The SM, the Higgs and beyond

Outline

° Lecture 2 — Symmetries and QFT



Fundamental principles of particle physics

Our description of the fundamental interactions and
particles rests on two fundamental structures :

* Quantum Mechanics

* Symmetries



Symmetries

Central to our description of the fundamental forces :

Relativity - Lorentz transformations SO(3,1)

Lie symmetries — Gauge transformations SU(3) X SU(2) X U(l)

Copernican principle : “Your system of co-ordinates and units is nothing special”

‘ Physics independent of system choice




Symmetries Classification of symmetries in Standard Model:

Local  SO(3,1) SUQB)Y®SUR)®U()

VS

global U(I)Bmyon SU(Z)]SOSpm

Continuous All of the above

VS

Discrete C,P, T — Charge conjugation, Parity, Time inversion...

We also talk about

Abelian syms — generators commute 3

Vs o

Non-Abelian - generators do not commute [Jz > Jj ] =1 h 2 giijk
=1

—ia.d
The Ji are the “generators” of the group. SO(3) (SU(2)) R(a) = @

Their commutation relations define a “Lie algebra”".



Special relativity

® Space time point a" =(Ct,x,y,Z) not invariant under translations

® Space-time vector (a+Aa)" —a" =Aa" =(cAt,Ax,Ay,Az)
Invariant under translations ...but not invariant under rotations or boosts

Einstein postulate : the real invariant distance is

(1Y - (' Y~ (a0’ Y - ('Y = S g, 80" A" = Aa"Aa, = (A

u,v=0
g, =diag(+l,-1,-1,-1)

¢ Physics invariant under all transformations that leave all such distances invariant :

Translations and The SO(3,1) Lorentz transformations



Lorentz transformations :

3

v

X Al = T A = = g =g, = g AN =g,
=0
' (Summation assumed)
Solutions :
3 rotations R e 3boostsB
1 0 0 0 cosha sinha 0 0
0 cosf® sinfd O sinha cosha 0 O
0 -sin® cosf O 0 0 1 0
0 0 0 1 0 0 0 1
Space reflection — parity P ® Time reflection, time reversal T
1 0 0 0 -1000
0 -1 0 0 0 100
O 0 -1 0O O 0 1 O
0O 0 0 -1 0O 0 0 1




Fundamental principles of particle physics

Quantum Mechanics ¢(t)

+ } Quantum Field theory
Relativity

q(t) . G (t) = q(t, )



Bronshtein’s ‘cube of theories’

Quantized Newtonian String )
Gravitational Theory G Theory H
1
C
—
Non-Relativiistic l?'uellgtum
Quantum Megchanics ke
Theory
h
G General General
Non-Relativity Relativity
(Newtonian Gravitation)
Galilei- - Special
Newtonian Relativity

Theory



Action principle _
: Action, S .
Action S =fL dt
4
Lagrangian L=T-V
(Nonrelativistic mechanics) S =j(KE _ P.E)dr
® C(Classical path ... minimises action 4
iS/h

® Quantum mechanics ... sum over all paths with amplitude OC ¢

“Principle of Least Action”
Feynman Lectures in Physics
. . i i Vol Il Chapter 19
(Lagrangian invariant under all the symmetries of nature

-makes it easy to construct viable theories)

Compare with Hamiltonian formulation:

H=T+V



Why Quantum field theory?

Quantum Mechanics : Quantization of dynamical system of particles

Quantum Field Theory : Application of QM to dynamical system of fields

® Not all relativistic processes can be explained by
single particle since E=mc? allows pair creation — happens all the time at LHC

® (Relativistic) QM has physical problems. For example it violates causality

See slides of G. Ross on school homepage



Relativistic (quantum) field theory

L= f L d°x, L lagrangian density

Klein Gordon field ¢()C)

L = (3,0(x)) 8“9(x) - m*p(x)' d(x)

N
T

ey d

Vv

Manifestly Lorentz
invariant



Lagrangian formulation of the Klein Gordon equation

L= f L d°x, L lagrangian density

Klein Gordon field ¢()C)
Manifestly Lorentz

L = (aqu(x))T 0" p(x) — m*¢(x) P(x) invariant

Classical path : (;—Z =0 S = /d?’xdtl}
0S=0 = % — 9" oL =0 Euler Lagrange equation

¢ (0" ) (shown in exercises)



Lagrangian formulation of the Klein Gordon equation

L= f L d°x, L lagrangian density

Klein Gordon field ¢()C)
Manifestly Lorentz

L = (aqu(x))T 0" p(x) — m*¢(x) P(x) invariant

Classical path : 2—; =0 S = /d?’xdtl}
0S=0 = % — 9" oL =0 Euler Lagrange equation
l0) a(a“¢) (shown in exercises)
jl> (0 0" +m*)p=0 Klein Gordon equation
u

(You will derive a number of field equations from Lagrangians in the exercises)



New symmetries

L = (9,0(x)) 8"p(x) - m*p(x) $(x)

s invariantunder  @(x) —> e“¢(x)

What is this symmetry in our classification scheme?



New symmetries

L = (9,0(x)) 8"p(x) - m*p(x) $(x)

s invariantunder  @(x) —> e“¢(x)

...a global, continuous Abelian (U(1)) gauge symmetry
A symmetry implies a conserved current and charge.

e.g. Translation :> Momentum conservation

Rotation :> Angular momentum conservation

What conservation law does the U(1) invariance imply?



Noether current

L = (3,0(x)) 8"9(x) - m*p(x)' d(x)

s invariant under ~ @(x) — eia¢(x) ...an Abelian (U(1)) gauge symmetry

(use inf. Transform 0¢ and Euler lagrange eqs.)

oL
(01 9)

e

0L = = 0"
0—0=10 (6’

%—wHW)

What is the physics of this equation?



Noether current

L = (3,0(x)) 8"9(x) - m*p(x)' d(x)

s invariant under ~ @(x) — eiad)(x) ...an Abelian (U(1)) gauge symmetry
(Inf. Transform &¢ and Euler lagrange egs.)
OL
T
— <

Conserved current

e

L = — 0"
) 0—0=10 (6’

ie( oL oL
o“j =0, | = — f Noether current
= =0 2(a<a“¢>¢ a<a“¢*>¢)




The Klein Gordon current

L = (3,0(x)) 8"9(x) - m*p(x)' d(x)

s invariant under O(x) — eiaqb(x) ...an Abelian (U(1)) gauge symmetry

. . lef oL oL
"j, =0, J, (

_ _ T
2|20 a<a“¢*>¢)

ji =—ie(p'0,9-90,9")

This is of the form of the electromagnetic current for the KG field



The Klein Gordon current

L = (3,0(x)) 8"9(x) - m*p(x)' d(x)

s invariant under  ¢(x) — eia¢(x) ...an Abelian (U(1)) gauge symmetry
. . lef oL oL
8“]M=O, ']M= . ¢— e ¢T
2\0(0"¢) 9(0"¢")

ji = —ie(¢'0,0-99,9")

This is of the form of the electromagnetic current for the KG field:

A KG . . .
wdu minimal coupling’ to EM potential

Q = f d>x jo is the associated conserved charge



Aside - Additional terms | Terms allowed by U(1) symmetry

L

(8,000) 8"9(x) - m2p(x) p(x) + AJg| + %W .
—

Renormalisable D <4

If M > 10°GeV, "Effective" Field theory approximately renormalisable

Renormalizability is another principle taken for the construction of the SM —
In the above sense



U(1) local gauge invariance and QED

P(x) = ()

L = (3,0(x)) 8"9(x) - m*p(x)' d(x)

Jargon: we are gauging
the global U(1) symmetry

Invariant?



U(1) local gauge invariance and QED

P(x) = ()

L = (8 (P(X) )Jr " P(x) —m’¢(x)"¢(x) notinvariant due to derivatives

0.9—0a (e“p)=e“" ¢p+i0e“ P a(x)

To obtain invariant Lagrangian look for a modified derivative transforming covariantly

DM(p s eia(x)QDMQD




U(1) local gauge invariance and QED

P(x) = ()

L = (8 (P(X) )Jr " P(x) —m’¢(x)"¢(x) notinvariant due to derivatives

To obtain invariant Lagrangian look for a modified derivative transforming covariantly

DM¢ s eia(X)QDM¢

Need to introduce a new vector field AM — AM + aua

D,=0d,-1i04,




$(x) = e g(x)

Du¢ s eia(X)QDM¢

AM eAM+aMa

L = (DM¢(X) )T D p(x) —m°¢p(x) ¢(x) isinvariant under local U(1)

Note : d, =D, =0,-i0A, isequivalentto p" — p" +ed”

universal coupling of electromagnetism follows from local gauge invariance

e L=L=(0,0(x)) 0"p(x) - m*p(x) p(x) - /< 4" + O(*)



p(x) = e p(x)
Du(p s eia(X)QDM(p

AM eAM+aMa

L = (DM¢(X) )T D p(x) —m°¢p(x) ¢(x) isinvariant under local U(1)

Note : d, =D, =0,-i0A, isequivalentto p" — p" +ed”

‘Minimal coupling’ of electromagnetism follows from local gauge invariance
Dynamics follows from symmetry

The Euler lagrange equation give the KG equation:

(0,0" +m’ W =-Vy where V = —ie(d A" +AM8M)—€2A2



The electromagnetic Lagrangian 0 -E -E, -E,

E. 0 -B B
Fuv = OMAV - BVAM Ez B3 0 _Bl

F,—F

uv 2

AM %AM+8M05

2
M AMAM Forbidden by gauge invariance

u

LEM _ _%FMVFMV —j‘uA

The Euler-Lagrange equations give Maxwell equations !

oL ., oL
04" 9(0" 4")
VE=p, VxE +@ 0 EM dynamics
J F" =j" _ ot follows from a
u =
wmeo va-Se | SO
(NB. ,,,0"F* =0)

uvpo



Suppose we have two fields with different U(1) charges :

. (x) — eian’qul,z (x)

L = (9,4,(x)) 0"¢,(x) - m*, (x)' ()
+(0,0,(x)) 96, (x) - m*¢, (x)' ()

..no cross terms possible (corresponding to charge conservation)



