
Parallelization of the Laplace Smoothing Algorithm

Jeannette Spühler, Rodrigo Vilela de Abreu and Kaspar Müller
Royal Institute of Technology, Sweden

1 Introduction

This report is part of the PDC summer school 2010. We set our task to parallelize the Laplacian
Smoothing algorithm in Dolfin [3].
We first introduce the algorithm, explain then the different steps of its implementation, present
a performance model and finalize our report with the examination of the scalability of our code.

2 Laplacian Mesh Smoothing

Mesh smoothing plays an important role in surface reconstruction for visualization and solving
finite element methods. The quality of the mesh influences the solution of a finite element
problem. It has been shown in [2] that a maximum angle is essential for finding an approximate
solution in two-dimensional cases and a too small angle leads to a bad condition number for the
element matrix as mentioned in [4].
To enhance the quality of the mesh, one has the following options:

1. Change the number of vertices by coarsening or refining the mesh.

2. Keep the number of vertices:

(a) Conserve the topology by relocating the vertices.

(b) Change the topology by swapping the faces and edges.

The Laplacian Smoothing belongs to category 2a and is a very common and simple method to
enhance the quality of a mesh to a reasonable level.
Its name comes from the diffusion equation ∂u

∂t
−∇(k∇u) = 0 where k is the diffusion coefficient

and u is a function defining the position of a vertex in the next time step. If we approximate this
Laplace equation by an equidistant grid, we see that the coordinates of a vertex are calculated
as the mean value of the positions of the surrounding neighbors: xi =

1

N

∑N
j=0,i6=j xj where xi

and xj are adjacent.

3 Algorithm

3.1 In Serial

The serial Lapacian mesh smoothing algorithm can be abstracted as follows:

1. Loop over all vertices and for each vertex:

(a) Calculate the new vertex position from the average position of its neighbors.

(b) Move vertex.



Jeannette Spühler, Rodrigo Vilela de Abreu and Kaspar Müller August 17, 2011

Figure 1: The global boundary is colored with blue and the interior boundary with red. Together
they form the local boundary of one processor defined on a cube.

3.2 In Parallel

In a parallel setting, the movement of the nodes lying at the interface between two processors
needs to be performed carefully. Since a processor has no information about the nodes located in
the other processors, it has to communicate with them in order to correctly execute the Laplacian
smooth algorithm. Moreover, in Dolfin-hpc, the mesh overlap between two adjacent processors
is replicated on each core as ghosted entities. Each mesh entity has an assigned owner, which is
responsible for keeping the data updated, [5].

We have chosen to follow this specific guideline in our parallel Laplacian smoothing, such that
only the processors owning a node are allowed to move it. We present in the following part a
possible implementation of the communication and computation to smooth the mesh in parallel.
The algorithm implemented for this report can be divided into four steps.

Step 1: Prepare for communication and smoothing.

Step 2: Communicate data for smoothing

Step 3: Perform Smoothing

Step 4: Communicate changed node positions

While implementing the algorithm the following properties need to be considered. Nodes, seen
by a processor as ghost nodes are vertices on the processors boundary owned by the neighboring
processor. In Dolfin-hpc, the processor knows the neighbor who owns the ghost vertex, but the
neighbor does not know which processors sees his owned vertex as a ghost node. When smoothing
the mesh according to the algorithm sketched above, only the owned nodes are moved. Thus, after
all nodes have been moved, their new positions need to be transmitted to the other processors
having them as ghosts.



Jeannette Spühler, Rodrigo Vilela de Abreu and Kaspar Müller August 17, 2011

3.2.1 Step 1: Prepare for communication and smoothing

Each processor build the following three sorted containers by iterating over its interior boundary.
The interior boundary of a processor is the interface between him and its neighbors (See Fig. 1).

• owner tree

Key: rank of ghost node owner

Element: Global index of ghost node

• send inner

Key: Global index of ghost node

Element1: Number of neighboring nodes

Element2: Sum over x-coordinate of neighboring nodes

Element3: Sum over y-coordinate of neighboring nodes

Element4: Sum over z-coordinate of neighboring nodes

• recv sum

Key: Global index of owned node

Element1: Number of neighboring nodes

Element2: Sum over x-coordinate of neighboring nodes

Element3: Sum over y-coordinate of neighboring nodes

Element4: Sum over z-coordinate of neighboring nodes

As mentioned above, since only the owner of a node is allowed to move the position of the node,
we have to send the missing data to the owner. The container owner tree is used to keep track
of the owner of the corresponding ghost node. The corresponding data to send is stored in
send inner. Later in Step 2, the message is assembled by looking up the receiver in owner tree

and attaching to it the corresponding data stored in send inner. The third container recv sum

is built to gather date of the owned nodes. Later in Step 3, this data is completed with the
received data from the neighboring processors.

3.2.2 Step 2: Communicate data for smoothing

In the second part of the implementation, the communication is performed. The communication
between the source and destination processors is defined by a standard formula, where all pro-
cessors communicate with each other, even if they have no information to exchange (in which
case they exchange an empty message). It reads:

for j < P:

src = (rank -j + P) % P;

dest = (rank + j) % P;

...

MPI_Sendrecv(&send_buff[0], ..., dest, recv_buff, ..., src, ...);

end



Jeannette Spühler, Rodrigo Vilela de Abreu and Kaspar Müller August 17, 2011

where P is the total number of processors running in parallel, and rank is the processor number.
The dots before the MPI call indicating the construction of send buff. It contains the global
index of the ghost point of src as well as the number of neighbors and the sums of the x, y resp.
z component. In this way dest receives in recv buff the missing data to compute the smoothing.
Unimportant variables in the MPI call where replaced by dots. While receiving data, the sender
of the message is stored in a new container called ghost tree.

• ghost tree

Key: rank of proc. who sees the owned node as a ghost node

Element: Global index of owned node

In this way we can keep track of the processors which need to receive the updated position of
the node after smoothing.

3.2.3 Step 3: Perform smoothing

To perform the smoothing each processor pass through all his owned nodes in his domain.
Thereby he distinguishes between tree cases.

Case 1: Node is on global boundary

Case 2: Node is on interior boundary

Case 3: Node is not on boundary

In Case 1 the nodes are skipped, since the global boundary is steady in our implementation.
In Case 2 the information collected in recv sum is completed with the received data and the
smoothing is performed. In Case 3 the vertices are moved with no additional consideration.

3.2.4 Step 4: Communicate changed node positions

After all processors have smoothed their mesh, the updated positions of the vertices acting as
ghost nodes in other processors are reported back by using ghost tree.

4 Performance model

We present next a performance model for the algorithm described above. The model is derived
exclusively for the second part of the algorithm, where all data is computed, exchanged, and
the actual smoothing of the mesh is carried out. We begin by identifying two distinct parts in
the model, a serial part that is local to each processor, and is related to the time it takes to
perform the arithmetic operations necessary to compute the new coordinates, and a second one
that accounts for the communication between the processors working in parallel. We assume that
the time spent in the first part is proportional to the average number of nodes per processor,
Nc/P (where Nc is the total number of nodes in the mesh and P is the number of processors
used), and to the average number of neighbors for each node in the mesh, named by c. Then,
since we know that for each neighboring node we have three additions (which correspond to
the three coordinates in a three-dimensional mesh), and one division, we may model the serial
computational time, Tloc, by:

Tloc = O(Nc/P · (3c+ 1) · τf ),



Jeannette Spühler, Rodrigo Vilela de Abreu and Kaspar Müller August 17, 2011

4 32 128 256
0

10

20

30

40

50

60

70

Number of processors

S
pe

ed
−

up
 (

w
rt

 4
 n

od
es

)

 

 

MeshSmoothing
linear scaling

Figure 2: Strong scaling result for our implementation of the Laplacian Mesh Smoothing algo-
rithm.

where τf is the time required to execute one flop. The communication time, Tcomm, on the other
hand, is assumed to be proportional to the average number of shared nodes in each processor,
Ns, and, if all processors communicate with each other, we may write:

Tcomm = (P − 1) ·O(τs +Ns ·msize · τb),

where τs is the latency time of the interconnect, msize is the average message size in Bytes, and
τb is the message passing time per Byte, which is given by the bandwidth of the network. The
total theoretical time for our smoothing algorithm is therefore:

Ttot = Tloc + Tcomm.

The scaling results presented in the next session were obtained using the computer Lindgren
at PDC, KTH, which is a Cray XE6 system, based on the AMD Opteron 12-core “Magny-
Cours” (2.1 GHz) processors and the Cray Gemini interconnect technology. We have found
in the literature, [1], that, for such systems, the values of τf , τs and τb are typically 1.085 ·

10−10s/flop (given a peak performance of 9.2Gflop/s), 1.5·10−6s and 2·10−10s/Byte (assuming
a bandwidth of 5Gbytes/s). We immediately see that communication is the most expensive part
of the algorithm: for example, if c = 6, Nc = 150, 000, P = 4, Ns = 5, 000, msize = 48Bytes, and
if we take the proportionality constants corresponding to the O(...) terms equal to 1, we obtain
Tloc = 7.7 · 10−5s and Tcomm = 1.4s, i.e. the communication time is several orders of magnitude
larger than the serial time required to compute the new mesh coordinates.

5 Scaling

We tested our parallel implementation of the Laplace smoothing algorithm on Lindgren at PDC.
The strong scaling result is shown in Fig.2. We obtain a quasi-linear scaling up to 256 cores,
which we consider satisfactory for a first implementation attempt. In order to understand why
our implementation does not scale when P > 256, we need to scrutinize the theoretical model
proposed above. As the number of processors increases, the latency time of the interconnect



Jeannette Spühler, Rodrigo Vilela de Abreu and Kaspar Müller August 17, 2011

dominates the communication cost since it scales linearly with P , whereas the actual data transfer
cost decreases because the number of shared nodes Ns decreases faster than 1/P . In this way,
if we want to improve the scalability of our code, we need to change the communication pattern
between the processors in order to keep the latency time small for even larger values of P .

References

[1] Robert Alverson, Duncan Roweth, and Larry Kaplan. The gemini system interconnect. In
Proceedings of the 18th IEEE Symposium on High Performance Interconnects, 2010.

[2] I. Babuska and A. K. Aziz. On the angle condition in the finite element method. SIAM J.

Numer. Anal. 13,, pages 214–226, 1976.

[3] DOLFIN. http://www.fenicsproject.org/wiki/DOLFIN.

[4] Lori A. Freitag and Carl Ollivier-gooch. Tetrahedral mesh improvement using swapping
and smoothing. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGI-

NEERING, 40(21):3979–4002, 1997.

[5] Niclas Jansson, Johan Hoffman, and Johan Jansson. Performance of Dolfin and Unicorn
on Modern High-Performance Distributed Memory Architectures. Technical Report KTH-
CTL-4012, Computational Technology Laboratory, 2010. http://www.publ.kth.se/trita/ctl-
4/012/.


