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Performance Engineering module overview

Tuesday Wednesday

11.15-12.00 Introduction to 8.30-9.00 Interim wrap-up, Q&A
perf.orma-nce 11.15-12.00 Improving parallel
S scalability

12.00-13.15  Lunch 12.00-13.15  Lunch

13.15-14.00  Application performance  13.15-15.00 Lab session
analysis

14.00-14.15 Break

14.15-15.00 Optimal porting

15.00-15.15 Break

15.15-17.00 Lab session




PART I: INTRODUCTION TO PERFORMANCE
ENGINEERING



v Obvious benefits
— Better throughput => more science
— Cheaper than new hardware
— Save energy, compute quota etc.

@ ..and some non-obvious ones
— Potential cross-disciplinary research
— Deeper understanding of application

« Several trends making optimization even more important



Find best-performing compilers and compiler flags
Employ tuned libraries wherever possible

Find suitable settings for environment parameters
Mind the 1/O

— Do not checkpoint too often
— Do not ask for the output you do not need
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« Making CPUs smarter getting difficult

— “"Low-hanging fruit” have been picked

= Pipelining, out-of-order execution etc.
_ . Year FP /
— Trend: Wider vector units Hz

* New instruction sets (AVX, AVX2) 2001 SSE?2 4
v Leveraging the wider vector unit 2012 AVX 8
— At minimum: Compiler optimization 2014? AVX2 16

= Changes to code often needed

— Worst case: Algorithm cannot benefit from wider vectors
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v Adapting the problem to the underlying hardware
v Combination of many aspects

— Effective algorithms

— Processor utilization & Efficient memory use

— Parallel scalability
v Important to understand interactions

— Algorithm — code — compiler — libraries — hardware

v Performance is not portable!
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Application optimization flow chart
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PART Il: APPLICATION PERFORMANCE ANALYSIS



Amount of data per process small - computation takes
little time compared to communication

Load imbalance
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v Most basic information: total wall clock time
— built-in timers in the program (e.g. MPI_Wtime)
— System commands (e.g. time) or batch system statistics

« Built-in timers can provide also more fine-grained
information
— have to be inserted by hand

— typically, no information about hardware related issues
e.g. cache utilization

— information about load imbalance and communication
statistics of parallel program is difficult to obtain



« For more insight we need to employ performance
analysis tools

— Top time consuming routines (profile)
— Load balance across processes and threads
— Parallel overhead
— Communication patterns
— Hardware utilization details
v HPC platforms usually have performance analysis suites

— CrayPAT, Scalasca, Paraver, Tau,...



¢ Instrumentation of code

— adding special measurement code to binary
= special commands, compiler/linker wrappers
= automatic or manual

— normally all routines do not need to be measured
v Measurement: running the instrumented binary
— profile: sum of events over time
— trace: sequence of events over time
v Analysis
— text based analysis reports
— visualization



v The dataset used in the analysis should
— Make scientific sense
— Be large enough for getting a good view on scalability
— Be runable in a reasonable time

— For instance, with simulation codes almost a full-blown
model but run only for a few time steps

« Should be run long enough that initialization/finalization
stages are not exaggerated

— Alternatively, we can exclude them during the analysis



Step 2: Measure scalability
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@ Obtain first a sampling profile to find which user
functions should be traced

— One should not trace them all, it causes excessive
overhead

v Make an instrumented exe with tracing user functions
plus e.g. MPI, 1/O and library (BLAS, FFT,...) calls

v Execute and record the first analysis with
— The core count where the scalability is still ok
— The core count where the scalability has ended



« What are the major differences in these two profiles?
— Has the MPI fraction ’blown up’ in the larger run?
— Have the load imbalances increased dramatically?
— Has something else emerged to the profile?

v Has the time spent for user routines decreased as it
should?



« What do the imbalanced routines wait for?

— Data from other tasks?
— Imbalanced amount of computation in different tasks?
— 1/0?

v If your code is using also OpenMP

— Trace for OpenMP APl and run-time library too, and
regather data



« What is dominating the true time spent for MPI
(excluding the sync times)

— Collectives?
— Point-to-point communication?

« Note that the analysis tools may report load imbalances
as “real” communication

— Put an MPI_Barrier before the suspicious routine
« How does the message size profile look like?

— Are there a lot of small messages?



@ How much I/O?

— Do the I/O operations take a significant amount of time?
* Trace POSIX I/O calls (fwrite, fread, write, read,...)

v Are some of the load imbalances etc. MPI hotspots due
to1/0?
— For example, data being gathered to a single task for
writing

— Insert MPI_Barriers to investigate this



v Check the fraction of the peak and computational
Intensity

« Obtain different HW counters, for example

— L1 and L2 cache metrics

— memory bandwidth information
— use of SSE instructions

— conditionals and branching

v Analyze these, whether the major bottleneck is in
memory or some floating point issue



Example: Using CrayPAT

v Load necessary modules

% module load perftools

« Build the application normally (make clean; make, cc, ftn,
etc) Tracing user functions, MPI
calls and 1/O. For other

v Instrument the application tracing options, see
man pat build

% pat_build -w -u -g mpi,io myexe

@ Run the instrumented program

% aprun -n 16 ./myexe+pat




Example: Using CrayPAT

v Analyse & visualize the results

> pat_report -0 profile,mpi,io,lb myexe+pat+NNNNNN.xf2
> app2 myexe+pat+NNNNNN.ap2

v Further info: man craypat, man pat_bu

pat_report Asking for a function
profile, MPI & 1/0 statistics
v For large real-world applications we and load balance
should use a bit more elaborated information. See
h | pat_report -0 help
approach called automatic profiling for more options.

analysis (APA) that avoids tracing all
functions. Refer to CrayPAT documentation.



Web resources

v Scalasca
http://www.scalasca.org/

v Paraver
http://www.bsc.es/computer-sciences/performance-tools/paraver

v Tau performance analysis utility
http://www.cs.uoregon.edu/Research/tau



PART lll: OPTIMAL PORTING



Theoretical peak

v "Improving application performance
without touching the source code”

rformance

v Potential to get significant performance
improvements with little effort

v Should be revisited routinely

— Hardware, OS, compiler and library Compilers

Compiler flags
upgrades Numerical libraries

— Can be automated Intranode placement
Internode placement
Parallel I/O



« Many different choices

— GNU, PGI, Intel, Pathscale, IBM, Cray etc.
@ There is no universally fastest compiler

— Depends on the application or even input
v Correctness

— Aggressive optimization may alter results or even break
the code - check against reference results!

— Compiler bugs are not that uncommon



« Modern compilers can make sophisticated optimizations
— At best much more effective than a human
— In some cases need a lot of assistance
v By default compilers cannot/should not
— lgnore language standard restrictions
— Take shortcuts that modify output
— Make any assumptions on input data



« Compilers typically have >100 command-line parameters
(aka compiler flags)

— Many affect compiler optimization behavior
— Ridiculously large search space
— Best flags not portable: may vary by application or even
input
— Some flags are generally beneficial
« Some flags are potentially dangerous
— May lower numerical precision (e.g. "fast math”)
— May break the code



v De-facto standard flags for enabling typical optimizations
— ’-0[0-4]’, sometimesalso’fast’
" Forexample gcc -03oricc -fast

— The higher the level, the more aggressive optimization
* Compilers default to some ”safe” level (typically > -02’)
= ’> -00’ disables optimizations completely

v Typically improves performance but not always
v No standardized definition what the flags actually mean



GNU/O1 —
GNU/0O3 —
PGI/-01 —
PGI/-03 —
PS/-01

PS/-02 —
PS/-03

100 1000 10000
Problem size

A Conjugate Gradient solver
for Ax=b, using 4 MPI tasks
on a XT4 node (AMD
Barcelona)




@ Architecture-specific tuning

— Tunes all applicable parameters to the defined architecure
v Vectorization

— Exploiting the vector units of the CPU (SSE, AVX etc.)

— Improves performance in most cases
v Loop transformations

— Fusing, splitting, interchanging, unrolling etc.

— Effectiveness varies



v Interprocedural Optimization (IPO or IPA)

— Analyzes dependencies between functions and modules
and possibly even between source files

v Profile Guided Optimization (PGO)
— Optimizing based on feedback from training runs
— Process takes time and manual effort

v Fast math

— Reduces the error checking and/or numerical precision of
floating point operations. Use with caution!



Architecture-specific -tp=arch -march=native

tuning

PGO training -Mpfi -fprofile-generate

PGO optimize -Mpfo -fprofile-use

IPA -Mipa=option -combine
-fwhole-program
-fipa-*

Fast math -Mfprelaxed -ffast-math



-fast is a flag that turns on a set of flags that generally provide good performance.
In practice it often provides good, but not the best performance. -fast turns on: -
02 -Munroll=c:1 -Mnoframe -Mlre -Mautoinline -Mvect=sse -Mscalarsse -
Mcache_align -Mflushz

-Mipa=fast Enable InterProcedural Analysis (IPA). Also activates -02, at a
minimum. fast chooses generally optimal -Mipa flags. May increase compile time
significantly.

-Mvect=sse Enables the usage of SSE instructions (included in -fast)

-Msmart Enable AMD64-specific post-pass instruction scheduling.

-Msmartalloc=huge Add a call to the routine mallopt in the main routine. Link in
the huge page runtime library, so dynamic memory will be allocated in huge pages.

-Mfprelaxed Performs some floating point operations using relaxed precision



-Mnoprefetch In some cases it can be beneficial to turn prefetching off, to avoid
evicting data from cache too early.

-Mprefetch=plain Turn on prefetching. In addition to plain there are also other
options.

-Mvect=noaltcode Do not generate alternative code for SSE vectorized loops.

-Minline=levels:n Inline n levels. Default n is one, it can be beneficial to attempt
higher levels (e.g. 3,5 or even 10)

-Munroll=c:u Try with u=4 or higher

-Munroll=n:u Try with u=4,8 or 16.

-Munroll=m:u Try with u=4,8 or 16.

-Mmovnt Force generation of nontemporal moves.

-Mnozerotrip Don't include a zero-trip test for loops. Use only when all loops are
known to execute at least once.



-02 GCC performs nearly all supported optimizations that do not involve a
space-speed tradeoff

-03 Optimize yet more.

-Os Optimize for size. -Os enables all -O2 optimizations that do not
typically increase code size. May be faster than 02 & 03

-ftree-ch Perform loop header copying on trees. On by default, except when Os is
active in which case this often should be activated

-funroll-loops Unroll loops whose number of iterations can be determined
at compile time or upon entry to the loop.

-frename-register Avoid false dependencies by making use of registers left
over after register allocation. Enabled by default with -funroll-loops.



-fsched-stalled-insns=2 2 instructions can be moved prematurely from the
queue of stalled insns into the ready list, during the second scheduling
pass. Can also try 4,6,... instructions.

-fno-guess-branch-probability In some cases it can be useful to turn of
branch guessing.

-ftree=vectorize Perform loop vectorization on trees.

-fno-cprop-registers After register allocation and post-register allocation
instruction splitting, we perform a copy-propagation pass to try to reduce
scheduling dependencies and occasionally eliminate the copy.

-fprofile-generate, -fprofile-use Create and use profile-based optimization



-0O1 Optimize for size
-03 More aggressive optimizations incl. vectorization (-O2 is default)
-fast Collection of common optimizations
— Contains: -0O3 -ipo -no_prec_div -static -xW
-XxHOST compile for architecture specified by HOST
-no_prec_div Relaxed precision division
-mp Disable optimizations that can affect floating point accuracy
-ipo Interprocedural optimizations
-prof-gen / -prof-use Generate /use profile



« Some key numerical routines have de-facto standardized
interfaces

— BLAS, LAPACK, ScaLAPACK
— FFT (nearly)

v There are multiple implementations of interfaces
— Both commercial and open-source

— The so-called “reference” implementations are useful for
checking correctness but have poor performance



v Vendors provide numerical library collections
— Optimized for the processor or the system architecture
— Usually contains: BLAS, LAPACK, FFT, vector math, RNG
— Possibly also sparse solvers and others
« CSC systems have several packages
— AMD ACML (Louhi, Murska, Vuori)
— Cray LibSci (Louhi)
— Intel MKL (Louhi, Murska, Vuori)
— Nvidia numerical libraries (Vuori)



v Cornerstone of performance for many upper-level
libraries and applications

v Many optimized implementations
— GOTO, MKL, LibSci, ACML, ATLAS etc.
— Also for GPUs: CUBLAS, ACML-GPU

v Some compilers support translating intrinsic operations
(matmul etc.) into calls to a BLAS library

— GNU Fortran >=4.3: -fexternal-blas
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No standard interface

— Similar function: Plan once, execute plan N times
Many optimized implementations

— Syntax look alike but not identical

— CRAFFT, FFTW, ACML FFT, Intel FFT, CUFFT etc.

No single best solution

— Depends on architecture and type of FFT

Consider saving the plans to a file and reusing them

— Only useful if FFT dimensions are consistent across runs



« Vector math routines

— Operates on complete
arrays

@ Intrinsic math libraries

— Libraries that replace the
standard libm intrinsics

" sin, exp, log etc.
v No standard on naming

— Good idea to use macros

11.30s

6.73s

for(i=0;i<n;i++){
b[i]=exp(a[i]);

}
vrda_exp(n,a,b);

68% speedup



v lIterative Refinement Toolkit (IRT)
— Subset of LAPACK solvers implemented
— Uses a mixed-precision approach
— Close to 2x speedup for well-conditioned problems
« Adaptive Sparse Kernels (CASK)
— Autoselects compute kernel based on sparsity pattern
— Integrated with PETSc
« Adaptive FFT (CRAFFT)

— Autoselects best implementation for a given FFT type



MPI placement

v The layout of MPI processes can be
defined

— On MPICH based libraries (e.g. Cray
MPI) the environment variable is
MPICH RANK REORDER_METHOD

« Goal to minimize inter-node
communication

— On Cray, CrayPAT can be used to
automate this

Optimal

Default



v Different MPI implementations have different parameters
v Protocol limits are important parameters

— More about these tomorrow
v Other important parameters vary

— Buffer sizes, mechanisms for matching unexpected
messages, message patterns for collectives etc.

— E.g. on the Cray XT: consult >man mpi’



@ Choice of compiler and selection of flags may provide a
significant performance boost with very little effort

— See the manual pages for the compilers for full information
on flags

v Modern HPC programming builds a lot upon libraries -
make sure you find the best performing ones

@ There are also other levers we can pull: MPI library and
other platform parameters

« None of the above cannot alleviate a poor algorithm or
bad implementation!



« Wikipedia article about compiler optimization
http://en.wikipedia.org/wiki/Compiler_optimization

« How to make the best use of Cray MPIl on the XT

http://www.csc.fi/kurssit/arkisto/aineisto/hpce2-workshop/hpce2-
workshop-derose-mpi

v Tool for optimizing runtime parameters of Open MPI
http://www.open-mpi.org/projects/otpo/

v Porting applications to BlueGene/P
http://www.fz-juelich.de/jsc/datapool/page/3365/BGP_porting.pdf



v The Game of Life (Gol) is a cellular automaton devised by
John Horton Conway, read
http://en.wikipedia.org/wiki/Conway's_Game_of_Life

v A parallel (MPI) implementation of the Gol is provided in

GoL_mpi (.f90 or .c)

— Compile and run the software
% make

% aprun -n 4 ./gol 100 1000 1000
— You need to do (once) module load ImageMagick

— Then you can visualise the board development with
% convert -delay 40 -geometry 512x512 life *.pbm life.gif
% animate life.gif



v By carrying out performance analysis, find out the
reasons why the provided version of the GolL code does
not scale

— Indeed it should scale, it is a simple domain decomposition
with thin halos

— We are going to overcome these tomorrow

v Alternatively, you can carry out the eight-step procedure
discussed earlier for your own application!



PART IV: IMPROVING PARALLEL SCALABILITY



« Unfortunately, quite often achieving better scalability
requires algorithm and data-structure level changes

— However, usually it is possible to do something without
touching the big picture

v Review the performance measurements: is the
communication bottleneck in

— Load imbalance?
= Large Sync times
= Large differences in MPl_Wait times

— Just large amount of communication?



v Message transfer time « latency + message length /
bandwidth
— Latency: Startup for message handling
— Bandwidth: Network BW / number of messages using the
same link
v Bandwidth and latency depend on the used protocol

— Eager or rendezvous
= Latency and bandwidth higher in rendezvous
= Eager has an issue with sc. unexpected message buffers

— The platform will select the protocol basing on the
message size, these limits can be adjusted



« Reduce latency: Send one big message instead of several
small messages

« Minimize the amount of bytes send over the
interconnect

v Quick tricks
— Experiment with the rank placement

— Experiment with the protocol limits and other MPI library
parameters



« Minimize the data to be communicated by carefully
designing the partitioning of data and computation

v Example: domain decomposition of a 3D grid (n x n x n)
with halos to be communicated, cyclic boundaries

1D decomposition (“slabs”): w = halo width
communication < n2 *w * 2 p = number of MPI tasks

2D decomposition ("tubes”):
communication &« n2 * p /2 * y * 4

3D decomposition ("cubes”):
communication & n2* p23* yw * g




o Use collectives!

— |If a collective call can do it for you, it will outperform all
point-to-point constructs

« And use them right

— See if every all-to-all collective operation needs to be all-
to-all rather than one-to-all or all-to-one

= Often encountered case: convergence checking
— See if you can live with the basic version of a routine

instead of a variable-width version (MPI_Gatherv,
MPI Alltoallv etc)



« Do not ask for the stuff you do not need
— Do not send dummy messages but use MPT_PROC_NULL

— Do not request for a status if you don’t employ it (but use
MPI STATUS IGNORE)

v Avoid unnecessary memory copies

— User-defined datatypes are much faster



Blocking 1
Send(to left)
Recv(from left)

Send(to up)
Recv(from up)
Send(to down)
Recv(from down)

Point-to-point performance

« Case study: halo exchange in 2D decomposition

Blocking 2

Send(to left)
Recv(from left)

Send(to up)
Send(to down)
Recv(from up)
Recv(from down)



Point-to-point performance

« Case study: halo exchange in 2D decomposition

Sendrecv
Sendrecv(to left, )
Sendrecv/( , from left)

Sendrecv(to up, from down)
Sendrecv(to down, from up)




Point-to-point performance

« Case study: halo exchange in 2D decomposition

| | | |
Non-Blocking 1 Non-Blocking 2 Non-Blocking 3
Irecv(from left) Isend(to left)

Isend(to left)

Irecv(from up) Isend(to up) Irecv(from left)
—— Irecv(from down) Isend(to down)
Isend(to left) Irecv(from left) Irecv(from down)
Isend(to up)
— Isend(to up) Irecv(from up) Irecv(from up)

Isend(to down) Irecv(from down) Isend(to down)
l | | |




2D halo exchange

Point-to-point performance
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Point-to-point performance

2D halo exchange
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« Compute while the communication takes place
— Hides communication overhead

v Realization
— Non-blocking communication

— Persistent communication
— Hybrid OpenMP+MPI



Improves load balance

Decreases replicated data

Reduces the amount of messages over the interconnect
One thread per core, one MPI task per CPU

— Not always the best ratio, however
— Experiment with other possibilities too



Do not perform 1/O from one process only, but use
parallel 1/0!

Make large requests wherever possible

For noncontiguous requests, use derived datatypes and a
single collective I/O call

Experiment with MPI 1/0 hints



v Hints may enable the implementation to optimize
performance

v MPI-2 standard defines several hints via the MPI_Info
object
— MPI_INFO _NULL : noinfo

— Functions MPI_Info_create and MPI_Info_set allow one to
create and set hints

v Effect of hints on performance is implementation and
application dependent



v For example, Cray XT systems support the following hints
striping factor, striping unit, direct _io, romio cb read,
romio_cb write, cb buffer_size, cb _nodes, cb _config list,
romio_no_indep rw, romio_ds read, ind _rd_buffer size,
ind wr_buffer_size

v Consult “man mpi” for their meaning and default values



v Some implementations allow setting of hints via
environment variables

— e.g. MPICH_MPIIO HINTS

— Example: for file “test.dat”, in collective I/O aggregate data

to 32 nodes
export MPICH MPIIO HINTS="test.dat:cb_nodes=32”
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« Apply the scientific method to performance engineering:
make hypotheses and measurements!
« Scaling up is the most important consideration in HPC
— Find the optimal decomposition
— Optimize MPI
— Optimize for message sizes in the bottleneck routines
— Overlap computation & communication

— Hybridize the code
¢ Mind your |/O!



v Following the optimization flow chart, optimize the GolL
program
1. Improve scalability

= For your convenience, versions employing nonblocking
communication as well as parallel I/O of the program are
provided — see the makefile (type make help)

2. Optimize the single core hotspots
3. Tryto do “optimal porting” tricks for the Gol program

Alternatively, you can work with your own application!



