The SM, the Higgs and beyond

Outline

Lecture 2 – Symmetries and QFT

Fundamental principles of particle physics

Our description of the fundamental interactions and particles rests on two fundamental structures :

- Quantum Mechanics
- Symmetries

Symmetries

Central to our description of the fundamental forces:

Relativity - Lorentz transformations

SO(3,1)

Lie symmetries – Gauge transformations

 $SU(3) \otimes SU(2) \otimes U(1)$

Copernican principle: "Your system of co-ordinates and units is nothing special"

Physics independent of system choice

Symmetries

Classification of symmetries in Standard Model:

Local SO(3,1)
$$SU(3) \otimes SU(2) \otimes U(1)$$

VS

global $U(1)_{Baryon}$ $SU(2)_{Isospin}$

Continuous All of the above

VS

C,P,T – Charge conjugation, Parity, Time inversion...

We also talk about

Abelian syms – generators commute

Vs

Non-Abelian - generators do not commute

$$[J_i, J_j] = i\hbar \sum_{k=1}^3 \varepsilon_{ijk} J_k$$

The
$$J_{_i}$$
 are the "generators" of the group. SO(3) (SU(2)) $R(lpha)=e^{-ilpha.{f J}}$

Their commutation relations define a "Lie algebra"[†].

Special relativity

- Space time point $a^{\mu} = (ct, x, y, z)$ not invariant under translations
- Space-time vector $(a + \Delta a)^{\mu} a^{\mu} = \Delta a^{\mu} = (c\Delta t, \Delta x, \Delta y, \Delta z)$

Invariant under translations ...but not invariant under rotations or boosts

Einstein postulate : the real invariant distance is

$$(\Delta a^{0})^{2} - (\Delta a^{1})^{2} - (\Delta a^{2})^{2} - (\Delta a^{2})^{2} - (\Delta a^{3})^{2} = \sum_{\mu,\nu=0}^{3} g_{\mu\nu} \Delta a^{\mu} \Delta a^{\nu} = \Delta a^{\mu} \Delta a_{\mu} = (\Delta a)^{2}$$

$$g_{uv} = diag(+1, -1, -1, -1)$$

Physics invariant under all transformations that leave all such distances invariant:
 Translations and The SO(3,1) Lorentz transformations

Lorentz transformations:

$$\chi^{\mu} \to \Lambda^{\mu}_{\nu} \chi^{\nu} = \sum_{\nu=0}^{3} \Lambda^{\mu}_{\nu} \chi^{\nu} = \chi^{\nu} \qquad \Rightarrow \qquad g_{\mu\nu} \chi^{\nu} \chi^{\nu} = g_{\mu\nu} \chi^{\mu} \chi^{\nu} \qquad \Rightarrow \qquad g_{\mu\nu} \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} = g_{\alpha\beta} \qquad \qquad (Summation assumed)$$

Solutions:

3 rotations R

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & \sin\theta & 0 \\ 0 & -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Space reflection – parity P

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

3 boosts B

$$\begin{pmatrix} \cosh \alpha & \sinh \alpha & 0 & 0 \\ \sinh \alpha & \cosh \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Time reflection, time reversal T

$$\begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Fundamental principles of particle physics

Quantum Mechanics q(t)+
Relativity

Quantum Field theory

$$q(t)$$
 $\rightarrow q_x(t) = q(t,x)$

Bronshtein's 'cube of theories'

Action principle

Action

$$S = \int_{t_1}^{t_2} L \ dt$$

Lagrangian

$$L = T - V$$

(Nonrelativistic mechanics)

Classical path ... minimises action

$$S = \int_{t_A}^{t_B} (K.E. - P.E.) dt$$

Quantum mechanics ... sum over all paths with amplitude

$$\propto e^{iS/\hbar}$$

"Principle of Least Action"
Feynman Lectures in Physics
Vol II Chapter 19

(Lagrangian invariant under all the symmetries of nature

-makes it easy to construct viable theories)

Compare with Hamiltonian formulation:

$$H = T + V$$

Why Quantum field theory?

Quantum Mechanics: Quantization of dynamical system of particles

Quantum Field Theory: Application of QM to dynamical system of fields

- Not all relativistic processes can be explained by single particle since E=mc² allows pair creation happens all the time at LHC
- (Relativistic) QM has physical problems. For example it violates causality See slides of G. Ross on school homepage

Relativistic (quantum) field theory

$$L = \int L d^3x$$
, L lagrangian density

Klein Gordon field $\phi(x)$

$$L = \left(\partial_{\mu}\phi(x)\right)^{\dagger} \partial^{\mu}\phi(x) - m^{2}\phi(x)^{\dagger}\phi(x)$$

$$T \qquad V$$

Manifestly Lorentz invariant

Lagrangian formulation of the Klein Gordon equation

$$L = \int L d^3x$$
, L lagrangian density

Klein Gordon field $\phi(x)$

$$\mathsf{L} = \left(\partial_{\mu}\phi(x)\right)^{\dagger} \partial^{\mu}\phi(x) - m^{2}\phi(x)^{\dagger}\phi(x)$$

Manifestly Lorentz invariant

Classical path :
$$\frac{\delta S}{\delta \phi} = 0$$
 $S = \int d^3x dt L$

$$\frac{\partial S}{\partial \phi} = 0 \implies \frac{\partial L}{\partial \phi} - \partial^{\mu} \frac{\partial L}{\partial (\partial^{\mu} \phi)} = 0$$

Euler Lagrange equation (shown in exercises)

Lagrangian formulation of the Klein Gordon equation

$$L = \int L d^3x$$
, L lagrangian density

Klein Gordon field $\phi(x)$

$$\mathsf{L} = \left(\partial_{\mu}\phi(x)\right)^{\dagger} \partial^{\mu}\phi(x) - m^{2}\phi(x)^{\dagger}\phi(x)$$

Manifestly Lorentz invariant

Classical path :
$$\frac{\delta S}{\delta \phi} = 0$$
 $S = \int d^3x dt L$

$$S = \int d^3x dt L$$

$$\frac{\partial S}{\partial \phi} = 0 \implies \frac{\partial L}{\partial \phi} - \partial^{\mu} \frac{\partial L}{\partial (\partial^{\mu} \phi)} = 0$$

Euler Lagrange equation (shown in exercises)

$$(\partial_{\mu}\partial^{\mu} + m^2)\phi = 0$$

Klein Gordon equation

(You will derive a number of field equations from Lagrangians in the exercises)

New symmetries

$$\mathsf{L} = \left(\partial_{\mu}\phi(x)\right)^{\dagger} \partial^{\mu}\phi(x) - m^{2}\phi(x)^{\dagger}\phi(x)$$

Is invariant under $\phi(x) \rightarrow e^{i\alpha}\phi(x)$

What is this symmetry in our classification scheme?

New symmetries

$$L = \left(\partial_{\mu}\phi(x)\right)^{\dagger} \partial^{\mu}\phi(x) - m^{2}\phi(x)^{\dagger}\phi(x)$$

Is invariant under
$$\phi(x) \rightarrow e^{i\alpha}\phi(x)$$

...a global, continuous Abelian (U(1)) gauge symmetry

A symmetry implies a conserved current and charge.

e.g. Translation Momentum conservation

Rotation Angular momentum conservation

What conservation law does the U(1) invariance imply?

Noether current

$$\mathsf{L} = \left(\partial_{\mu}\phi(x)\right)^{\dagger}\partial^{\mu}\phi(x) - m^{2}\phi(x)^{\dagger}\phi(x)$$

Is invariant under

$$\phi(x) \rightarrow e^{i\alpha}\phi(x)$$

 $\phi(x) \rightarrow e^{i\alpha}\phi(x)$...an Abelian (U(1)) gauge symmetry

(use inf. Transform δφ and Euler lagrange eqs.)

$$\delta L = 0 \to 0 = i\partial^{\mu} \left(\frac{\partial L}{\partial (\partial^{\mu} \phi)} \phi \right) - (\phi \leftrightarrow \phi^{\dagger})$$

What is the physics of this equation?

Noether current

$$\mathsf{L} = \left(\partial_{\mu}\phi(x)\right)^{\dagger}\partial^{\mu}\phi(x) - m^{2}\phi(x)^{\dagger}\phi(x)$$

Is invariant under

$$\phi(x) \rightarrow e^{i\alpha}\phi(x)$$

 $\phi(x) \rightarrow e^{i\alpha}\phi(x)$...an Abelian (U(1)) gauge symmetry

(Inf. Transform δφ and Euler lagrange eqs.)

$$\delta L = 0 \to 0 = i\partial^{\mu} \left(\frac{\partial L}{\partial (\partial^{\mu} \phi)} \phi \right) - (\phi \leftrightarrow \phi^{\dagger})$$

Conserved current

$$\partial^{\mu} j_{\mu} = 0, \quad j_{\mu} = \frac{ie}{2} \left(\frac{\partial L}{\partial (\partial^{\mu} \phi)} \phi - \frac{\partial L}{\partial (\partial^{\mu} \phi^{\dagger})} \phi^{\dagger} \right)$$

Noether current

The Klein Gordon current

$$\mathsf{L} = \left(\partial_{\mu}\phi(x)\right)^{\dagger}\partial^{\mu}\phi(x) - m^{2}\phi(x)^{\dagger}\phi(x)$$

Is invariant under $\phi(x) \rightarrow e^{i\alpha}\phi(x)$...an Abelian (U(1)) gauge symmetry

$$\partial^{\mu} j_{\mu} = 0, \quad j_{\mu} = \frac{ie}{2} \left(\frac{\partial L}{\partial (\partial^{\mu} \phi)} \phi - \frac{\partial L}{\partial (\partial^{\mu} \phi^{\dagger})} \phi^{\dagger} \right)$$

$$j_{\mu}^{KG} = -ie\left(\phi^* \partial_{\mu}\phi - \phi \partial_{\mu}\phi^*\right)$$

This is of the form of the electromagnetic current for the KG field

The Klein Gordon current

$$\mathsf{L} = \left(\partial_{\mu}\phi(x)\right)^{\dagger}\partial^{\mu}\phi(x) - m^{2}\phi(x)^{\dagger}\phi(x)$$

Is invariant under $\phi(x) \rightarrow e^{i\alpha}\phi(x)$...an Abelian (U(1)) gauge symmetry

$$\partial^{\mu} j_{\mu} = 0, \quad j_{\mu} = \frac{ie}{2} \left(\frac{\partial L}{\partial (\partial^{\mu} \phi)} \phi - \frac{\partial L}{\partial (\partial^{\mu} \phi^{\dagger})} \phi^{\dagger} \right)$$

$$j_{\mu}^{KG} = -ie\left(\phi^* \partial_{\mu}\phi - \phi \partial_{\mu}\phi^*\right)$$

This is of the form of the electromagnetic current for the KG field:

$$A_{\mu}\,j_{\mu}^{\rm KG} \qquad \mbox{`minimal coupling' to EM potential}$$
 ${\it Q}=\int\!d^3x\,j^0 \quad \mbox{is the associated conserved charge}$

Terms allowed by U(1) symmetry

$$L = \left(\partial_{\mu}\phi(x)\right)^{\dagger}\partial^{\mu}\phi(x) - m^{2}\phi(x)^{\dagger}\phi(x) + \lambda\left|\phi\right|^{4} + \frac{\lambda'}{M^{2}}\left|\phi\right|^{6} + \dots$$

Renormalisable $D \le 4$

If $M \gg 10^3 GeV$, "Effective" Field theory approximately renormalisable

Renormalizability is another principle taken for the construction of the SM – In the above sense

U(1) local gauge invariance and QED

$$\phi(x) \to e^{i\alpha(x)Q}\phi(x)$$

Jargon: we are *gauging* the global U(1) symmetry

$$L = \left(\partial_{\mu}\phi(x)\right)^{\dagger} \partial^{\mu}\phi(x) - m^{2}\phi(x)^{\dagger}\phi(x)$$
 Invariant?

U(1) local gauge invariance and QED

$$\phi(x) \to e^{i\alpha(x)Q}\phi(x)$$

 $L = \left(\partial_{\mu}\phi(x)\right)^{\dagger}\partial^{\mu}\phi(x) - m^{2}\phi(x)^{\dagger}\phi(x)$ not invariant due to derivatives

$$\partial_{\mu}\phi \rightarrow \partial_{\mu}(e^{i\alpha(x)Q}\phi) = e^{i\alpha(x)Q}\partial_{\mu}\phi + iQe^{i\alpha(x)Q}\phi \partial_{\mu}\alpha(x)$$

To obtain invariant Lagrangian look for a modified derivative transforming covariantly

$$D_{\mu}\phi \to e^{i\alpha(x)Q}D_{\mu}\phi$$

U(1) local gauge invariance and QED

$$\phi(x) \rightarrow e^{i\alpha(x)Q}\phi(x)$$

$$L = \left(\partial_{\mu}\phi(x)\right)^{\dagger}\partial^{\mu}\phi(x) - m^{2}\phi(x)^{\dagger}\phi(x)$$
 not invariant due to derivatives

To obtain invariant Lagrangian look for a modified derivative transforming covariantly

$$D_{\mu}\phi \to e^{i\alpha(x)Q}D_{\mu}\phi$$

Need to introduce a new *vector* field $A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \alpha$

$$D_{\mu} = \partial_{\mu} - iQA_{\mu}$$

$$\phi(x) \to e^{iQ\alpha(x)}\phi(x)$$

$$D_{\mu}\phi \to e^{i\alpha(x)Q}D_{\mu}\phi$$

$$A_{\mu} \to A_{\mu} + \partial_{\mu}\alpha$$

$$L = \left(D_{\mu}\phi(x)\right)^{\dagger} D^{\mu}\phi(x) - m^{2}\phi(x)^{\dagger}\phi(x) \quad \text{is invariant under local U(1)}$$

Note:
$$\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} - iQA_{\mu}$$
 is equivalent to $p^{\mu} \rightarrow p^{\mu} + eA^{\mu}$

universal coupling of electromagnetism follows from local gauge invariance

i.e.
$$L = L^{KG} = (\partial_{\mu}\phi(x))^{\dagger} \partial^{\mu}\phi(x) - m^{2}\phi(x)^{\dagger}\phi(x) - j_{\mu}^{KG}A^{\mu} + O(e^{2})$$

$$\phi(x) \to e^{iQ\alpha(x)}\phi(x)$$

$$D_{\mu}\phi \to e^{i\alpha(x)Q}D_{\mu}\phi$$

$$A_{\mu} \to A_{\mu} + \partial_{\mu}\alpha$$

$$L = \left(D_{\mu}\phi(x)\right)^{\dagger} D^{\mu}\phi(x) - m^{2}\phi(x)^{\dagger}\phi(x) \quad \text{is invariant under local U(1)}$$

Note:
$$\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} - iQA_{\mu}$$
 is equivalent to $p^{\mu} \rightarrow p^{\mu} + eA^{\mu}$

'Minimal coupling' of electromagnetism *follows* from local gauge invariance *follows* from *symmetry*

The Euler lagrange equation give the KG equation:

$$(\partial_{\mu}\partial^{\mu} + m^2)\psi = -V\psi \quad \text{where} \quad V = -ie(\partial_{\mu}A^{\mu} + A^{\mu}\partial_{\mu}) - e^2A^2$$

The electromagnetic Lagrangian

$$F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}$$

$$F_{\mu\nu} \to F_{\mu\nu}, \qquad A_{\mu} \to A_{\mu} + \partial_{\mu} \alpha$$

$$\begin{pmatrix} 0 & -E_1 & -E_2 & -E_3 \\ E_1 & 0 & -B_3 & B_2 \\ E_2 & B_3 & 0 & -B_1 \\ E_3 & -B_2 & B_1 & 0 \end{pmatrix}$$

$$\mathsf{L}^{EM} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - j^{\mu} A_{\mu}$$

 $\mathsf{L}^{EM} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - j^{\mu} A_{\mu} \qquad \qquad M^2 A^{\mu} A_{\mu} \qquad \text{Forbidden by gauge invariance}$

The Euler-Lagrange equations give Maxwell equations!

$$\frac{\partial L}{\partial A^{\nu}} - \partial^{\mu} \frac{\partial L}{\partial (\partial^{\mu} A^{\nu})} = 0$$

$$\partial_{\mu}F^{\mu\nu} = j^{\nu}$$
(N.B. $\varepsilon_{\mu\nu\rho\sigma}\partial^{\mu}F^{\rho\sigma} = 0$)

$$\nabla .\mathbf{E} = \rho, \qquad \nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0$$

$$\nabla .\mathbf{B} = 0, \qquad \nabla \times \mathbf{B} - \frac{\partial E}{\partial t} = \mathbf{j}$$

EM dynamics follows from a local gauge symmetry!!

Suppose we have two fields with different U(1) charges :

$$\phi_{1,2}(x) \rightarrow e^{i\alpha Q_{1,2}} \phi_{1,2}(x)$$

$$L = \left(\partial_{\mu}\phi_{1}(x)\right)^{\dagger} \partial^{\mu}\phi_{1}(x) - m^{2}\phi_{1}(x)^{\dagger}\phi_{1}(x)$$
$$+ \left(\partial_{\mu}\phi_{2}(x)\right)^{\dagger} \partial^{\mu}\phi_{2}(x) - m^{2}\phi_{2}(x)^{\dagger}\phi_{2}(x)$$

..no cross terms possible (corresponding to charge conservation)