
Performance Engineering
Dr Pekka Manninen
CSC – IT Center for Science Ltd (Finland)

Fortran95

Performance Engineering module overview

Tuesday
11.15-12.00 Introduction to

performance
engineering

12.00-13.15 Lunch

13.15-14.00 Application performance
analysis

14.00-14.15 Break

14.15-15.00 Optimal porting
15.00-15.15 Break

15.15-17.00 Lab session

Wednesday
8.30-9.00 Interim wrap-up, Q&A
11.15-12.00 Improving parallel

scalability
12.00-13.15 Lunch

13.15-15.00 Lab session

PART I: INTRODUCTION TO PERFORMANCE
ENGINEERING

Improving application performance

Obvious benefits
– Better throughput => more science
– Cheaper than new hardware
– Save energy, compute quota etc.

..and some non-obvious ones
– Potential cross-disciplinary research
– Deeper understanding of application

Several trends making optimization even more important

Four easy steps to better application performance

Find best-performing compilers and compiler flags
Employ tuned libraries wherever possible
Find suitable settings for environment parameters
Mind the I/O
– Do not checkpoint too often
– Do not ask for the output you do not need

Average CPU cores per system in the Top500

0

5000

10000

15000

20000

Jun-05 Jun-06 Jun-07 Jun-08 Jun-09 Jun-10 Jun-11
http://www.top500.org

16x

Trend: More and more cores

Concurrency increasing
– Processes/threads per node
– MPI tasks per job

Complex topology of a node
Optimization
– Reconsidering algorithms
– Efficient parallelization
– System utilization

0
5

10
15
20

Cores per CPU

Trend: Fattening vectors

Making CPUs smarter getting difficult
– ”Low-hanging fruit” have been picked
§ Pipelining, out-of-order execution etc.

– Trend: Wider vector units
§ New instruction sets (AVX, AVX2)

Leveraging the wider vector unit
– At minimum: Compiler optimization
§ Changes to code often needed

– Worst case: Algorithm cannot benefit from wider vectors

Year Name FP /
Hz

2001 SSE2 4

2012 AVX 8

2014? AVX2 16

Trend: CPU-memory gap growing

Memory lagging behind in
performance
– No silver bullet in short

term
Optimization
– Efficient memory

hierarchy utilization
– Latency hiding
– Sparing memory use

0

5

10

15

20

20
02

20
04

20
06

20
08

20
10

20
12

In
cr

ea
se

, x

CPU

Mem BW

Memory per
core
Mem
latency

Code optimization

Adapting the problem to the underlying hardware
Combination of many aspects
– Effective algorithms
– Processor utilization & Efficient memory use
– Parallel scalability

Important to understand interactions
– Algorithm – code – compiler – libraries – hardware

Performance is not portable!

Memory hierarchy

Registers

L1 Cache

L2 Cache

L3 Cache

Physical memory

Remote memory (over interconnect)

Swap, file system disks

<= 1

~4

~10

~25

~ 300

>> 1000

O(100 B)

O(100 kB)

O(1 MB)

O(10 MB)

GB’s

TB’s

100s GB’s~ 450

Application optimization flow chart

Later today

Next lecture

Tricks & tips
for this

tomorrow

PART II: APPLICATION PERFORMANCE ANALYSIS

Why does scaling end?

Amount of data per process small - computation takes
little time compared to communication
Load imbalance
Communication that scales badly with Nproc

– E.g., all-to-all collectives
Congestion on network – too
many messages or lots of data
Amdahl’s law in general
– E.g., I/O

Performance measurement

Most basic information: total wall clock time
– built-in timers in the program (e.g. MPI_Wtime)
– System commands (e.g. time) or batch system statistics

Built-in timers can provide also more fine-grained
information
– have to be inserted by hand
– typically, no information about hardware related issues

e.g. cache utilization
– information about load imbalance and communication

statistics of parallel program is difficult to obtain

Performance measurement

For more insight we need to employ performance
analysis tools
– Top time consuming routines (profile)
– Load balance across processes and threads
– Parallel overhead
– Communication patterns
– Hardware utilization details

HPC platforms usually have performance analysis suites
– CrayPAT, Scalasca, Paraver, Tau,...

Performance analysis

Instrumentation of code
– adding special measurement code to binary
§ special commands, compiler/linker wrappers
§ automatic or manual

– normally all routines do not need to be measured
Measurement: running the instrumented binary
– profile: sum of events over time
– trace: sequence of events over time

Analysis
– text based analysis reports
– visualization

Step 1: Choose a test problem

The dataset used in the analysis should
– Make scientific sense
– Be large enough for getting a good view on scalability
– Be runable in a reasonable time
– For instance, with simulation codes almost a full-blown

model but run only for a few time steps
Should be run long enough that initialization/finalization
stages are not exaggerated
– Alternatively, we can exclude them during the analysis

1

1.2

1.4

1.6

1.8

2

64 128 256 512 1024 2048

Speedup

0
100
200
300
400
500
600

64 128 256 512 10242048

Walltime

Step 2: Measure scalability

Run the uninstrumented code
with different core counts and
see where the parallel scaling
stops
Usually we look at strong
scaling, however weak scaling is
definitely also of interest

We should focus here:
what is happening?

Step 3: Instrument the application

Obtain first a sampling profile to find which user
functions should be traced
– One should not trace them all, it causes excessive

overhead
Make an instrumented exe with tracing user functions
plus e.g. MPI, I/O and library (BLAS, FFT,...) calls
Execute and record the first analysis with
– The core count where the scalability is still ok
– The core count where the scalability has ended

Step 4: Assessing the big picture

What are the major differences in these two profiles?
– Has the MPI fraction ’blown up’ in the larger run?
– Have the load imbalances increased dramatically?
– Has something else emerged to the profile?

Has the time spent for user routines decreased as it
should?

Step 5: Analyze load imbalance

What do the imbalanced routines wait for?
– Data from other tasks?
– Imbalanced amount of computation in different tasks?
– I/O?

If your code is using also OpenMP
– Trace for OpenMP API and run-time library too, and

regather data

Step 6: Analyze communication

What is dominating the true time spent for MPI
(excluding the sync times)
– Collectives?
– Point-to-point communication?

Note that the analysis tools may report load imbalances
as ”real” communication
– Put an MPI_Barrier before the suspicious routine

How does the message size profile look like?
– Are there a lot of small messages?

Step 7: Analyze I/O

How much I/O?
– Do the I/O operations take a significant amount of time?
§ Trace POSIX I/O calls (fwrite, fread, write, read,...)

Are some of the load imbalances etc. MPI hotspots due
to I/O?
– For example, data being gathered to a single task for

writing
– Insert MPI_Barriers to investigate this

Step 8: Analyze single-core bottlenecks

Check the fraction of the peak and computational
intensity
Obtain different HW counters, for example
– L1 and L2 cache metrics
– memory bandwidth information
– use of SSE instructions
– conditionals and branching

Analyze these, whether the major bottleneck is in
memory or some floating point issue

Load necessary modules

Build the application normally (make clean; make, cc, ftn,
etc)
Instrument the application

Run the instrumented program

Example: Using CrayPAT

% module load perftools

% pat_build –w –u –g mpi,io myexe

% aprun –n 16 ./myexe+pat

Tracing user functions, MPI

man pat_build

Tracing user functions, MPI
calls and I/O. For other

tracing options, see
man pat_build

Asking for a function
profile, MPI & I/O statistics

and load balance
information. See

pat_report –O help
for more options.

Analyse & visualize the results

Further info: man craypat, man pat_build, man
pat_report
For large real-world applications we
should use a bit more elaborated
approach called automatic profiling
analysis (APA) that avoids tracing all
functions. Refer to CrayPAT documentation.

Example: Using CrayPAT

> pat_report –O profile,mpi,io,lb myexe+pat+NNNNNN.xf2
> app2 myexe+pat+NNNNNN.ap2

Web resources

Scalasca
http://www.scalasca.org/

Paraver
http://www.bsc.es/computer-sciences/performance-tools/paraver

Tau performance analysis utility
http://www.cs.uoregon.edu/Research/tau

PART III: OPTIMAL PORTING

Optimal Porting

”Improving application performance
without touching the source code”
Potential to get significant performance
improvements with little effort
Should be revisited routinely
– Hardware, OS, compiler and library

upgrades
– Can be automated

Effort

Theoretical peak

P
er

fo
rm

an
ce

Compilers
Compiler flags
Numerical libraries
Intranode placement
Internode placement
Parallel I/O

Choosing a compiler

Many different choices
– GNU, PGI, Intel, Pathscale, IBM, Cray etc.

There is no universally fastest compiler
– Depends on the application or even input

Correctness
– Aggressive optimization may alter results or even break

the code - check against reference results!
– Compiler bugs are not that uncommon

Compiler optimization

Modern compilers can make sophisticated optimizations
– At best much more effective than a human
– In some cases need a lot of assistance

By default compilers cannot/should not
– Ignore language standard restrictions
– Take shortcuts that modify output
– Make any assumptions on input data

Compiler flags

Compilers typically have >100 command-line parameters
(aka compiler flags)
– Many affect compiler optimization behavior
– Ridiculously large search space
– Best flags not portable: may vary by application or even

input
– Some flags are generally beneficial

Some flags are potentially dangerous
– May lower numerical precision (e.g. ”fast math”)
– May break the code

The ”dash O” flags

De-facto standard flags for enabling typical optimizations
– ’–O[0-4]’, sometimes also ’fast’
§ For example gcc –O3 or icc –fast

– The higher the level, the more aggressive optimization
§ Compilers default to some ”safe” level (typically ’-O2’)
§ ’-O0’ disables optimizations completely

Typically improves performance but not always
No standardized definition what the flags actually mean

Example of the ”dash O” Flags

A Conjugate Gradient solver
for Ax=b, using 4 MPI tasks
on a XT4 node (AMD
Barcelona)

Compiler optimization techniques

Architecture-specific tuning
– Tunes all applicable parameters to the defined architecure

Vectorization
– Exploiting the vector units of the CPU (SSE, AVX etc.)
– Improves performance in most cases

Loop transformations
– Fusing, splitting, interchanging, unrolling etc.
– Effectiveness varies

Compiler optimization techniques

Interprocedural Optimization (IPO or IPA)
– Analyzes dependencies between functions and modules

and possibly even between source files
Profile Guided Optimization (PGO)
– Optimizing based on feedback from training runs
– Process takes time and manual effort

Fast math
– Reduces the error checking and/or numerical precision of

floating point operations. Use with caution!

Optimization flag examples

PGI GNU
Architecture-specific
tuning

-tp=arch -march=native

PGO training -Mpfi -fprofile-generate

PGO optimize -Mpfo -fprofile-use

IPA -Mipa=option -combine
-fwhole-program
-fipa-*

Fast math -Mfprelaxed -ffast-math

Interesting flags: PGI

-fast is a flag that turns on a set of flags that generally provide good performance.
In practice it often provides good, but not the best performance. -fast turns on: -
O2 -Munroll=c:1 -Mnoframe -Mlre -Mautoinline -Mvect=sse -Mscalarsse -
Mcache_align -Mflushz
-Mipa=fast Enable InterProcedural Analysis (IPA). Also activates -O2, at a
minimum. fast chooses generally optimal -Mipa flags. May increase compile time
significantly.
-Mvect=sse Enables the usage of SSE instructions (included in -fast)
-Msmart Enable AMD64-specific post-pass instruction scheduling.
-Msmartalloc=huge Add a call to the routine mallopt in the main routine. Link in
the huge page runtime library, so dynamic memory will be allocated in huge pages.
-Mfprelaxed Performs some floating point operations using relaxed precision

Interesting flags: PGI

-Mnoprefetch In some cases it can be beneficial to turn prefetching off, to avoid
evicting data from cache too early.
-Mprefetch=plain Turn on prefetching. In addition to plain there are also other
options.
-Mvect=noaltcode Do not generate alternative code for SSE vectorized loops.
-Minline=levels:n Inline n levels. Default n is one, it can be beneficial to attempt
higher levels (e.g. 3,5 or even 10)
-Munroll=c:u Try with u=4 or higher
-Munroll=n:u Try with u=4,8 or 16.
-Munroll=m:u Try with u=4,8 or 16.
-Mmovnt Force generation of nontemporal moves.
-Mnozerotrip Don't include a zero-trip test for loops. Use only when all loops are
known to execute at least once.

Interesting flags GNU

-O2 GCC performs nearly all supported optimizations that do not involve a
space-speed tradeoff
-O3 Optimize yet more.
-Os Optimize for size. -Os enables all -O2 optimizations that do not
typically increase code size. May be faster than O2 & O3
-ftree-ch Perform loop header copying on trees. On by default, except when Os is
active in which case this often should be activated
-funroll-loops Unroll loops whose number of iterations can be determined
at compile time or upon entry to the loop.
-frename-register Avoid false dependencies by making use of registers left
over after register allocation. Enabled by default with -funroll-loops.

Interesting flags GNU

-fsched-stalled-insns=2 2 instructions can be moved prematurely from the
queue of stalled insns into the ready list, during the second scheduling
pass. Can also try 4,6,... instructions.
-fno-guess-branch-probability In some cases it can be useful to turn of
branch guessing.
-ftree=vectorize Perform loop vectorization on trees.
-fno-cprop-registers After register allocation and post-register allocation
instruction splitting, we perform a copy-propagation pass to try to reduce
scheduling dependencies and occasionally eliminate the copy.
-fprofile-generate, -fprofile-use Create and use profile-based optimization

Interesting flags Intel

-O1 Optimize for size
-O3 More aggressive optimizations incl. vectorization (-O2 is default)
-fast Collection of common optimizations
– Contains: -O3 -ipo -no_prec_div -static -xW

-xHOST compile for architecture specified by HOST
-no_prec_div Relaxed precision division
-mp Disable optimizations that can affect floating point accuracy
-ipo Interprocedural optimizations
-prof-gen / -prof-use Generate /use profile

Numerical libraries

Some key numerical routines have de-facto standardized
interfaces
– BLAS, LAPACK, ScaLAPACK
– FFT (nearly)

There are multiple implementations of interfaces
– Both commercial and open-source
– The so-called ”reference” implementations are useful for

checking correctness but have poor performance

Numerical library collections

Vendors provide numerical library collections
– Optimized for the processor or the system architecture
– Usually contains: BLAS, LAPACK, FFT, vector math, RNG
– Possibly also sparse solvers and others

CSC systems have several packages
– AMD ACML (Louhi, Murska, Vuori)
– Cray LibSci (Louhi)
– Intel MKL (Louhi, Murska, Vuori)
– Nvidia numerical libraries (Vuori)

Optimized BLAS

Cornerstone of performance for many upper-level
libraries and applications
Many optimized implementations
– GOTO, MKL, LibSci, ACML, ATLAS etc.
– Also for GPUs: CUBLAS, ACML-GPU

Some compilers support translating intrinsic operations
(matmul etc.) into calls to a BLAS library
– GNU Fortran >=4.3: -fexternal-blas

BLAS Performance

BLAS routine for double precision matrix-vector multiplication (“DGEMV”) with
different libraries on quad-core Opteron Barcelona

Optimized FFT

No standard interface
– Similar function: Plan once, execute plan N times

Many optimized implementations
– Syntax look alike but not identical
– CRAFFT, FFTW, ACML FFT, Intel FFT, CUFFT etc.

No single best solution
– Depends on architecture and type of FFT

Consider saving the plans to a file and reusing them
– Only useful if FFT dimensions are consistent across runs

Fast math libraries

Vector math routines
– Operates on complete

arrays
Intrinsic math libraries
– Libraries that replace the

standard libm intrinsics
§ sin, exp, log etc.

No standard on naming
– Good idea to use macros

for(i=0;i<n;i++){
b[i]=exp(a[i]);

}

vrda_exp(n,a,b);

68% speedup

11.30s

6.73s

Interesting libraries on the Cray XT/XE

Iterative Refinement Toolkit (IRT)
– Subset of LAPACK solvers implemented
– Uses a mixed-precision approach
– Close to 2x speedup for well-conditioned problems

Adaptive Sparse Kernels (CASK)
– Autoselects compute kernel based on sparsity pattern
– Integrated with PETSc

Adaptive FFT (CRAFFT)
– Autoselects best implementation for a given FFT type

MPI placement

The layout of MPI processes can be
defined
– On MPICH based libraries (e.g. Cray

MPI) the environment variable is
MPICH_RANK_REORDER_METHOD

Goal to minimize inter-node
communication
– On Cray, CrayPAT can be used to

automate this

1 2 3

5 6 7

4

8

1 2 5

3 4 7

6

8

Default

Optimal

Other MPI parameters

Different MPI implementations have different parameters
Protocol limits are important parameters
– More about these tomorrow

Other important parameters vary
– Buffer sizes, mechanisms for matching unexpected

messages, message patterns for collectives etc.
– E.g. on the Cray XT: consult ’man mpi’

Summary

Choice of compiler and selection of flags may provide a
significant performance boost with very little effort
– See the manual pages for the compilers for full information

on flags
Modern HPC programming builds a lot upon libraries -
make sure you find the best performing ones
There are also other levers we can pull: MPI library and
other platform parameters
None of the above cannot alleviate a poor algorithm or
bad implementation!

Web resources

Wikipedia article about compiler optimization
http://en.wikipedia.org/wiki/Compiler_optimization

How to make the best use of Cray MPI on the XT
http://www.csc.fi/kurssit/arkisto/aineisto/hpce2-workshop/hpce2-

workshop-derose-mpi

Tool for optimizing runtime parameters of Open MPI
http://www.open-mpi.org/projects/otpo/

Porting applications to BlueGene/P
http://www.fz-juelich.de/jsc/datapool/page/3365/BGP_porting.pdf

Lab session: Performance analysis

The Game of Life (GoL) is a cellular automaton devised by
John Horton Conway, read
http://en.wikipedia.org/wiki/Conway's_Game_of_Life

A parallel (MPI) implementation of the GoL is provided in
GoL_mpi (.f90 or .c)
– Compile and run the software

% make
% aprun –n 4 ./gol 100 1000 1000

– You need to do (once) module load ImageMagick
– Then you can visualise the board development with

% convert -delay 40 –geometry 512x512 life_*.pbm life.gif
% animate life.gif

Develop a 1000x1000 board
for 100 iterations

Lab session: Performance analysis

By carrying out performance analysis, find out the
reasons why the provided version of the GoL code does
not scale
– Indeed it should scale, it is a simple domain decomposition

with thin halos
– We are going to overcome these tomorrow

Alternatively, you can carry out the eight-step procedure
discussed earlier for your own application!

PART IV: IMPROVING PARALLEL SCALABILITY

Improving parallel scalability

Unfortunately, quite often achieving better scalability
requires algorithm and data-structure level changes
– However, usually it is possible to do something without

touching the big picture
Review the performance measurements: is the
communication bottleneck in
– Load imbalance?
§ Large Sync times
§ Large differences in MPI_Wait times

– Just large amount of communication?

Basic considerations

Message transfer time ∝ latency + message length /
bandwidth
– Latency: Startup for message handling
– Bandwidth: Network BW / number of messages using the

same link
Bandwidth and latency depend on the used protocol
– Eager or rendezvous
§ Latency and bandwidth higher in rendezvous
§ Eager has an issue with sc. unexpected message buffers

– The platform will select the protocol basing on the
message size, these limits can be adjusted

Basic considerations

Reduce latency: Send one big message instead of several
small messages
Minimize the amount of bytes send over the
interconnect
Quick tricks
– Experiment with the rank placement
– Experiment with the protocol limits and other MPI library

parameters

Problem decomposition

Minimize the data to be communicated by carefully
designing the partitioning of data and computation
Example: domain decomposition of a 3D grid (n x n x n)
with halos to be communicated, cyclic boundaries

1D decomposition (”slabs”):
communication ∝ n2 * w * 2

2D decomposition (”tubes”):
communication ∝ n2 * p-1/2 * w * 4

3D decomposition (”cubes”):
communication ∝ n2 * p-2/3 * w * 6

w = halo width
p = number of MPI tasks

Efficient MPI programming style

Use collectives!
– If a collective call can do it for you, it will outperform all

point-to-point constructs
And use them right
– See if every all-to-all collective operation needs to be all-

to-all rather than one-to-all or all-to-one
§ Often encountered case: convergence checking

– See if you can live with the basic version of a routine
instead of a variable-width version (MPI_Gatherv,
MPI_Alltoallv etc)

Efficient MPI programming style

Do not ask for the stuff you do not need
– Do not send dummy messages but use MPI_PROC_NULL
– Do not request for a status if you don’t employ it (but use
MPI_STATUS_IGNORE)

Avoid unnecessary memory copies
– User-defined datatypes are much faster

Point-to-point performance

Case study: halo exchange in 2D decomposition

Blocking 1
Send(to left)
Recv(from left)
Send(to right)
Recv(from right)
Send(to up)
Recv(from up)
Send(to down)
Recv(from down)

Blocking 2
Send(to left)
Send(to right)
Recv(from left)
Recv(from right)
Send(to up)
Send(to down)
Recv(from up)
Recv(from down)

Point-to-point performance

Case study: halo exchange in 2D decomposition

Sendrecv
Sendrecv(to left, from right)
Sendrecv(to right, from left)
Sendrecv(to up, from down)
Sendrecv(to down, from up)

Point-to-point performance

Case study: halo exchange in 2D decomposition

Non-Blocking 1
Irecv(from left)
Irecv(from right)
Irecv(from up)
Irecv(from down)
Isend(to left)
Isend(to right)
Isend(to up)
Isend(to down)

Non-Blocking 2
Isend(to left)
Isend(to right)
Isend(to up)
Isend(to down)
Irecv(from left)
Irecv(from right)
Irecv(from up)
Irecv(from down)

Non-Blocking 3
Irecv(from right)
Isend(to left)
Irecv(from left)
Isend(to right)
Irecv(from down)
Isend(to up)
Irecv(from up)
Isend(to down)

Point-to-point performance

2D halo exchange
Th

ro
ug

hp
ut

(M
B/

s)

Halo data size (B)

Non-blocking
with Isends pre-
posted is clearly

the way to go

Cray XT4

Point-to-point performance

2D halo exchange
Th

ro
ug

hp
ut

(M
B/

s)

Halo data size (B)

InfiniBand (4xDDR)
cluster

Here the
fastest

realization
depends on the

message size

Simple Send +
Recv is horribly

slow

Overlapping computation and communication

Compute while the communication takes place
– Hides communication overhead

Realization
– Non-blocking communication
– Persistent communication
– Hybrid OpenMP+MPI

Consider hybridization

Improves load balance
Decreases replicated data
Reduces the amount of messages over the interconnect
One thread per core, one MPI task per CPU
– Not always the best ratio, however
– Experiment with other possibilities too

Achieving good I/O performance

Do not perform I/O from one process only, but use
parallel I/O!
Make large requests wherever possible
For noncontiguous requests, use derived datatypes and a
single collective I/O call
Experiment with MPI I/O hints

Giving hints to MPI I/O

Hints may enable the implementation to optimize
performance
MPI-2 standard defines several hints via the MPI_Info
object
– MPI_INFO_NULL : no info
– Functions MPI_Info_create and MPI_Info_set allow one to

create and set hints
Effect of hints on performance is implementation and
application dependent

Giving hints to MPI I/O

For example, Cray XT systems support the following hints
striping_factor, striping_unit, direct_io, romio_cb_read,
romio_cb_write, cb_buffer_size, cb_nodes, cb_config_list,
romio_no_indep_rw, romio_ds_read, ind_rd_buffer_size,
ind_wr_buffer_size

Consult ”man mpi” for their meaning and default values

Giving hints to MPI I/O

Some implementations allow setting of hints via
environment variables
– e.g. MPICH_MPIIO_HINTS
– Example: for file “test.dat”, in collective I/O aggregate data

to 32 nodes
export MPICH_MPIIO_HINTS=”test.dat:cb_nodes=32”

Parallel I/O performance (Cray XT)

Concluding remarks

Apply the scientific method to performance engineering:
make hypotheses and measurements!
Scaling up is the most important consideration in HPC
– Find the optimal decomposition
– Optimize MPI
– Optimize for message sizes in the bottleneck routines
– Overlap computation & communication
– Hybridize the code

Mind your I/O!

Lab session: Performance optimization

Following the optimization flow chart, optimize the GoL
program
1. Improve scalability
§ For your convenience, versions employing nonblocking

communication as well as parallel I/O of the program are
provided – see the makefile (type make help)

2. Optimize the single core hotspots
3. Try to do ”optimal porting” tricks for the GoL program

Alternatively, you can work with your own application!

