rangle = J |\Phi_{M\nu(j)}\rangle$ k(j)

By choosing: $\bar{g} = -1/(M - \sum_{k(j)} s_{jk} - 1)$

one obtains: $(g = \lambda_j \bar{g})$

$$H_{\mathsf{G}j} = g \sum_{k(j), l(j)} \eta_k \eta_l \ c_{j+k}^{\dagger} c_{j-k}^{\dagger} c_{j-l} c_{j+l} = g \ T_{j1}^+ T_{j1}^-$$

Arbitrary Haldane pseudopotential

This model is exactly solvable for any η_k , the QH information is in part in their specific values

By choosing:
$$\bar{g} = -1/(M - \sum_{k(j)} s_{jk} - 1)$$

one obtains: $(g = \lambda_j \bar{g})$

$$H_{\mathsf{G}j} = g \sum_{k(j), l(j)} \eta_k \eta_l \ c_{j+k}^{\dagger} c_{j-k}^{\dagger} c_{j-l} c_{j+l} = g \ T_{j1}^+ T_{j1}^-$$

Arbitrary Haldane pseudopotential

geometry	L (Laughlin)	N_{Φ}	η_k	$\phi_r(z)$
disk	mN - m + 1	L	$k 2^{-j} \sqrt{\frac{1}{2\pi j} \binom{2j}{j+k}}$	$rac{1}{\sqrt{2\pi 2^r r!}} z^r e^{-rac{1}{4} z ^2}$
cylinder	mN - m + 1	L	$\kappa^{3/2} k e^{-\kappa^2 k^2}$	$\sqrt{\kappa} e^{-\frac{1}{2}(x-r\kappa)^2 + ir\kappa y}$
sphere	mN - m + 1	L-1	$k \frac{N_{\Phi}+1}{4\sqrt{2\pi j}} \sqrt{\binom{2N_{\Phi}}{2j}^{-1} \frac{(6N_{\Phi}-5)N_{\Phi}}{(2N_{\Phi}-1)(2N_{\Phi}-2j)} \binom{N_{\Phi}}{j+k} \binom{N_{\Phi}}{j-k}}$	$\sqrt{\frac{N_{\Phi}+1}{4\pi}\binom{N_{\Phi}}{r}} [e^{-i\frac{\varphi}{2}}\sin(\frac{\theta}{2})]^r [e^{i\frac{\varphi}{2}}\cos(\frac{\theta}{2})]^{N_{\Phi}-r}$
torus	mN	L	$\kappa^{3/2} \sum_{s \in \mathbb{Z}} (k+sL) e^{-\kappa^2 (k+sL)^2}$	$\sum_{s \in \mathbb{Z}} \phi_{r+sL}^{\text{cylinder}}$

What can one learn from its eigenspectrum? Given N electrons and L orbitals the filling fraction is: $\nu = \frac{N-1}{L-1}$ The dimension of the total Hilbert space:

$$\dim \mathcal{H}_L(N) = \binom{L}{N} = \sum_{J \in \mathcal{J}_L(N)} \dim \mathcal{H}_L(N, J)$$

where the set of allowed J

 $\mathcal{J}_L(N) = \left\{ \frac{N(N-1)}{2}, \frac{N(N-1)}{2} + 1, \frac{N(N-1)}{2} + 2, \cdots, N\left(L - \frac{(N+1)}{2}\right) \right\}$ and dim $\mathcal{H}_L(N, J)$ is determined from the generating function:

$$\mathcal{Z}(x,z) = \prod_{r=0}^{L-1} (1+zx^r) = \sum_{\bar{J}=0}^{L(L-1)/2} \sum_{\bar{N}=0}^{L} \dim \mathcal{H}_L(\bar{N},\bar{J}) \, z^{\bar{N}} x^{\bar{J}}$$

Eigenvectors:
$$\Phi_{M\nu(j)}\rangle = \prod_{\alpha=1}^{M} \mathsf{S}_{j}^{+}(E_{\alpha})|\nu(j)\rangle , \ \mathsf{S}_{j}^{+}(E_{\alpha}) = \sum_{k(j)} \frac{\eta_{k}}{\eta_{k}^{2} - E_{\alpha}} c_{j+k}^{\dagger} c_{j-k}^{\dagger}$$

There exists two classes of solutions:

All finite pairons:
$$\mathcal{E}_{M\nu(j)} = 0$$

One infinite pairon: $\mathcal{E}_{M\nu(j)} = 2g\left(\sum_{k(j)} s_{jk} \eta_k^2 - \sum_{\alpha=1}^{M-1} E_{\alpha}\right)$

The Gaudin (Bethe) equation is:

$$\sum_{\substack{\beta(\neq\alpha)=1}}^{M} \frac{E_{\beta}}{E_{\beta} - E_{\alpha}} - \sum_{k(j)} s_{jk} \frac{\eta_k^2}{\eta_k^2 - E_{\alpha}} = 0, \ \forall \alpha$$

Spectrum of Gaudin-Quantum Hall

Ground States of the Full Pseudopotential Problem

Uj

Frustration-Free Properties

We have shown that in second quantization:

$$\hat{H}_{\mathsf{QH}} = \sum_{0 < j < L-1} \sum_{m \ge 0} H^m_{\mathsf{G}j} = \sum_{m \ge 0} g_m \ \hat{H}_{V_m}$$

 $\operatorname{Ker}(\hat{H}_{\mathsf{QH}})$ is the common null space of all the null spaces $\operatorname{Ker}(H^m_{\mathsf{G}j})$

Given N, L, the Hamiltonian \hat{H}_{V_1} displays zero energy ground states $|\Psi_{\nu}^J\rangle$, whenever $\nu = \frac{p}{q} \leq \frac{1}{3}$. The zero energy state is unique when $\nu = \frac{1}{3}$, it is in the sector $J = J_m$, and it is the Laughlin state

\hat{H}_{V_1} is a frustration-free Hamiltonian for $\nu=rac{p}{q}\leqrac{1}{3}$

 $H_{Gj}|\Psi_{\nu}^{J}\rangle = 0$, for all j, $j_{min} \leq j \leq j_{max} \Rightarrow T_{j1}^{-}|\Psi_{\nu}^{J}\rangle = 0$ **b positive semi-definite**

Corollary: All zero energy states have zero coefficients, in a Slater determinant expansion, for the basis states with:

 $(n_0 = 1, n_1 = 1)$, $(n_0 = 1, n_2 = 1)$, $(n_{L-3} = 1, n_{L-1} = 1)$, $(n_{L-2} = 1, n_{L-1} = 1)$

Conclusions

- Exact relation between QH Hamiltonians and Pairing models
 We determined the exact spectrum of the QH-Gaudin problem
 Proved separability of Haldane pseudopotentials (explicit construction)
 - **Topological equivalence** of different geometries sharing the same genus number
 - Quasi-hole generators in second quantization

Outlook

String (long-range) order in Second Quantization
 Relation between Calogero-Sutherland and Gaudin
 How about ν = 1/2 ?
 Electromagnetic response

