
8/8/12

1

1!

Advanced MPI

Erwin Laure  
Director PDC-HPC!

What we know already!

n  Everything to write typical MPI programs!
n  Program structure!
n  Point-to-point communication!
n  Communication modes!
n  Blocking/non-blocking communication!
n  Collective Communication!
n  Data types!
n  Groups and communicators!
n  Performance considerations!

2!

8/8/12

2

MPI provides additional, advanced features!

n  Virtual topologies!
n  MPI-IO!
n  One-sided communication!
n  Profiling Interface!

n  Very useful in special cases – go beyond an introductory
lecture!

n  We will touch these issues only on the surface!

3!

MPI Profiling Interface!

4!

8/8/12

3

Profiling Interface Overview!

n  To understand program performance it is important to
understand what the program is actually doing!

n  Simple printfʼs are not sufficient to understand the
complex behavior of message passing programs!
n  Where does synchronization occur?!
n  Which process is waiting for input when? !
n  Etc. !

5!

A side note: Timing in MPI !

n  To simply understand how long a program/a certain part
of a program took MPI provides an interface to system
timer:!

double MPI_Wtime();!
DOUBLE PRECISION MPI_WTIME()!
!
n  Timing resolution can be explored by!
Double MPI_Wtick();!

n  Resolution on the Cray is 1 microsecond!

n  Not enough to understand complex behavior!

6!

8/8/12

4

Profiling Interface!

n  MPI allows to log certain events to a log file that can be
analyzed post-mortem!

n  Part of the MPI MultiProcessing Environment!
n  Prefix MPE!
n  Tracing Library !This traces all MPI calls. Each MPI call is

preceded by a line that contains the rank in MPI_COMM_WORLD
of the calling process, and followed by another line indicating that
the call has completed.. ! !!

n  Animation Library This is a simple form of real-time program
animation and requires X window routines. !!

n  Logging Library!This is the most useful and widely used profiling
libraries in MPE. They form the basis to generate log files from
user MPI programs. There are currently 3 different log file formats
allowed in MPE. !!

7!

MPI Profiling Interface!

n  You normally donʼt instrument and log events in your MPI
program directly!

n  MPI provides a mechanism for tool developer to
dynamically replace (at link time) standard MPI routines
with instrumented ones through a nameshift!
n  Each MPI call is also defined as PMPI!

8!

MPI_Send!
!
 
!
MPI_Bcast!

MPI_Send!
 …!
 PMPI_Send!

MPI_Send!
PMPI_Send!
!
!
MPI_Bcast!

8/8/12

5

Using MPI Profiling!

n  Link against profiled MPI implementation!
n  This will produce a trace file!
n  Use performance tools (see performance lecture) to

analyze the data!

9!

Virtual Topologies!

10!

8/8/12

6

Ordering of Processes!

n  So far we have worked with a flat process space!
n  Rank 0 … n-1!

n  Many application have however an inherent structure of
their data!
n  E.g. 2D or 3D matrices!

n  Likewise, the underlying network has a specific structure!
n  E.g. fat tree, 3d torus (Cray)!

n  Can we take advantage of this and map processes in a
similar fashion? !

11!

Example – Simple (flat) topology!

12!

8/8/12

7

Example – 2D Topology!

13!

•  Can still use flat process space but requires tedious and
error prone mapping

MPI Virtual Topologies!

n  MPI provides 2 types of virtual topologies!
n  Cartesian!
n  Graphs!

n  Cartesian topology (generalization of a grid function)!
n  Each process is connected to its neighbors in a virtual grid!
n  Boundaries can be cyclic (or not)!
n  Processes are identified by (discrete) Cartesian coordinates!

•  Eg. x,y,z!

n  Graph topology!
n  Describe communication patterns by means of graphs!
n  The most general description of communication patterns!
n  Not covered here!

14!

8/8/12

8

Benefits of Virtual Topologies!

n  Convenient process naming!

n  Naming scheme to fit communication pattern!

n  Simplifies writing code!

n  Can allow MPI to optimize communications!
n  Vendors can optimize mappings on their network topology!

15!

How do Virt. Topologies work?!

n  Creating a virtual topology produces a new communicator!

n  MPI provides mapping functions between the serial
process enumeration and the virtual topology!

n  Mapping functions compute processor ranks based on the
topology naming scheme!

16!

8/8/12

9

Main Cartesian Commands!
n  MPI_CART_CREATE: creates a new communicator using a

Cartesian topology!

n  MPI_CART_COORDS: returns the corresponding Cartesian
coordinates of a (linear) rank in a Cartesian
communicator.!

n  MPI_CART_RANK: returns the corresponding process rank
of the Cartesian coordinates of a Cartesian communicator.!

n  MPI_CART_SUB: creates new communicators for subgrids
of up to (N-1) dimensions from an N-dimensional
Cartesian grid.!

n  MPI_CART_SHIFT: finds the resulting source and
destination ranks, given a shift direction and amount. ! 17!

MPI_CART_CREATE!
int MPI_Cart_create(MPI_Comm old_comm, int ndims,  
 int *dim_size, int *periods, int reorder,  
 MPI_Comm *new_comm)!
!
MPI_CART_CREATE(OLD_COMM, NDIMS, DIM_SIZE, PERIODS,  
 REORDER, NEW_COMM, IERR)!
!
periods: Array of size ndims specifying periodicity status of each  
 dimension!
reorder: whether process rank reordering by MPI is permitted!
New_comm: Communicator handle!

18!

8/8/12

10

Example!
#include "mpi.h"!
MPI_Comm old_comm, new_comm;!
int ndims, reorder, periods[2], dim_size[2];!
 !
old_comm = MPI_COMM_WORLD;!
ndims = 2; /* 2-D matrix/grid */!
dim_size[0] = 3; /* rows */!
dim_size[1] = 2; /* columns */!
periods[0] = 1; /* row periodic (each column forms a  
 ring) */!
periods[1] = 0; /* columns nonperiodic */!
reorder = 1; /* allows processes reordered for  
 efficiency */!
 !
MPI_Cart_create(old_comm, ndims, dim_size,!
 periods, reorder, &new_comm);!

19!

Example Contʼd!

20!
periods(0)=.true.;periods(1)=.false.

8/8/12

11

Note!
n  MPI_CART_CREATE is a collective communication function so it must

be called by all processes in the group. Like other collective
communication routines, MPI_CART_CREATE uses blocking
communication. However, it is not required to be synchronized among
processes in the group and hence is implementation dependent.!

n  If the total size of the Cartesian grid is smaller than available
processes, those processes not included in the new communicator
will return MPI_COMM_NULL.!

n  If the total size of the Cartesian grid is larger than available
processes, the call results in error.!

21!

MPI-IO!

22!

8/8/12

12

23!

Common Ways of Doing I/O in Parallel Programs!

n  Sequential I/O:!
n  All processes send data to process 0, and 0 writes it to the file!

24!

Pros and Cons of Sequential I/O!

n  Pros:!
n  parallel machine may support I/O from only one process !

•  (e.g., no common file system)!
n  Some I/O libraries (e.g. HDF-4, NetCDF) not parallel!
n  resulting single file is handy for ftp, mv!
n  big blocks improve performance!
n  short distance from original, serial code!

n  Cons:!
n  lack of parallelism limits scalability, performance (single node

bottleneck)!

8/8/12

13

25!

Another Way!
n  Each process writes to a separate file!

n  Pros: !
n  parallelism, high performance!

n  Cons: !
n  lots of small files to manage!
n  difficult to read back data from different number of processes!
n  Lots of requests can make trouble to the file system!

26!

What is Parallel I/O?!

n  Multiple processes of a parallel program accessing data
(reading or writing) from a common file!

FILE

P0 P1 P2 P(n-1)

8/8/12

14

27!

Why Parallel I/O?!

n  Non-parallel I/O is simple but!
n  Poor performance (single process writes to one file) or!
n  Awkward and not interoperable with other tools (each process

writes a separate file)!

n  Parallel I/O!
n  Provides high performance!
n  Can provide a single file that can be used with other tools (such as

visualization programs)!

28!

What is MPI-IO!

n  I/O interface specification for use in MPI applications!
n  Data model is a stream of bytes in a file!

n  Same as POSIX and stdio!

n  Features!
n  Noncontiguous I/O with MPI datatypes and file views!
n  Collective I/O!
n  Nonblocking I/O!
n  Language bindings!

8/8/12

15

MPI File Structure!

n  MPI defines how multiple processes access and modify
data in a shared file.!

n  Necessary to think about how data is partitioned within
this file!
n  Similar to how derived datatypes define data partitions within

memory!
n  MPI-IO works with simple datatypes and derived

datatypes!
n  Derived datatypes are preferred because of performance benefits!

n  A view defines the current set of data, visible and
accessible, from an open file. !
n  Each process has its own view of the shared file that defines what

data it can access. !
n  A view can be changed by the user during program execution.!

29!

Essential Concepts!

n  Displacement!
n  describes where to start in the file!

n  Elementary datatype (etype)!
n  the type of data that is to be written or read!
n  Basic or derived datatype!

n  Filetype!
n  the pattern of how the data is partitioned in the file!
n  A filetype is a defined sequence of etypes, which can have data or

be considered blank!

30!

8/8/12

16

Example: File views!

31!

Simple Example!
MPI_File fh;
MPI_Status status;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
bufsize = FILESIZE/nprocs;
nints = bufsize/sizeof(int);

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
 MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);
MPI_File_seek(fh, rank * bufsize, MPI_SEEK_SET);
MPI_File_read(fh, buf, nints, MPI_INT, &status);
MPI_File_close(&fh);
!

32!

offset!

8/8/12

17

More about MPI-IO!

n  See for instance!

www.npaci.edu/ahm2002/ahm_ppt/Parallel_IO_MPI_2.ppt
Rajeev Thakur. Mathematics and Computer Science
Division. Argonne National Laboratory!

33!

One-sided Communication!

34!

8/8/12

18

Recap: Point-to-point Communication!

n  Both sender and receiver must issue matching MPI calls!
n  Depending on buffering semantics may require handshake!

n  Sometimes it is difficult to know in advance when
messages have to be sent/received and what
characteristics these messages have!
n  Could solve such situations with extra control messages!

•  Requires polling, introduces overhead, and is cumbersome!

n  MPI provides Remote Memory Access (RMA), or one-
sided communication!
n  Allows one process to specify all communication parameters for

both the sender and receiver!

35!

One-sided Communication!

n  Communication and Synchronization are separated!

n  Allows remote processes to !
n  Write into local memory (put)!
n  Read local memory (get)!

n  Accessible memory areas are called “windows”!

n  Communication can happen without synchronization!

n  Access to windows is synchronized!

36!

8/8/12

19

Looks a bit like shared-memory programming?!

n  In fact, tries to bring the advantages of shared-memory
programming to MPI programs!

n  Effective implementation needs shared memory or
hardware support for RDMA!
n  Available e.g. in infiniband or Cray networks!

n  Need synchronization to ensure correct behavior!
n  Same issues as in shared-memory programming!
n  MPI provides window objects for synchronization!

n  How to implement synchronization is a great optimization
field!

37!

Window Objects!

38!

Process 0!

Address 
Space!

window!

Process 2! Process 3!

Process 1!

put!

get!

8/8/12

20

Main Commands!
n  MPI_Win_create exposes local memory to RMA

operation by other processes in a communicator!
n  Collective operation!
n  Creates window object !

n  MPI_Win_free deallocates window object!
n  MPI_Put moves data from local memory to remote

memory !
n  MPI_Get retrieves data from remote memory into local

memory !
n  MPI_Accumulate updates remote memory using local

values !
n  Data movement operations are non-blocking!
n  Subsequent synchronization on window object needed

to ensure operation is complete!
39!

Advantages of one-sided communication!

n  Can do multiple data transfers with a single
synchronization operation!

n  Bypass tag matching!
n  effectively precomputed as part of remote offset !

n  Some irregular communication patterns can be more
economically expressed!

n  Can be significantly faster than send/receive on systems
with hardware support for remote memory access, such
as shared memory systems!
n  BUT: can also be significantly slower depending on

synchronization need and access patterns!! 40!

8/8/12

21

Synchronization!
n  Put/Get/Accumulate are non-blocking!

n  Subsequent synchronization on window object is needed to
ensure operations are complete!

n  MPI_Win_fence is used to synchronize access to windows!
n  Should be called before and after RMA!
n  Similar to a barrier in shared memory!

!Process 0 ! ! !Process 1!
!MPI_Win_fence(win) !MPI_Win_fence(win)!

!

!MPI_Put !
!MPI_Put!

!

!MPI_Win_fence(win) !MPI_Win_fence(win)!

41!

Summary!

n  One-sided communication provides convenient means for
irregular applications!

n  Communication can be more efficient with proper
hardware support!

n  Great care needs to be put on (efficient) synchronization!

42!

8/8/12

22

And finally …!

n  The top MPI Errors according to !

Advanced MPI: I/O and One-Sided Communication,
presented at SC2005, by William Gropp, Rusty Lusk, Rob
Ross, and Rajeev Thakur!
http://www.mcs.anl.gov/research/projects/mpi/tutorial/
advmpi/sc2005-advmpi.pdf) !

43!

Top MPI Errors!
n  Fortran: missing ierr argument!
n  Fortran: missing MPI_STATUS_SIZE on status!
n  Fortran: Using integers where MPI_OFFSET_KIND or

MPI_ADDRESS_KIND integers are required (particularly in I/O)!
n  Fortran 90: Using array sections to nonblocking routines (e.g.,

MPI_Isend)!
n  All: MPI_Bcast not called collectively (e.g., sender bcasts, receivers use

MPI_Recv)!
n  All: Failure to wait (or test for completion) on MPI_Request !
n  All: Reusing buffers on nonblocking operations !
n  All: Using a single process for all file I/O !
n  All: Using MPI_Pack/Unpack instead of Datatypes!
n  All: Unsafe use of blocking sends/receives !
n  All: Using MPI_COMM_WORLD instead of comm in libraries !
n  All: Not understanding implementation performance settings!
n  All: Failing to install and use the MPI implementation according to its

documentation.! 44!

8/8/12

23

Summary!

n  MPI allows to write portable parallel code across many
different architectures!

n  Writing simple MPI programs is easy (6 commands)!

n  Writing efficient MPI programs is difficult!
n  Need also to understand MPI implementation and underlying

hardware!
n  Experiment with different options!
n  Also experiment with hybrid approaches: use Open-MP within a

nodes and MPI across nodes!

45!

