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Derived scalar quantum electrodynamics :
i.e. we derived the masslessness and interactions of photons (spin-1 U(1) gauge boson)
with matter(scalar field for simplicity) in QFT from gauge symmetry!



The SM, the Higgs and beyond

Lecture 3 - Goldstone model, Abelian Higgs model,
the Higgs Mechanism of the Standard Model



We began by considering the Klein-Gordon Lagrangian

L = (9,0(x)) 8"p(x) - m*p(x) $(x)
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Free (only quadratic terms in ¢)
massive m?#0

Complex scalar field P(x) =@, (x)+ip,(x)

invariant under  @(x) — ¢'(x) = “¢(x)

In terms of the real components

b1 R ¢\ [ cosa sina) (¢
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Note, global rotation, nothing to do with space-time transformations
(argument x is unchanged)



Lets generalize the potential by considering the theory
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This is now the Goldstone Model — similar to our
example of spontaneous symmetry breaking in first lecture but now ¢ is complex:

Still invariant under P(x)—=@'(x)= eia¢(x)

Now we have a circle of minima
given by

o] = \/¢2+¢2—§E




Goldstone model
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Now lets choose one minima to do pertubation theory around

o1 =v+x1, ¢2=0+x2




Goldstone model
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Lets choose one minima to do pertubation theory around
¢1=v+x1, ¢2=0+x2

Now vacuum no longer invariant invariant under rotations — how does L look in these
Field observables?
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L = (53;0(1 0" x1 — 2

What particles is it describing?




Goldstone model
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Lets choose one minima to do pertubation theory around

o1 =v+x1, ¢2=0+x2

Now vacuum no longer invariant invariant under rotations — how does L look in these
field observables?
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What particles is it describing?

We get a massless, spin-0 Goldstone Boson from
spontaneous breaking of a global symmetry




Goldstone model
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Now lets choose one minima to do pertubation theory around
¢1=v+x1, ¢2=0+x2

Now vacuum no longer invariant invariant under rotations — how does L look in these
field observables?
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What particles is it describing?

We get a massless, spin-0 Goldstone Boson from
spontaneous breaking of a global symmetry
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Gauging the Klein-Gordon model

Recall from last lecture that we gauged the
free (Klein-Gordon) theory by :

00— D.p=0¢-ied

P(x) = ““V(x)

DM¢ s eia(X)eDu¢

A, —A4,+0,0

L = (DM¢(X) )T D p(x) —m°¢p(x) ¢(x) isinvariant under local U(1)

Note : d,—=>D, =3 —ied, isequivalentto p' — p" +eAd"

universal coupling of electromagnetism follows from local gauge invariance

e L=L=(0,0(x)) 0"p(x) - mp(x) p(x) - /< 4" + O(*)

ji = —ie(¢0,9- 9,97




Abelian Higgs model

Can do exactly the same for the
Goldstone model

P(x) = ““V(x)
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This time lets describe the theory in ‘polar field coordinates’ Iu2 <0
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What are gauge transformation
in terms of these fields?




Abelian Higgs model

Can do exactly the same for the
Goldstone model
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Gauge transformation in terms of these fields
p(z) = p(z)
O(x) — 0(x) —eva(x)




Abelian Higgs model p(z) = p(z)

Can do exactly the same for the

Goldstone model (potential explicitly invariant):
A, — A4, +0,a

We can again tranform to same minimum (¢,=0), corresponding to ©=0 by choosing
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Abelian Higgs model p(z) = p(z)

Can do exactly the same for the

Goldstone model (potential explicitly invariant):
A, — A4, +0,a

We can again tranform to same minimum (¢,=0), corresponding to ©=0 by choosing
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But this adds a ‘contribution’ to the gauge field — whats the Lagrangian in these fields
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Abelian Higgs model p(z) = p(z)

Can do exactly the same for the
Goldstone model (potential explicitly invariant):
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We can again tranform to same minimum (¢,=0), corresponding to ©=0 by choosing
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What is this Lagrangian describing?




Abelian Higgs model p(z) = p(z)

Can do exactly the same for the
Goldstone model (potential explicitly invariant):
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We can again tranform to same minimum, corresponding to ©=0 by choosing az) = 0(x)
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But this adds a ‘contribution’ to the gauge field — whats the Lagrangian in these fields
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The gauge field has become massive!
The Goldstone boson has been absorbed and
become the longitudinal mode of the massive gauge field




Abelian Higgs model p(z) = p(z)

Can do exactly the same for the
Goldstone model (potential explicitly invariant):
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We can again tranform to same minimum, corresponding to ©=0 by choosing o) o(z)
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1 1 1 1
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The gauge field has become massive!
The Goldstone boson has been absorbed and
Become the longitudinal mode of the massive gauge field

p is the accompanying scalar field — U(1) Higgs boson
includes interactions like
Y
vpA, A,




Recall Scattering of massive W-bosons
/ /A do 1 ‘ M‘Z
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The Higgs state unitarizes the scattering process of massive gauge bosons



SM Higgs mechanism

The standard model
~ Elementary particles
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Of course the photon of the SM is massless! it is the W and Z bosons which are massive
So how many gauge fields and how many Goldstone Bosons do we need?



Extension to non-Abelian symmetry

(The Standard Model SUB)® SU2)®U(1))

SU(2) local gauge invariance

D, Py =01 +1i¢o
b — 2 complex
D, Dy = @3 + 194 4 real scalars

Yang-Mills (+Shaw)
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SM Higgs mechanism — first consider global symmetries
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Now have an SO(4) symmetry before gauging

@ |= /6% + 83 + 63 + &3 D |umin=

How many broken symmetry direction at the minimum, i.e. how many masless
Goldstone Bosons?

=V
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SM Higgs mechanism
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Now have an SO(4) symmetry before gauging

_ 2 2 2 2 — H —
@ |= \J 6+ 03+ 6 + B = =
3 broken symmetry direction at the minimum, i.e. 3
Goldstone Bosons?
Now gauge @ under the SU(2)~SO(3) symmetry 1
L=D, D' ——p? | @ P —-X |1
2 u <0

D(z) = \%eﬁ(:p)g (v N 2](9@))

If you write out L you now see

You have 3 massive spin-1 particles,
0 Goldstone bosons anymore
1 spin-0 massive Higgs




SM Higgs mechanism

Loptons

The standérd model
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This is the structure Nature ordered — The SM Higgs can do the job, but does it?




